
PROCEEDINGS Open Access

Secure distributed genome analysis for GWAS
and sequence comparison computation
Yihua Zhang1*, Marina Blanton1, Ghada Almashaqbeh2

From 4th iDASH Privacy Workshop
San Diego, CA, USA. 16 March 2015

Abstract

Background: The rapid increase in the availability and volume of genomic data makes significant advances in
biomedical research possible, but sharing of genomic data poses challenges due to the highly sensitive nature of
such data. To address the challenges, a competition for secure distributed processing of genomic data was
organized by the iDASH research center.

Methods: In this work we propose techniques for securing computation with real-life genomic data for minor
allele frequency and chi-squared statistics computation, as well as distance computation between two genomic
sequences, as specified by the iDASH competition tasks. We put forward novel optimizations, including a
generalization of a version of mergesort, which might be of independent interest.

Results: We provide implementation results of our techniques based on secret sharing that demonstrate
practicality of the suggested protocols and also report on performance improvements due to our optimization
techniques.

Conclusions: This work describes our techniques, findings, and experimental results developed and obtained as
part of iDASH 2015 research competition to secure real-life genomic computations and shows feasibility of securely
computing with genomic data in practice.

Background
Introduction
The iDASH (Integrating Data for Analysis, Anonymiza-
tion and SHaring) research center at the University of
California, San Diego hosts an annual competition, which
in 2015 was dedicated to secure genome analysis. The
two challenges corresponded to secure non-interactive
analysis of genomic data based on homomorphic encryp-
tion and secure interactive analysis using secure multi-
party computation techniques. We focus on the second
challenge and report our design and implementation of
the competitions tasks, which consisted of distributed
GWAS (Genome-Wide Association Study) computation
and secure sequence comparisons in the form of the
Hamming distance or edit distance. Here, GWAS is a

study of common genetic variants in different individuals
using case and control groups to determine if any variant
is associated with a specific trait or genetic conditions.
We utilize secure multi-party computation (SMC)

techniques based on secret sharing with lightweight com-
putational footprints. This requires that all computation
carried out jointly by the parties (i.e., computation that
cannot be performed locally by data owners) is data-
oblivious, which means that all instructions and accessed
memory locations must be independent of the data.
While this does not pose a challenge for some simpler
computational tasks, meeting this objective often involves
using non-trivial techniques for more complex function-
alities. In particular, computing both Hamming and edit
distances of two genome sequences involves a form of
aligning the input sequences which is not straightforward
to achieve in secure setting. A logical tool to resort to is
to utilize secure set intersection for computing chromo-
some positions that appear in both input sequences, for

* Correspondence: yzhang16@nd.edu
1Department of Computer Science and Engineering, University of Notre
Dame, Notre Dame, USA
Full list of author information is available at the end of the article

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

© 2015 Zhang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:yzhang16@nd.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

which both two-party and multi-party implementations
are known. Due to the specifics of our setting, we rely on
the ideas from [1] for computing the set of positions
common to both sequences, which in turn utilize obliv-
ious sorting. The fastest oblivious sorting mechanism
available to us at the time of competition preparation
was sorting based on Batcher’s mergesort [2], which
works only on input sets, the size of which is a power
of 2. This posed a problem because padding an input set
of a large size to have the size equal to a power of 2 often
can result in a significant performance slowdown which
we wanted to overcome. Thus, the most challenging
component of distance computation was generalizing the
mergesort (more precisely, the merging step as described
later) component of the computation to work with inputs
of arbitrary sizes, which might be of independent interest.
This and other optimizations and design decisions con-
stitute the main contribution of this work. We also report
on performance of our algorithms on real genome data.

Tasks of the challenge
The challenge for secure multi-party computation based
genomic data analysis had two tasks:

1 The first task was to develop secure distributed pro-
tocols for GWAS computations. The input consists of
the genotypes of two groups of individuals (one case
and one control group) over a number of Single
Nucleotide Polymorphisms (SNP) with each of them
being a DNA sequence variation, where a single
nucleotide (A, T, C, or G) in the genome differs
between individuals. The input is horizontally parti-
tioned among two sites (e.g., two institutions, medical
facilities, etc.), where each site cannot reveal its input
to other parties. The task consists of securely com-
puting minor allele frequencies (MAF) and chi-
squared statistics for each of the SNPs in the case and
control groups distributed across the two input
parties. We provide the details of the computation
below.
2 The second task was to develop secure distributed
protocols for genomic sequence comparisons. The
input consists of two genomic datasets, one from
each individual, which are organized as the genotypes
over many SNPs across the whole human genome.
Each genomic dataset belongs to a different entity,
and the data owner cannot reveal any information
about its data to other parties. The task consists of
securely computing either the Hamming distance or
edit distance between the two genomic datasets, and
we concentrate on Hamming distance computation.
The computation involved in the Hamming distance
computation of two genomic datasets differs from the
traditional formulation of the Hamming distance and

we describe the computation used in determining the
distance later in this section.

Before we proceed with a detailed description of the
tasks, we would like to note that the specification of the
tasks, including all information about the participants’
datasets that should be treated as public (such as
the number records in one’s dataset), was provided by
the competition organizers. The goal was thus to pro-
vide a secure evaluation of the specified functionality
using at least the semi-honest security model (see below
for detail), and the extent of the information about the
other participant’s data that can be deduced from the
output is beyond the scope of this work.
We next describe the computation involved in the first

task in more detail. The input comes as a list of SNPs,
where for each SNP a number of genotypes correspond-
ing to the individuals from the case and control groups
are given. Let P denote the number of SNPs in the
input and Nc (Nt) denote the number of individuals in
the case (resp., control) group, whose genomic data is
provided for each SNP. For each SNP, a genotype corre-
sponding to an individual consists of two nucleotides
with three possible variations denoted by AA, AB, and
BB, where A and B each represent a character from the
set {A, T, C, G} and are alleles in our context.
For the purpose of MAF computation, there is no dis-

tinction between case and control groups, and all indivi-
duals in both groups are treated in the same way. We
denote the total number of individuals by N = Nc + Nt.
To determine MAF for a given SNP, one first needs to
count the number of occurrences of alleles A and B as
nA = 2nAA + nAB and nB = 2nBB + nAB, respectively,
where nAA, nAB, and nBB denote the number of indivi-
duals with genotypes AA, AB, and BB for the given
SNP. For an allele A or B, we compute its frequency as
nA/2N or nB/2N , respectively, where 2 is the length of
each genotype. To simplify notation, we also let N’ = 2N
(and N′

c = 2Nc , N′
t = 2Nt). The smaller frequency corre-

sponds to the minor allele and constitutes the output of
MAF computation. We obtain the following:
Definition 1 Minor allele frequency (MAF) refers to

the frequency at which the least common allele occurs in
a given population and is computed as

MAF = min(nA,nB)/N′
= min(2nAA + nAB, 2nBB + nAB)/N′ (1)

We can simplify the computation by directly obtaining
nA and nB after counting the number of times each of the
two nucleotide values appears in the provided genotypes.
In the case when the individuals are partitioned into two
(case and control) groups, we will have nA = ncA + ntA
and nB = ncB + ntB , where ncA and ntA represent the

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 2 of 12

value of nA in the case and control groups, respectively,
and similarly ncB and ntB represent the value of nB in the
case and control groups. Furthermore, in our case the
data are partitioned among two different entities and
thus each of nA and nB need to be computed as the sum
of the corresponding values at the respective sites. If we
let superscripts (1) and (2) represent the values present in
the genotypes of the individuals at sites 1 and 2, respec-

tively, we now obtain and nB = n(1)cB + n(1)tB + n(2)cB + n(2)tB
.

