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Abstract

Background: Phenotypic information locked away in unstructured narrative text presents significant barriers to
information accessibility, both for clinical practitioners and for computerised applications used for clinical research
purposes. Text mining (TM) techniques have previously been applied successfully to extract different types of
information from text in the biomedical domain. They have the potential to be extended to allow the extraction of
information relating to phenotypes from free text.

Methods: To stimulate the development of TM systems that are able to extract phenotypic information from text,
we have created a new corpus (PhenoCHF) that is annotated by domain experts with several types of phenotypic
information relating to congestive heart failure. To ensure that systems developed using the corpus are robust to
multiple text types, it integrates text from heterogeneous sources, i.e., electronic health records (EHRs) and scientific
articles from the literature. We have developed several different phenotype extraction methods to demonstrate the
utility of the corpus, and tested these methods on a further corpus, i.e., ShARe/CLEF 2013.

Results: Evaluation of our automated methods showed that PhenoCHF can facilitate the training of reliable
phenotype extraction systems, which are robust to variations in text type. These results have been reinforced by
evaluating our trained systems on the ShARe/CLEF corpus, which contains clinical records of various types. Like
other studies within the biomedical domain, we found that solutions based on conditional random fields produced
the best results, when coupled with a rich feature set.

Conclusions: PhenoCHF is the first annotated corpus aimed at encoding detailed phenotypic information. The
unique heterogeneous composition of the corpus has been shown to be advantageous in the training of systems
that can accurately extract phenotypic information from a range of different text types. Although the scope of our
annotation is currently limited to a single disease, the promising results achieved can stimulate further work into
the extraction of phenotypic information for other diseases. The PhenoCHF annotation guidelines and annotations
are publicly available at https://code.google.com/p/phenochf-corpus.

Background
Phenotypes constitute the visible properties of an organ-
ism that are produced by the interaction of the genotype
and the environment (i.e., skin colour and height) [1]. A
greater understanding of phenotype-disease associations
is needed to determine the etiology of such diseases,
which can enhance disease prevention and treatments [2].

The study of disease-phenotype relationships has been
hampered by the scarcity of suitable large-scale,
machine-readable knowledge bases. Existing resources,
such as the Online Mendelian Inheritance in Man
(OMIM) [3] and the Human Phenotype Ontology
(HPO) [4] are manually constructed, making them diffi-
cult to update and maintain. They could, however, be
enriched by exploiting the vast amounts of phenotypic
information available in various textual sources, includ-
ing the ever-growing volumes of published biomedical
literature, and patient EHRs, which have proliferated
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with the consolidation of modern healthcare systems [5].
EHRs contain both structured/coded and unstructured
information pertaining to patient morbidity, treatment
and care over time [6], which can enhance understand-
ing of disease etiology and phenotype-genotype associa-
tions [7]. On the one hand, coded data (e.g., unique
identifiers from medical controlled vocabularies [8])
lends itself well to computational processing, but comes
with limited expressivity, possibly resulting in loss of
vital details regarding patient conditions. On the other
hand, unstructured data (e.g., progress notes, discharge
summaries and radiology reports), written as narrative
text, provides greater detail about patient conditions,
such as diagnoses, findings, signs and symptoms, proce-
dure, family history, etc. [9]. The increasing volume of
unstructured text, however, presents challenges, both to
clinical practitioners and to computerised applications
used for clinical research [7], since the phenotypic
information “locked” within the text must be located
and correctly interpreted. There is thus an urgent need
to develop TM methods that can automate the extrac-
tion and integration of vital phenotypic information
hidden in narrative text, to help to derive information
about disease correlations and thus support clinical
decisions [10].
Developing TM tools for use in new domains is reliant

upon textual corpora, in which pertinent information
has been explicitly marked up by experts. Such anno-
tated corpora serve both as training data for machine
learning (ML) techniques [11,12] and as a gold standard
for systematic evaluation of new methodologies.
Whilst TM techniques have been widely applied in the

extraction of relationships involving genes and proteins
from the biomedical literature [13,14], there has been lit-
tle research into the extraction of disease-phenotype rela-
tionships, either from the literature or from EHRs. This is
largely due to the lack of suitably annotated EHR cor-
pora, owing both to their sensitive data and the difficulty
of applying de-identification techniques. However, a
small number of publicly available, de-identified clinical
corpora have been released recently (e.g., [15-17]).
To stimulate research into the automatic extraction of

phenotypic information from text, we have developed a
new corpus (PhenoCHF), annotated with various types of
information relating to phenotype-disease associations by
two medical doctors. To our knowledge, the corpus is
unique, both in the detail of the phenotypic information
annotated, and in that it integrates different text types, i.e.,
literature articles and discharge summaries from EHRs.
The high quality of the annotations is illustrated by inter-
annotator agreement levels of up to 0.92 F-score.
The inclusion of heterogeneous text types in PhenoCHF