Also, now N corresponds to the total number of indivi-
duals in the data at both sites and in both case and control
groups. Using notation similar to the above, we let

Nc = N(1)
c +N(2)

c and Nt = N(1)
t +N(2)

t .
The chi-squared test is also performed for each SNP

independently, but now the data of the individuals in
the case and control groups play different roles.
Definition 2 Chi-squared (c2) test is a statistical test

for comparing observed data with those expected accord-
ing to a specific hypothesis and is represented as

χ2 =
∑m

i=1

(obsi−expi)
2

expi
for some setting-dependent m.

In our case (for a single dataset), m = 4 and the observed
values obsi’s correspond to the observed allele counts for a
SNP, namely, ncA, ncB, ntA, ntB. The corresponding
expected allele counts expi’s are (ncA + ntA)N′

c/N
′ ,

(ncA + ntA)N′
c/N

′ , (ncA + ntA)N′
c/N

′ , (ncB + ntB)N′
t/N

′ .
The resulting computation can be simplified to become

χ2 =
(ncAntB − ncBntA)

2N′

N′
cN′

t(ncA + ntA)(ncB + ntB)
(2)

When the dataset is horizontally partitioned among
two sites, the counts ncA, ntA, ncB , ntB, Nc, Nt, N
become the sum of their respective values at both sites.
We can now proceed with the description of the com-

putation involved in the second task, namely, the Ham-
ming distance of two genomic datasets. In the
traditional formulation of the Hamming distance, on
input of two sequences of equal length, the distance is
defined as the number of positions at which the corre-
sponding symbols in the input sequences are different.
This is not directly applicable to genomic sequences
because they are not represented as perfectly aligned
strings of the same length and thus the computation is
more complex. Before we proceed with the details of
the computation, we need to specify how the input (i.e.,
genomic datasets) are represented.
Genomic sequences are represented in the Variant

Call Format (VCF), where each genomic sequence is a
set of records. In each record, chromosome CHROM
represents an identifier from the reference genome and
position POS represents the reference position within
the reference sequence CHROM. In other words, the

pair 〈CHROM, POS〉 represents the location of the data
associated with this record in the genome. The fields
REF and ALT represent the reference and alternate
bases, respectively, expressed as a sequence of one or
more nucleotides. The field SVTYPE represents the type
of the record, which is one of SUB, SNP, DEL, or INS.
Only records of type SUB and SNP are used in the com-
putation of the Hamming distance. In records of type
SNP, both REF and ALT fields are one character long,
while in records of type SUB, both fields can be longer.
We also found that in two different inputs records at
the same location 〈CHROM, POS〉 may be represented
using different types (SUB and SNP).
Algorithm 1 HD(S1, S2)
1: create an empty map M with keys as pair 〈CHROM,

POS〉
2: dist = 0
3: for each record R in S1 do
4: if (R.SVTYPE = SUB or R.SVTYPE = SNP) then
5: M.put(〈R.CHROM, R.POS〉, R)
6: dist = dist + 1
7: end if
8: end for
9: for each record R in S2 do
10: if (R.SVTYPE = SUB or R.SVTYPE = SNP) then
11: if (M.containsKey(〈R.CHROM, R.POS〉) = false)

then
12: dist = dist + 1
13: else
14: dist = dist − 1
15: if (M.get(〈R.CHROM, R.POS〉).REF = R.REF

and M.get(〈R.CHROM, R.POS〉).ALT ≠ R.ALT) then
16: dist = dist + 1
17: end if
18: end if
19: end if
20: end for
21: return dist
To compute the Hamming distance between two geno-

mic datasets, we initially set the distance to 0. Then for all
records in the datasets with type SUB or SNP, if a location
〈CHROM, POS〉 is found only in one of the datasets (and
is absent in the other), the Hamming distance is incremen-
ted by 1. Also, if the location is found in both datasets and
the corresponding values of the REF fields are the same,
but the values of the ALT fields are different, the Ham-
ming distance is also incremented by 1. A more detailed
specification of how this procedure may be implemented
is given in Algorithm 1. The algorithm uses a map to store
all records of type SUB and SNP from the first dataset and
(optimistically) increments the distance by 1 for each
record placed in the map (lines 3-7). Then for each record
of type SUB or SNP from the second dataset, if there was
no record with the same location 〈CHROM, POS〉 in the

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 3 of 12

first dataset, the distance is incremented by 1 (lines 10-12).
If, however, the location is present in both datasets, the
distance is first decremented by 1 (line 14). The algorithm
then compares the fields REF and ALT of the records
from the two datasets with the same location. If the for-
mer are equal and the latter differ, the distance is incre-
mented by 1 (lines 15-17).
Additional information about the tasks, including

examples that illustrate the computation, can be found
on the competition web site [3] as well as in an article
[4] being prepared by the competition organizers.

Secure multi-party computation background
Secure multi-party computation allows two or more par-
ticipants to jointly evaluate a function on their private
inputs without revealing any information about the pri-
vate data other than the output of the agreed-upon func-
tion. There are two standard security models used for
secure function evaluation on private data that differ
with respect to the types of adversaries they can tolerate.
The first security model known as semi-honest (or hon-
est-but-curious or passive) requires that all computation
participants follow the computation as prescribed, but
might save any information observed throughout the
computation and compute with it with the goal to dis-
cover additional information about private input values.
A protocol is said to be secure if no coalition of semi-
honest participants (adversaries) can learn any additional
information about private inputs of other parties other
than what they can already compute from their legitimate
output. It also follows from the security properties that
any outside party is unable to learn any information
about the participants’ data and protocol output corre-
sponds to evaluating the correct function on the provided
data. Security in presence of semi-honest participants was
a minimum security requirement for this competition.
The second, stronger, security model permits malicious

(also known as active) participants who can arbitrarily
deviate from the prescribed computation (and coordinate
their actions). Security in this model holds if the same
data protection and output correctness properties are
achieved as before. Known techniques for achieving
security in this model typically involve substantially lar-
ger overhead than in the semi-honest model, and we do
not use it in our implementation.
There are a variety of available techniques on which

secure multi-party computation protocols can be based.
For the purposes of this competition, we utilize an
(n, t)-threshold linear secret sharing scheme for repre-
sentation of and secure computation over private values.
With such a scheme, each private value is split into n
secret shares (using n computational parties each of
whom receives a share), such that combining t or fewer
shares information-theoretically reveals no information

about the private value, but combining t + 1 or more
shares allows the value to be reconstructed exactly. All
computation proceeds on secret shares, which means
that before the computation commences each partici-
pant distributes her private data among n computational
parties and at the end of the computation reconstructs
the result from the shares obtained from at least t+1
computation participants. We utilize Shamir’s secret
sharing scheme [5] and a typical way of conducting
computation using this scheme requires that t <n/2.
Thus we use n = 3 computational parties and set t = 1
(i.e., the parties are assumed not to collude).
In both tasks of the challenge, there are two parties

who contribute their input. They will play the role of
computational parties together with another party who
contributes no input. As mentioned above, each input
provider produces secret shares of her data and distri-
butes them among the participants and reconstructs the
output at the end of the computation. We assume that
the three computational parties are connected by pair-
wise secure authenticated channels (that provide secrecy
and authenticity) with each other, which can be
achieved using standard means.
The underlying secret sharing scheme [5] requires that

shares are represented as elements of a field, which
means that the input needs to be provided in the form
of integer values. With a linear secret sharing scheme, a
linear combination of secret-shared values can be per-
formed by each computational party locally, without any
interaction. Multiplication of two secret-shared values,
on the other hand, requires communication between all
of them and is treated as an elementary building block
of secure protocols (we assume the multiplication proto-
col from [6]). These operations are typically used as the
main building blocks in more complex computations, e.
g., comparisons and divisions.
We utilize a number of efficient protocols for integer

computation that have previously been shown secure in
the standard security model. It is also known that by
invoking the composition theorem [7], secure building
blocks can be combined together to achieve security of
the overall computation. The building blocks that will
be used in the computation of the two tasks are listed
next (as mentioned before, all correspond to integer
computation). When performance of a building block
depends on the size of the arguments provided into the
function, the size is listed as a separate argument.

• [z] ¬ Mult([x], [y]) is a multiplication protocol
that on input two secret-shared values x and y out-
puts a secret-shared product z = xy.
• [b] ¬ EQ([x], [y], ℓ) is an equality protocol that on
input two secret-shared values x and y of bitlength at
most ℓ outputs a bit b which is set to 1 iff x = y.

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 4 of 12

• [b] ¬ LT([x], [y], ℓ) is a comparison protocol that
on input two secret-shared values x and y of
bitlength at most ℓ outputs a bit b which is set to 1
iff x <y.
• [z] ¬ Div([x], [y], f) is a division protocol that on
input two secret-shared values x and y of bitlength
at most f outputs a secret-shared quotient z that
satisfies z = ⌊ x/y⌋.

As shown above, each protocol takes shares of its
input and produces shares of the output. It means that
these protocols can be naturally and securely invoked as
part of larger computation and we use them as steps in
larger computation. In our implementation, we use Mult
from [6], EQ and LT from [8], and Div from [9], and we
refer the reader for the details of these protocols to the
respective publications.
Performance of secure computation protocols is of a

paramount importance for their practical use. In the
case of techniques based on secret sharing, the compu-
tation is normally lightweight and thus performance is
measured in terms of two parameters: (i) the number of
interactive operations (e.g., multiplications) necessary to
perform the computation and (ii) the number of sequen-
tial interactions, i.e., rounds. Our goal is to minimize
both of these parameters for the computation performed
for each task.
Before we conclude this section, we would like to say

that other options for securely evaluating the functions
of the competition tasks are possible. In particular, the
garbled circuit evaluation approach [10] allows any func-
tion to be securely evaluated in the two-party setting.
Similarly, any function can be evaluated using homo-
morphic encryption, or special-purpose building blocks
such as private set intersection (e.g., [11]) can be used
as the basis for building a custom solution for a task of
the competition. Furthermore, secure computation com-
pilers such as Fairplay [12], Sharemind [13], PICCO
[14], etc. are able to produce secure implementations
given function specification in a form of a program.
This competition, however, allowed for custom solutions
that can tune general building blocks to the needs of the
tasks and result in improved performance. Because no
secure implementations of the competition tasks were
available to us prior to the competition, we are unable
to directly compare performance of different approaches
in this paper.

Methods
Secure distributed GWAS computation
In this section we describe our approach to securely
computing the task of distributed GWAS computation,
namely, computing minor allele frequencies and chi-
squared statistics.

According to the task specification, the size of the
input at each site, i.e., the number of SNPs and the
number of individuals in the case and control groups,
are treated as public and are not protected. This means

that parameters P, N(1)
c , N(2)

c , N(1)
t and N(2)

t are known

to all computation participants. All remaining data (i.e.,
the genotypes themselves) are private.
In what follows, we first describe a basic version of

our solution and then provide optimization techniques
that improve the runtime of program execution.
Basic solution
For each SNP in the input, the computation is identical
(and independent of other SNPs) and thus it suffices to
describe the computation for a single SNP.
We divide the overall computation into three phases:

input preparation, computation execution, and output
reconstruction, which proceed as follows. Observe that

each input site i can locally compute n(i)cA , n
(i)
tA
, n(i)cB , n

(i)
tB

for

each SNP. This is what is done as part of input preparation,
after which each input site secret shares each of its com-
puted values and distributes the shares among all three
computational parties. We use notation [a] to denote that
the value of a is secret-shared among the computational
parties (i.e., each party holds a different share of a).
During computation execution, the computation proceeds

on the shares to compute MAF and chi-squared statistics
using equations 1 and 2 and secure building blocks from
the previous section. We choose to perform only the private
portion of the computation on secret shares, while postpon-
ing the computation with public constants to the output
reconstruction phase. This is done for performance reasons
to reduce the size of values used in the computation.
To calculate the MAF for each SNP in parallel, the

computation follows equation 1 with provisions to make
the computation data-oblivious. That is, each computa-
tional party performs the following steps: In this section
we describe our approach to securely

1 [nA] = [n(1)cA] + [n(1)tA] + [n(2)cA] + [n(2)tA];

2 [nB] = [n(1)cB] + [n(1)tB] + [n(2)cB] + [n(2)tB];
3 [b] = LT([nA], [nB], �1);

4 [res1] = Mult([b], [nA] − [nB]) + [nB];
The first two steps that aggregate the input values are

local to each computational party, but steps 3 and 4
that produce the minimum of nA and nB involve joint
computation by all of them. We subsequently discuss
the choice of the parameter ℓ 1.
To compute the chi-squared statistics for each SNP in

parallel, we similarly follow the computation in equation
2 using the following steps:

1 [ncA] = [n(1)cA] + [n(2)cA];

2 [ntA] = [n(1)tA] + [n(2)tA];

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 5 of 12

3 [ncB] = [n(1)cB] + [n(2)cB];

4 [ntB] = [n(1)tB] + [n(2)tB];
5 [a] = Mul([ncA], [ntB]);
6 [b] = Mul([ncB], [ntA]);
7 [c] = Mul([ncA] + [ntA], [ncB] + [ntB]);
8 [d] = Mul([a] − [b], [a] − [b]);
9 [res2] = Div(k · [d], [c], ℓ 2);
Lines 5, 6, and 8 compute the numerator in equation

2 and line 7 its denominator (multiplication by public N
, Nc, and Nt is omitted). The numerator is then scaled
up by a factor of k to ensure that using integer division
will provide sufficient precision of the result. The
bitlength of k will be on the order of the precision of
the answer in bits. We defer discussion of the choice of
ℓ 2 to the next section.
At the end of the computation, all computational par-

ties send their shares of the result res1 and res2 for each
SNP to one of the input sites who reconstruct the
values. The output party then sets the result of MAF
computation to res1/N

’ and the result of the chi-squared
computation to (res2 · N′)/(kN′

cN
′
t) .