aims to encourage the development of robust TM systems
that can extract comprehensive phenotypic information

from multiple sources with differing characteristics. For
example, EHRs exhibit non-standard grammatical struc-
ture and high levels of lexical and semantic variability,
coupled with many domain-specific abbreviations, com-
plex sentences [18], as well as spelling errors (around 10%
of words) [19].
PhenoCHF focusses on a specific medical condition,

i.e., congestive heart failure (CHF), which occurs when
the heart does not supply all body parts with a sufficient
amount of blood to carry out their usual functions. This
focus is motivated by CHF’s current standing as the
world’s most deadly disease [4] and it being a comorbid-
ity of renal failure [6]. Through annotation of phenoty-
pic information surrounding CHF, we aim to facilitate
the development of TM-based systems that can high-
light the role of CHF in kidney function deterioration,
identify the risk factors for CHF and find patients with
lower or higher risk factors.
In this paper, we extend upon our previously reported

work [20], which was focussed only on the construction
of PhenoCHF. Specifically, using an augmented version
of the corpus, we have carried out experiments to train
systems to recognise phenotypic information automati-
cally, employing different ML algorithms and feature
sets. Encouraging results have been achieved through
evaluation on both the PhenoCHF corpus and the par-
tially overlapping ShARe/CLEF 2013 corpus.
In the remainder of this paper, we firstly provide an

overview of related work and highlight the novel aspects
of our work. Subsequently, we provide a detailed
description of the research methods employed in con-
structing and annotating PhenoCHF, and in the applica-
tion of different TM techniques to PhenoCHF to
facilitate automatic phenotype extraction. Finally, we
discuss and compare the results of the different TM
methods employed.

Related work
Over the last decade, significant advances in biomedical
TM have resulted in a shift in research focus from the
recognition of entities to the extraction of more com-
plex information from biomedical literature, e.g., inter-
actions between proteins [2] and more detailed
relationships between drugs, genes and cells [21,22].
The initial focus on abstracts has been recently extended
to include full literature articles containing much more
detailed information. Although the BioNLP Shared
Tasks [23] in particular have encouraged the develop-
ment of sophisticated machine learned TM systems
through the release of annotated corpora covering dif-
ferent biomedical subdomains, these do not address dis-
ease-phenotype associations.
Due to the lack of publicly available clinical corpora,

most existing TM systems operating on clinical texts (e.g.,
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[23,25]) employ dictionary-based methods, aiming to map
mentions of clinical concepts within the texts to entries in
the UMLS Metathesaurus [26]. Such techniques can
match concept mentions whose lexical forms are related
to entries in UMLS, but they cannot detect their semantic
variants. A further issue is that the UMLS Metathesaurus
does not include semantic categories corresponding
directly to phenotypic information. Although the pheno-
type-specific HPO appears more suitable in this respect, it
only covers a subset of human diseases.
As an alternative to purely dictionary-based approaches,

rule-based methods [3] involve developing regular expres-
sions which can combine dictionary-based information
with orthographic and lexical characteristics of targeted
entities and their surrounding contexts. Although their
expressive power provides greater coverage than diction-
aries, manual rule formulation can be time consuming,
and the resulting rule set is likely to be over-tuned to the
development corpus.
ML methods, such as hidden Markov models (HMMs)

[27], maximum entropy Markov models (MEMMs) [28]
and conditional random fields (CRFs) [29], can be
trained to recognise entities, also using a range of tex-
tual characteristics (e.g., orthography [30], parts-of-
speech (POS) [21], affixes [22] and dictionary-based
information). These approaches can learn implicit pat-
terns in annotated data, allowing them to draw better
generalisations than manually constructed rules. CRF
models in particular have been demonstrated to exhibit
superior performance in several information extraction
tasks dealing with both biomedical literature (e.g., [31])
and clinical text [15], the latter in the context of the
Integrating Biology and the Bedside (i2b2) 2010 concept
extraction task, which involved the automatic recogni-
tion of treatments, problems and tests [15]. The i2b2
corpus constitutes one of the few publicly available,
semantically annotated clinical corpora. A further
related corpus was released as part of the ShARe/CLEF
2013 NER task [32].
Only a small amount of previous work has focussed

specifically on the extraction of phenotypic information
from narrative text. The MedLEE system [25], originally
aimed at extracting information from clinical text, was
adapted to extract phenotypic information from ambula-
tory care notes [33] and biomedical literature [34]. In
another study, a set of 100 molecular biology articles
was annotated with phenotypic information in a semi-
supervised manner, and then used to evaluate a hybrid
phenotype extraction approach based on dictionary and
ML techniques [35].
Our research differs from the studies above in a number