Optimizations
We applied several optimizations to the computation to
improve its runtime.

1 The nature of the computation in this task allows all
interactive operations to run in parallel in a single
batch for all SNPs. That is, all P comparisons corre-
sponding to line 3 of MAF computation are executed
simultaneously. The same applies to line 4 of MAF
computation and lines 5-9 of chisquared computation.
We can further reduce the number of rounds in chi-
squared computation by running interactive inde-
pendent operations at the same time. In particular,
this means that lines 5-7 of the computation can be
executed in a single round.
2 We modify chi-squared computation to use floating
point instead of integer division after converting both
operands d and c to floating point representation.
This is primarily driven by the fact that performance
of division we rely on (described in [15,9]) depends
on the maximum of the bitlengths of its arguments
and we can use substantially shorter values with float-
ing point division compared to integer division (i.e.,
the bitlength can be comparable to that of k instead
of the sum of the bitlengths of d and k). The savings
noticeably outweigh the cost of integer-to-floating
point conversion, or normalization (to use floating
point division we need to normalize two values, while
integer division needs to compute normalization of
one of its arguments). We additionally slightly opti-
mize integer to floating point conversion and floating
point division compared to those given in [9] using

information known about d and c (e.g., the fact that
they are positive).
3 For performance reasons, we want to set parameters
ℓ 1 and ℓ 2 (as well as the bitlength of secret shared
values) to their minimum values that guarantee cor-
rectness. When the bitlength of the arguments to both
comparison and division differ, the larger value is to be
used. In particular, for ℓ 1, the largest value of nA or nB
in the LT protocol appears when only one nucleotide
is present in all genotypes in both case and control
groups (i.e., max(nA, nB) = N’ and min(nA, nB) = 0),
and we set ℓ1 = ⌈log N’⌉ (where the extra 1 is due to
the specifics of the LT operation). For ℓ 2, the largest
value of d or c appears when ncB = ntA = 0, which
leads to ncA = N′

c , ntB = N′
t , and d = (N′

c)
2(N′

t)
2 , and

we set ntB = N′
t , and d = (N′

c)
2(N′

t)
2 , and we set

�2 =
⌈
2(logN′

c + logN′
t)

⌉
. For integer division, this

value of ℓ 2 needs to be additionally incremented by
the bitlength of precision k, but fortunately after we
switch to floating point representation, we can reduce
the bitlength to the desired precision of the result
because the values are represented in a normalized
form.

Secure distributed genomic Hamming distance
computation
We next concentrate on the second task of securely
computing the Hamming distance between a pair of
genomic datasets in a distributed setting.
According to the task specification, the number of

records in each of the two datasets are known to all parties
and we denote them as N1 and N2, respectively. The con-
tent of the records, however, is private (in particular, the
values that fields CHROM, POS, REF, ALT, and SVTYPE
take). Because only records with SVTYPE equal to SUB
and SNP are relevant for the computation, for ease of
notation we refer to them as SUB and SNP records,
respectively.
The high-level idea behind our solution is as follows:

we first let each input site extract SUB and SNP records
from its dataset and pad the resulting set with dummy
records to hide its size. After each input site secret shares
its records across all computational parties, the parties
then run a set operation to identify all records that
appear in both dataset (conceptually similar to set inter-
section) using 〈CHROM, POS〉 as the key as well as all
records that appear only in one dataset (conceptually
similar to symmetric difference). We accomplish this by
obliviously sorting all records from both datasets using
Batcher’s mergesort [2] and scanning the sorted set
examining every two adjacent elements in it to determine
if the Hamming distance needs to be incremented by one
for that pair.

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 6 of 12

At the time of competition preparation, Batcher’s mer-
gesort was available to us as one of the best options for
oblivious sorting (based on the overall amount work as
well as its round complexity). It is particularly well suited
to this task because it is a recursive algorithm that works
by first sorting the first and the second half of its input
set and then merging the sorted halves. In our setup this
means that the input datasets can be pre-sorted by each
input site locally and only the merge step needs to be run
jointly. Unfortunately, Batcher’s mergesort (including the
merge step) has the drawback that the number of ele-
ments in the input set has to be a power of 2, which may
unnecessarily increase the runtime.
In what follows, we start by describing in detail a basic

solution in the first subsection and then discuss two
optimizations in the two consecutive subsections.
Basic solution
As before, we divide the overall computation into three
phases: input preparation, joint computation execution,
and output reconstruction.
Input preparation. Each input site i extracts all SUB

and SNP records from its dataset and pads them with
dummy records to size Ni + 1 (we require at least one
dummy record). (If the combined fraction of SUB and
SNP records is guaranteed to be within a certain frac-
tion a < 1 of the total size for typical genomic datasets,
then the datasets can be padded to aNi + 1 records. For
this competition, a could not be lower than 1.) Further-
more, to meet Batcher’s mergesort requirements, the
input parties additionally pad the sets with dummy
records so that the combined size of the two datasets is
2q, where q = ⌈log2(N1 + N2 + 2)⌉. We use this newly
formed dataset as the input into the computation and
refer to it as a “dataset”.
Next, the values in each record need to be converted

to integers, which we accomplish as follows:

1 The location 〈CHROM, POS〉 is represented as
V1 = CHROM · L + POS, where L is the maximum
length of any existing human chromosome. CHROM
ranges from 1 to 24 (22 autosomes, plus × and Y),
and for dummy records we set V1 = 25L + 1 to
avoid overlap with real records.
2 REF and ALT fields are represented as strings of
nucleotides in the input. To produce their numeric
counterparts, we map each nucleotide value to a
two-bit integer (e.g., A = 0, C = 1, G = 2, and T = 3)
and concatenate two-bit integers from a string to
form a single number. To hide information about
the size of the fields, the values need to be repre-
sented using the same bitlength for all records based
on the maximum string length M. Because shorter
strings need to be padded to the maximum size, we
need to ensure that strings of different sizes will

always be different (i.e., the padding character can-
not be one of 0-3).
Instead of introducing a separate padding character,
which increases the bitlength of one character from
2 to 3 bits, we append the string length in bits at the
end of the string and use 0 for padding. Thus, all
strings are represented using 2M +log M bits. Let V2

and V3 denote numeric values of REF and ALT
fields in a record. V2 and V3 are set to 0 for dummy
records.
In our implementation with M = 100, we partition
representation of V2 and V3 into three blocks of size
(2M + log M)/3 each. This still requires comparing
all 2M + log M bits when two such values need to
be compared, but reduces the size of secret shared
values and thus the cost of the corresponding arith-
metic. When M is large, V2 and V3 can instead be
set to the hash of REF and ALT strings. This would
guarantee constant size representation regardless of
the value of M.

After computing a 3-tuple (V1, V2, V3) for each record
in its dataset, an input site i sorts the records by the V1

field to form set Si, generates shares of all records in Si,
and distributes them to the computational parties (we
slightly abuse notation and use [Si] to denote shares of
all values in Si). It also distributes shares of the number
of dummy records di in Si.
Computation execution. After receiving two sorted sets

of ([V1], [V2], [V3]) triples from both input sites, the
computational parties run oblivious merge using [V1] as
the key. The algorithm is built using an input-indepen-
dent sequence of compare-and-exchange operations.
Each operation takes two integers and either swaps
them or leaves them unchanged so that the first output
(min) is always smaller than the second (max). In our
framework, it is implemented as follows:
1 [c] = LT([a], [b], ℓ);
2 [min] = [c]([a] − [b]) + [b];
3 [max] = [c]([b] − [a]) + [a];
Note that lines 2 and 3 involve only a single multipli-

cation (i.e., first compute [c]([a] − [b]) and then set
[min] and [max] with no additional interaction). When
applying this operation to our setting, comparisons on
line 1 are performed using [V1]’s, but the entire records
([V1], [V2], [V3]) are swapped (or left unchanged) using
comparison results [c].
The computational parties next compute the Hamming

distance as specified in Algorithm 2. Sets S1 and S2 repre-
sent sorted input triples of the input parties and para-
meters ℓ1 and ℓ2 correspond to the bitlengths of fields V1

and V2 (or V3), as discussed previously.
Because a specific location V1 appears only once in

each of the input datasets (except for dummy records),

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 7 of 12

there will be at most two records with the same V1 in
the combined set. The algorithm works by looking at
each pair of two consecutive elements in the combined
sorted set and adds 1 to dist if this is the first time the
location appears on the list (i.e., ai = 0 on line 4). The
distance is incremented automatically for the first record
(dist = 1 on line 2). Then, if a location appears for the
second time (ai = 1 on line 4), the algorithm examines
the values of V2 and V3 fields (lines 5-6) to determine
whether the condition for incrementing the distance is
satisfied (i.e., bi = 1 and ci = 0). If not (bi = 0 or ci = 1),
dist is decremented by 1 to compensate for the fact that
it was increased during previous loop iteration. All
dummy records collectively contribute distance −d1−d2
+2 (i.e., 0 for the first two records and −1 for each addi-
tional record) and this is why we adjust the computed
distance at the end (line 9). We note that all loop itera-
tions and all comparisons within a loop iteration can be
carried out in parallel.
Algorithm 2 SecureHD([S1], [S2], [d1], [d2])

1: ([V(i)
1], [V(i)

2], [V(i)
3])2

q

i=1 = Merge([S1], [S2])
2: dist = 1
3: for i = 2 to 2q do

4: [ai] = EQ([V(i−1)
1], [V(i)

1], �1)

5: [bi] = EQ([V(i−1)
2], [V(i)

2], �2)

6: [ci] = EQ([V(i−1)
3], [V(i)

3], �2)

7: dist = dist + (1 − [ai]) + [ai]([bi](1 − [ci]) − 1)
8: end for
9: dist = dist + [d1] + [d2] −2
10: return dist
Output reconstruction is straightforward and consists

only of receiving and combining shares of the computed
Hamming distance.
Separating SUB and SNP records
As the first significant optimization, we separate compu-
tation of the distance for SNP and SUB records and con-
sequently reconstruct the overall distance from the two
values. The main reason for this is to reduce the time
comparisons of V2 and V3 take. Recall that SNP records
contain a single character in REF and ALT fields, while
SUB records can contain longer strings. In the genomic
datasets we worked with, a great majority of all records
were SNP records that can be processed using 2-bit com-
parisons for V2 and V3 (i.e., ℓ2 = 2). In the basic solution,
however, the bitlength had to be unnecessarily increased
by two orders of magnitude for most records to meet
privacy requirements. Thus, the idea consists of extract-
ing two sets from each input dataset: one consisting of
SNP records and another consisting of SUB records.
Then the distance for SUB records is computed sepa-
rately from the distance for SNP records and the sum is
returned as the result.

This strategy works well if all records with the same
〈CHROM, POS〉 pair are always marked with the same
type across all datasets. It is, however, possible for two
datasets to contain SUB and SNP records corresponding
to the same location. Because of the existence of such
records, the Hamming distance will not be computed
correctly if we simply add the two distances together.
That is, if one record appears in the SUB set and
another with the same location appears in the SNP set,
they collectively will contribute 2 to the overall distance
instead of correct 0 or 1 (depending on other attributes).
To address this, we need to find all such pairs and com-
pensate for the difference they introduced, which is the
most subtle part of our solution. We next provide more
detail about the solution and highlight the differences
from the basic scheme.
Input preparation. Given a dataset, an input entity

produces two subsets: one composed of SUB records
and one composed of both SUB and SNP records from
the dataset. As before, both sets need to be padded with
dummy records to hide their number and make the size
to be a power of 2 to the combined size of 2qs and 2q,
where qs = ⌈log(as(N1 + N2) + 2)⌉ and q = ⌈log(a(N1 +
N2) + 2⌉ and as (a) denotes the maximum fraction of
SUB (resp., SNP and SUB) records in genomic datasets
(we were given a = 1 and as = 0.3). All records in the
SUB set are converted to (V1, V2, V3) triples as before.
For the SNP&SUB set, one-character REF and ALT
fields in SNP or SUB records are represented using inte-
gers 0-3, while these fields of longer length in SUB
records are represented using integer 4 (i.e., V2 and V3

fields are 3 bits long). This will guarantee that compari-
son of a one-character long REF or ALT field in a SNP
record with a longer REF or ALT field in a SUB record
will result in their inequality. We also add another bin-
ary attribute V4 to each record of the SNP&SUB set that
indicates whether the record is of SUB type (V4 = 0) or
SNP type (V4 = 1). We set V4 = 0 in dummy records.
Each input entity now produces shares of (V1, V2, V3)

in its SUB set and (V1, V2, V3, V4) in its SNP&SUB set
(together with the number of dummy records in each
set) and distributes them to the computational parties.
We note that computation with SNP&SUB sets can be
performed on shorter bitlengths, which results in faster
arithmetic, and thus we setup two different instances of
the secret sharing scheme and process SUB sets sepa-
rately from SNP&SUB sets.
Computation execution. To compute the Hamming

distance correctly, we now distinguish between different
cases: (i) SUB records that don’t have a SNP record with
identical location in the other dataset, (ii) SNP records
that don’t have a SUB record with identical location in
the other dataset, and (iii) records that have another
record with identical location but different type present