of ways. Firstly, previous related work has tended to focus
on extracting all instances of phenotypic phenomena
regardless of context, e.g., diseases, signs and symptoms or

anatomical parts. In contrast, our work concentrates on a
specific disease, i.e. CHF, but aims to extract detailed phe-
notypic information surrounding this disease. Secondly,
whilst other efforts have focussed either on clinical texts
or biomedical literature, our study is the first that inte-
grates the results of applying TM to both text types.
Thirdly, we have produced the first expert-annotated cor-
pus with detailed phenotypic information to stimulate a
shift from dictionary-based approaches to ML-based ones.
As new terms are introduced frequently, manually curated
domain-specific dictionaries cannot be relied upon to
identify all relevant concepts that occur within text.
To demonstrate the utility of our PhenoCHF corpus in

training ML-based phenotype extraction systems, we pre-
sent a comparative evaluation of different NER methods, i.
e., rule-based, dictionary-based and ML approaches. We
show that machine learned models exhibit competitive
performance when compared to rule-based methods, espe-
cially when different text types are used as training data.
The portability and robustness of our best performing
machine learned model is tested through its evaluation on
another corpus (i.e., the ShARe/CLEF 2013 data set, which
we were allowed to use after having completed the NIH
training course), whose annotation scope partially overlaps
with PhenoCHF, but which includes a wider range of free-
text reports from EHRs including discharge summaries,
electrocardiogram, echocardiogram and radiology reports.

Methods
The first part of this section describes the creation of
the PhenoCHF corpus, including the document selection
process, the design of the annotation scheme, the pro-
duction of the guidelines and evaluation of the quality
of the expert-produced annotations. We then provide a
detailed description of the different named entity recog-
nition (NER) methods we have implemented to extract
phenotypic information from PhenoCHF.

Selection of documents for PhenoCHF
The major part of the PhenoCHF corpus consists of 300
discharge summaries of patients who are known to suf-
fer from CHF as a major complaint, and also from kid-
ney failure. These discharge summaries constitute the
subset of the 889 de-identified discharge summaries
released as part of the i2b2 recognising obesity challenge
[17] (to which we obtained access by signing a data use
agreement) that contain mentions of our target diseases,
either in their full forms, as acronyms (e.g., CRF, CRI)
or as synonyms (e.g., renal insufficiency, kidney failure).
The second part of the corpus consists of the 10 most
recent (at corpus collection time) full-text articles
retrieved from the PubMed Central Open Access data-
base, using the query we have provided in Additional
File 1.
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PhenoCHF annotation scheme and guidelines
To capture various types of phenotypic information
relating to CHF (Table 1), we have designed a multi-
level annotation scheme that identifies entities relevant
to phenotypic phenomena, as well as important relation-
ships that hold between these entities. The involvement
of a cardiologist in the design has helped to ensure the
relevance of the scheme to our research goals.
Every textual mention of a concept relevant to the

description of phenotypic information relating to CHF is
annotated at two different levels. Firstly, an appropriate
semantic category is assigned by the annotators. Sec-
ondly, the manually identified terms are mapped semi-
automatically to known clinical concepts in the UMLS
Metathesaurus, with the aid of MetaMap [24]. As a final
level of annotation, several types of relationships that
hold between the concept mentions are manually anno-
tated. Annotators were supported by concise guidelines,
developed in an iterative manner, together with regular
meetings to allow the discussion of issues that arose
during the annotation process. Acting as adjudicator in
these meetings, the cardiologist was responsible for
resolving all problems and discrepancies.
Figure 1 shows the most prevalent phenotypes in the

corpus and their distribution in the discharge summaries
and articles. In discharge summaries, there is large
emphasis on describing the signs and symptoms of the
disease, but these play a much less significant role in
scientific articles, where the dominant topics are non-
traditional risk factors and the etiology of CHF.

Reliability of annotations
The employment of two different annotators allowed us
to calculate the inter-annotator agreement (IAA) rate, to
verify the quality of the annotations. Since the widely
used Cohen’s kappa [36] is not suitable in this case
because the total number of annotated items is not
known in advance, we took one set of annotations as
the gold standard and calculated F-score values to mea-
sure IAA.
Table 2 reports the IAA rates achieved in PhenoCHF,

differentiating between agreement levels according to text
type, and also between agreement rates for exact matching
(i.e., the boundaries of annotated terms must match
exactly) and relaxed matching (i.e., the boundaries of

annotated terms need only overlap with each other). The
F-scores for exact matching are generally lower than for
relaxed matching, due to disagreements between annota-
tors with regard to the exact span annotated, e.g. whether
or not modifiers should be included within annotated text
spans. For example, whilst one annotator marked up sig-
nificant left atrial dilation as an expression corresponding
to sign or symptoms of CHF, the other annotator marked
up only left atrial dilation.