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 8 of 12

in the other dataset. Let N0 denote the number of
records in the third category.
Algorithm 3 SecureHD2([S1], [S2])

1: ([V(i)
1], [V(i)

2], [V(i)
3], [V(i)

4])2
q

i=1 = Merge([S1], [S2])

2: dist = [V(1)
4]

3: for i = 2 to 2q do
4: [ai] = EQ([V(i−1)

1], [V(i)
1])

5: [bi] = EQ([V(i−1)
2], [V(i)

2])

6: [ci] = EQ([V(i−1)
3], [V(i)

3])

7: [di] = OR([V(i−1)
4], [V(i)

4])

8: [ei] = XOR([V(i−1)
4], [V(i)

4])

9: dist+ = [di]((1 − [ai])[V
(i)
4] + [ai]([bi](1 − [ci]) − [V(i−1)

4])) − [ai][ei]

10: end for
11: return dist
The computational parties execute Algorithm 2 on

two SUB datasets. This computes the distance corre-
sponding to the records in category 1, but also intro-
duces offset N0. The parties then execute Algorithm 3
on two SNP&SUB sets that computes the distance cor-
responding to categories 2 and 3 and additionally com-
pensates for the offset. The output will then be the sum
of the distances computed by both algorithms.
In Algorithm 3, when examining each pair of consecu-

tive records, we only consider those that contain at least
one SNP record within the pair (di = 1 on line 9).
Furthermore, similar Algorithm 2, when observing a
location for the first time, we add 1 to the Hamming

distance, but only if it is a SNP record (V(1)
4 = 1 on line

2 and V(i)
4 = 1 on line 9). If a location appears for the

second time, we undo the previous increment if bi = 0
or ci = 1 as before, but only if the record preceding the

current one is of type SNP (i.e., V(i−1)
4 = 1 on line 9). By

doing that, we are able compute the distance correspond-
ing to records of second and third types without introdu-
cing errors. The offset N0 is compensated by the last term
aiei on line 9, that counts the number of pairs of consecu-
tive records that have the same location (ai = 1), but dif-
ferent types (ei = 1). OR([x], [y]) and XOR([x], [y]) are
implemented as [x]+[y]−Mult([x], [y]) and [x]+[y]−2Mult
([x], [y]), respectively (computation of di and ei reuses the
same multiplication result).
Note that dummy records do not introduce any error

in Algorithm 3. That is, di = 0 and ei = 0 when both
records i and i − 1 are dummy and the expression on
line 9 evaluates to 0. Similarly, when record i−1 is real
while record i is fake that expression also evaluates to 0
because ai = 0 and V(i)

4 = 0 .
After computing the distances corresponding to SUB

and SNP&SUB sets, the parties need to convert shares
of one of them into shares of the same value in the

secret sharing setup used by the other algorithm. Then
the distances can be locally added to compute the over-
all result. Output reconstruction is performed as before
by exchanging the shares and recovering the result.
The performance gain achieved by this optimization

highly depends on the values of public parameters as, a,
and M. While the gain stems from using shorter values
for V2 and V3 with SNP&SUB sets, the total number of
records processed using this solution (2q + 2qs) is
greater than in the basic scheme (2q). Therefore, this
optimization is recommended with relatively small as

and large M. In our experiments with as = 0.3, a = 1,
and M = 100, we observed approximately 30% perfor-
mance improvement compared to the basic scheme.
Reducing set size
Our second optimization is with respect to oblivious
sort and removing the requirement that the input size
has to be a power of 2 for the merge step of Batcher’s
mergesort. To explain how our optimization works, we
need to provide additional details about Batcher’s mer-
gesort algorithm.
Recall that the merge step takes two sorted sets L1 =

(a1, a2, ..., am) and L2 = (b1, b2,..., bn), where m + n is a
power of 2. It first combines them into a single
sequence that first monotonically increases and then
decreases as L = (a1, a2, ..., am, bn, ..., b2, b1), after which
a sequence of compare-and-exchange operation is exe-
cuted as specified by the following pseudo-code:

for (r = (m + n)/2; r > 0; r = r/2)

for (j = 0; j < m + n; j = j + 2r)

for (k = j; k < j + r; k = k + 1)

compare - and - exchange(L[k], L[k + r])

After executing the first iteration of the outer loop, the
first (second) half of L will contain (m + n)/2 smallest
(resp., largest) elements of L although they are not neces-
sarily sorted. After its second iteration, the ith quarter of
L will contain the ith quarter of elements in the final
sorted list for i = 1, ..., 4. This process continues until
each sublist contains one element and L becomes sorted.
Notice that the algorithm uses log(m + n) iterations of
the outer loop, and in each iteration every element in the
list is used in a compare-and-exchange operation, which
is the reason for requiring the size of the list to be a
power of 2.
Consider an example with input L1 = (3, 4, 6, 9, 12)

and L2 = (2, 5, 10), which is combined into L = (3, 4, 6,
9, 12, 10, 5, 2). In the first iteration of the outer loop,
compare-and-exchange operations are performed on
pairs (3, 12), (4, 10), (6, 5), and (9, 2), and the resulting
list is (3, 4, 5, 2, 12, 10, 6, 9). In the second iteration,
comparisons are performed on (3, 5), (4, 2), (12, 6),
(10, 9) and produce (3, 2, 5, 4, 6, 9, 12, 10). In the last

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 9 of 12

iteration, we compare every pair of consecutive elements
(3, 2), (5, 4), (6, 9), (12, 10), which results in the final
sorted list (2, 3, 4, 5, 6, 9, 10, 12). If L2 = (2, 5) instead,
after all iterations 2 will remain at the end of the list
making it unsorted, as the element does not have any
pair to use in a comparison.
We next proceed with describing our strategy for gen-

eralizing the merge operation to work with inputs of
arbitrary sizes, which might be of independent interest.
There will be no need to pad the input in the beginning
to make the overall input size to be a power of 2, but
dummy records are now added throughout algorithm
execution as needed. This means that earlier loop itera-
tions use a smaller number of elements and are there-
fore faster than in the original algorithm. In particular,
at each loop iteration, if the size of a sublist is odd, we
append a copy of its last element to the end. This will
ensure that comparisons can be performed at the cur-
rent level while still preserving the necessary properties
of the (partially) sorted list. For example, suppose we
want to merge (3, 6, 8) and (5, 7). Before the first itera-
tion 5 will be added to the list (3, 6, 8, 7, 5) because the
number of elements in it is odd, and we obtain (3, 5, 5,
7, 6, 8) at the end of that iteration. At the time of sec-
ond iteration, the size of sublists (3, 5, 5) and (7, 6, 8) is
also odd and they are modified to be (3, 5, 5, 5) and
(7, 6, 8, 8). In the next iteration no additional padding is
used and we obtain (3, 5, 5, 5, 6, 7, 8, 8) at the end of
the algorithm.
In the context of Hamming distance computation, we

similarly make a copy of the entire last record of a sub-
set as needed during the merge step. More importantly,
after having the list sorted, we need to ensure the Ham-
ming distance is computed correctly because the intro-
duction of repeated records creates inaccuracies in
Algorithm 2. Now two consecutive records with the
same location in the sorted set may correspond to (i)
two records in the original datasets, (ii) two copied
records, or (iii) one original and one copied record. Let
ai and aj be two different records with the same location
in the original datasets. If they get copied during the
merge as a′

i and a′
j , the relative order of these records

in the sorted list can be arbitrary (e.g., (a′
i, ai, aj, a

′
j) ,

(a′
i, aj, ai, a

′
j) , etc.) and they may contribute more than 1

to the computed distance.
We address the problem by modifying locations of

records in the datasets so that (i) two records originally
with the same location are assigned locations that differ
by 1 and (ii) two records originally with different loca-
tions are assigned locations that differ by more than 1.
By doing that, a pair of consecutive records with the
same location in the sorted set is guaranteed to corre-
spond to either two copied records or one original
record and its copy. In either case, the Hamming

distance should not get affected. We implement this
change by setting the location to 4V1, where V1 is the
original location, for records from the first input site
and to 4V1 + 1 for records from the second input site.
Algorithm 4 SecureHD3([S1], [S2])

1: ([V(i)
1], [V(i)

2], [V(i)
3])2

q

i=1 = NewMerge([S1], [S2])
2: dist = 1
3: for i = 2 to 2q do
4: [ai] = EQ([V(i−1)

1], [V(i)
1])

5: [bi] = EQ([V(i−1)
2], [V(i)

2])

6: [ci] = EQ([V(i−1)
3], [V(i)

3])

7: [di] = EQ([V(i−1)
1] + 1, [V(i)

1])

8: dist+ = (1 − [ai])(1 − [di] + [di]([bi](1 − [ci]) − 1))
9: end for
10: return dist
With this solution, the input sites prepare their input

datasets as in the basic scheme, but pad a set to size
Ni + 1 instead of requiring the combined size to be a
power of 2. The computational parties can locally mod-
ify V1’s in the input records run the improved merge
and compute the Hamming distance as specified in
Algorithm 4. The algorithm has two major differences
compared to Algorithm 2: (i) when examining each pair
of consecutive records, only pairs with different loca-
tions can contribute to the distance (ai = 0 on line 8)
and (ii) when locations of two consecutive records differ
by 1 (di = 1 on line 8), they are treated as having the
same location in Algorithm 2, and when the locations
differ by neither 1 nor 0 (di = 0 and ai = 0 on line 8), they
are treated as having different locations in Algorithm 2.
Dummy records inserted by each input site into their

input datasets do not affect correctness of the Hamming
distance that uses this optimization (including the com-
bined solution in Algorithm 5). This is because the first
dummy record from the first input set will result in the
distance incremented by 1, while the first dummy record
from the second input set will result in the distance decre-
mented by 1. All consecutive dummy records from the
first or the second input datasets do not modify the dis-
tance (because all records with the same V1 are ignored).
We recently became aware of a sorting algorithm [16]

that generalizes Batcher’s bitonic sort to input sizes which
are not a power of 2 without adding extra records during
the sorting procedure. The algorithm results in the same
asymptotic complexity as our solution, but performs fewer
compare-and-exchange operations in each iteration
(because dummy records are not added), which is expected
to lead to better performance than our algorithm. We plan
to provide both theoretical and empirical comparison of
this algorithm with our solution as future work.
Our final solution consists of using both optimizations

from the previous and current subsections, and we

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 10 of 12

summarize it in Algorithm 5. We omit its explanation
due to space considerations.
Algorithm 5 SecureHD4 ([SSUB

1], [SSNP
1], [SSUB

2], [SSNP
2])

1: dist1 = SecureHD3 ([SSUB
1], [SSUB

2])

2: ([V(i)
1], [V(i)

2], [V(i)
3], [V(i)

4])2
q

i=1 = NewMerge([SSNP
1], [SSNP

2])

3: dist2 = [V(0)
4]

4: for i = 2 to 2q do

5: [ai] = EQ([V(i−1)
1], [V(i)

1])

6: [bi] = EQ([V(i−1)
2], [V(i)

2])

7: [ci] = EQ([V(i−1)
3], [V(i)

3])

8: [di] = OR([V(i−1)
4], [V(i)

4])

9: [ei] = XOR([V(i−1)
4], [V(i)

4])

10: [gi] = EQ([V(i−1)
1] + 1, [V(i)

1])
11: dist2+ = (1 − [ai])([di]((1 − [gi])[V

(i)
4] + [gi]([bi](1 − [ci]) − V(i−1)

4)) − [gi][ei])

12: end for
13: return dist1 + Convert(dist2)

Results
In this section, we provide experimental results of securely
computing GWAS statistics and the Hamming distance in
a distributed setting. We ran experiments in LAN and
WAN settings with three computational parties connected
by pair-wise secure authenticated channels with each
other. The LAN experiments were conducted using 2.4
GHz 6-core Red Hat Linux machines connected through
1 Gb/s Ethernet with pairwise round-trip times 0.3 msec.
Our WAN experiments used two machines from the LAN
setting and employed another 2.1 GHz 8-core machine
from the GENI infrastructure [17] at a different geo-
graphic location with Red Hat Linux. The pairwise round-
trip times between these machines were 0.3 msec, 9.2
msec, and 9.2 msec. Each GWAS experiment was run 20
times and each Hamming distance experiment was run 5
times and the median over all runs is reported.
For GWAS computation, case and control groups

consisted of genotypes of 200 individuals each (100 indi-
viduals at each input site in each group). We measured
the runtime of the MAF and chi-squared computation
by varying the number of SNPs in the input. The results
are given in Table 1. Modulus size (Mod) corresponds
to the bitlength of secret shared values.
Our implementation incorporates all optimizations

and uses parameters ℓ 1 = 11 and ℓ 2 = 21 computed as
described in the optimizations subsection of the secure
GWAS computation section (ℓ 2 = 35 + |k| would be
required for integer division, but a lower parameter is
requested precision). We can see from the table that
sufficient with floating point operation to obtain the the
execution time is linear in the number of SNPs in both
settings, and the overhead in WAN is almost three

times as large as that in LAN, which is primarily due to
larger communication delays in WAN. Another observa-
tion not present in the table is that division performed
in chi-squared computation contributes almost the
entire runtime (close to 99%) and thus any optimiza-
tions applied to division can lead to direct improvement
of chi-squared performance.
For the Hamming distance computation, we con-

ducted four sets of experiments in the LAN setting, that
correspond to the basic scheme (i) with no optimiza-
tions, (ii) with the first optimization, (iii) with the sec-
ond optimization, and (iv) with both optimizations. By
comparing execution times of different schemes, we can
see performance gains from different optimizations. In
the WAN setting, we only report the timings of the best
(last) scheme. For each set of experiments, we varied the
number of records in the genomic dataset at each input
site. The results are presented in Table 2.
We used two different secret sharing bitlengths for

schemes that apply the first optimization (one for the
computation with SUB records and another for the
computation with SNP&SUB records). The complexity
of the merge is O(n log n) for combined sequences of
size n and computing the distance itself is linear in n
(with larger constants), which the runtimes in Table 2
follow. In the LAN setting, the two optimizations result
in performance improvement up to 27.9% and 13.1% on
our set of parameters when applied separately, and
40.9% when applied together. Performance gain of the
first optimization heavily depends on parameters (a, as,
and M), while the gain of the second optimization

Table 1 Performance of GWAS computation in LAN and
WAN settings (in seconds)

No. of SNPs Mod (bits) MAF Chi-squared test

LAN WAN LAN WAN

500 84 0.062 0.211 2.210 6.950

1000 84 0.121 0.376 4.456 12.03

2000 84 0.244 0.621 8.900 21.73

4000 84 0.496 1.200 17.98 39.59

8000 84 1.005 2.251 35.78 76.01

Table 2 Performance of Hamming distance computation
in LAN and WAN settings (in seconds)

Scheme Setting Mod (bits) Genomic dataset size

5000 10000 20000 40000 80000

Basic LAN 118 123.9 256.7 524.6 1086 2212

1st opt. LAN 118, 85 89.29 187.9 395.1 823.3 1705

2nd opt. LAN 118 114.4 232.8 472.4 962.7 1957

Both opt. LAN 118, 85 73.15 151.4 314.4 654.6 1343

Both opt. WAN 118, 85 154.5 314.1 614.4 1244 3367

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 11 of 12

depends on the difference between the combined input
size N and 2⌈log N⌉. The the smaller the difference is, the
smaller improvement is expected.

Conclusions
In this work we report on our experience with participa-
tion in the 2015 iDASH secure genomic computation
competition. We show how to securely compute MAF
and chi-squared statistics in the context of GWAS com-
putation and the Hamming distance between two geno-
mic datasets and report on their performance results.
We develop a number of novel optimizations, some of
which may be of independent interest.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Marina Blanton and Yihua Zhang designed the protocols for distributed
GWAS computation and secure sequence comparison in the form of
Hamming distance. Yihua Zhang and Ghada Almashaqbeh implemented the
protocols and reported evaluation results. Marina Blanton and Yihua Zhang
drafted the manuscript for publication. Ghada Almashaqbeh contributed to
the work while at the University of Notre Dame.

Acknowledgements
This work was supported in part by grants CNS-1223699 and CNS-1319090
from the National Science Foundation and FA9550-13-1-0066 from the Air
Force Office of Scientific Research. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the funding agencies. We also
acknowledge the NSF-sponsored Global Environment for Network
Innovations (GENI) test bed, which allowed us to run WAN experiments.
This article has been published as part of BMC Medical Informatics and
Decision Making Volume 15 Supplement 5, 2015: Proceedings of the 4th
iDASH Privacy Workshop: Critical Assessment of Data Privacy and Protection
(CADPP) challenge. The full contents of the supplement are available online
at http://www.biomedcentral.com/1472-6947/15/S5.

Declarations
Publication funding for this supplement was supported by iDASH
U54HL108460, iDASH linked R01HG007078 (Indiana University), NHGRI
K99HG008175 and NLM R00LM011392.

Authors’ details
1Department of Computer Science and Engineering, University of Notre
Dame, Notre Dame, USA. 2Department of Computer Science, Columbia
University, New York, USA.

Published: 21 December 2015

References
1. Blanton M, Aguiar E: Private and oblivious set and multiset operations.

ACM Symposium on Information, Computer and Communications Security
(ASIACCS) 2012.

2. Batcher K: Sorting networks and their applications. AFIPS Spring Joint
Computer Conference 1968, 307-314.

3. iDASH 2015 Secure Genome Analysis Competition: Competition Tasks.
[http://www.humangenomeprivacy.org/2015/competition-tasks.html].

4. Tang H, Jiang X, Wang X, Wang S, Sofia H, Fox D, Lauter K, Malin B,
Telenti A, Xiong L, Ohno-Machado L: Protecting Genomic Data Analytics in
the Cloud: State of the Art and Opportunities .

5. Shamir A: How to share a secret. Communications of the ACM 1979,
22(11):612-613.

6. Gennaro R, Rabin M, Rabin T: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. ACM
Symposium on Principles of Distributed Computing (PODC) 1998, 101-111.

7. Canetti R: Security and composition of multiparty cryptographic
protocols. Journal of Cryptology 2000, 13(1):143-202.

8. Catrina O, de Hoogh S: Improved primitives for secure multiparty integer
computation. Security and Cryptography for Networks (SCN) 2010, 182-199.

9. Aliasgari M, Blanton M, Zhang Y, Steele A: Secure computation on floating
point numbers. Network and Distributed System Security Symposuim (NDSS)
2013.

10. Yao A: How to generate and exchange secrets. IEEE Symposium on
Foundations of Computer Science 1986, 162-167.

11. De Cristofaro E, Tsudik G: Practical private set intersection protocols with
linear complexity. Financial Cryptography and Data Security (FC) 2010,
143-159.

12. Malkhi D, Nisan N, Pinkas B, Sella Y: Fairplay - a secure two-party
computation system. USENIX Security Symposium 2004, 287-302.

13. Bogdanov D, Laur S, Willemson J: Sharemind: A framework for fast
privacy-preserving computations. European Symposium On Research In
Computer Security (ESORICS) 2008, 192-206.

14. Zhang Y, Steele A, Blanton M: PICCO: A general-purpose compiler for
private distributed computation. ACM Conference on Computer and
Communications Security (CCS) 2013, 813-826.

15. Catrina O, Saxena A: Secure computation with fixed-point numbers.
Financial Cryptography and Data Security (FC) 2010, 35-50.

16. Bitonic Sorting Network for n Not a Power Of 2. [http://www.iti.fh-
flensburg.de/lang/algorithmen/sortieren/bitonic/oddn.htm].

17. GENI: Global Environment for Network Innovations. [http://www.geni.net].

doi:10.1186/1472-6947-15-S5-S4
Cite this article as: Zhang et al.: Secure distributed genome analysis for
GWAS and sequence comparison computation. BMC Medical Informatics
and Decision Making 2015 15(Suppl 5):S4.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Zhang et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S4
http://www.biomedcentral.com/1472-6947/15/S5/S4

Page 12 of 12

http://www.biomedcentral.com/1472-6947/15/S5
http://www.humangenomeprivacy.org/2015/competition-tasks.html
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/oddn.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/oddn.htm
http://www.geni.net

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Introduction
	Tasks of the challenge
	Secure multi-party computation background

	Methods
	Secure distributed GWAS computation
	Basic solution
	Optimizations

	Secure distributed genomic Hamming distance computation
	Basic solution
	Separating SUB and SNP records
	Reducing set size

	Results
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