Phenotype extraction
The annotated PhenoCHF corpus was subsequently
used in experiments to extract and categorise mentions
of concepts relating to phenotypes automatically. The
recognition of such concept mentions is a prerequisite
for the extraction of more complex information (e.g.,
relations involving these concepts). Whilst PhenoCHF is
also annotated with such relations, their automatic
extraction is left as future work.
Extracting phenotype concept mentions from text is a

typical NER task, which involves determining the
boundaries of the mentions, and assigning semantic
types to them. We have developed and evaluated differ-
ent NER methods, i.e., dictionary-based, rule-based and
ML algorithms. To support this, each part of the corpus
was divided randomly into a training set (80%) and test
set (20%). Due to the small size of the corpus, we did
not set aside a development or validation set. However,
to address this shortcoming, we also validated our ML-
based methods using cross validation.
The dictionary-based method, our baseline, involved

applying MetaMap to PhenoCHF. Although, as men-
tioned above, the dictionary underlying this software (i.e.,
UMLS Metathesurus) does not have any explicit pheno-
typic semantic categories, we know that phenotypic
information usually falls under the subtypes of the
Metathesaurus’ disorder semantic group, confirmed both
by previous studies (e.g., [35]), as well as by our annota-
tors. Since, by default, MetaMap annotates a broad range
of clinical concepts, we configured it to recognise only
those concepts belonging to the 12 categories under the
disorder semantic group, e.g., disease or syndrome and
pathologic function, in order to match only phenotypes.
For the rule-based approach, we exploited Conceptual

Annotations for Facts, Events, Terms, Individual Entities

Table 1 Annotated phenotype concept types.

Entity Type Description

Cause Any medical problem that contributes to the occurrence of CHF

Risk factors A condition that increases the chance of a patient having the CHF disease

Sign & symptom Any observable manifestation of a disease which is experienced by a patient and reported to the physician

Non-traditional risk
factor

Conditions associated with abnormalities in kidney functions that put the patient at higher risk of developing “signs &
symptoms” and causes of CHF
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and Relations (Cafetiere), a system that allows the appli-
cation of rules to free text [37]. The system provides a
web-based interface that allows rules to be defined and
applied to texts. Further development of rules is facili-
tated in Cafetiere through the highlighting of rule-added
annotations within texts, and an indication of the identi-
fier of the rule that was used to create each annotation.
Through manual examination of examples of different

phenotypic phenomena and their contexts in the training
portions of PhenoCHF, we used Cafetiere to develop a set
of hand-crafted rules (45 and 37 rules for discharge sum-
maries and articles, respectively), which use a range of fea-
tures including syntactic (i.e., POS), semantic (UMLS
semantic type) and lexical (word shape, prefix and suffix)
to capture common textual patterns that denote the pre-
sence of phenotype information. The performance of the
rules was evaluated through their application to the test
portions of the PhenoCHF corpus. A sample rule is shown
in Example 1, which will recognise phrases such as heart
is enlarged , abdomen was distended, and leg is swollen.
Example 1.
[syn=NN|NNP]{1,3},
[sem=beverb]?,
[syn=VBN|JJ, token!

="normal"|"regular"|"stable"]
Each rule consists of a sequence of token specifications

to be matched in the text. Each token specification is

enclosed within square brackets. In Example 1, the first
type of token to be matched should be syntactically either
a common noun (NN) or proper noun (NNP). The itera-
tor {1,3} allows the rule to match a sequence of nouns, to
capture signs and symptoms which are expressed using
compound nouns (e.g., chest pain, swollen leg). The sec-
ond, optional token (as indicated by the question mark)
to be matched is any form of the verb be. Finally, a verb
in past participle form or an adjective must be present.
The optionality of be accounts for different possible writ-
ing styles (i.e., leg swollen or leg was swollen).
Our ML approach used three different algorithms, i.e.,

HMMs, MEMMs and CRFs. The annotated data was
first transformed into the begin-inside-outside (BIO)
format. We then employed CRFsuite [38], the Mallet
implementation of MEMM [39] and, since the tradi-
tional HMM does not assume independent features [40]
(hence each observation is independent from its con-
text), we adapted a previous HMM-based approach [41]
to allow for the integration of multiple features. To per-
form a fair comparison between the three algorithms,
we used the same set of features to train the models,
including word level information (e.g., bag-of-words),
syntactic information (e.g., POS and chunk tags obtained
using the biomedical model of the state-of-the-art
GENIA tagger [42], which has been shown to achieve
precision of 97-98% for POS tagging on biomedical
text), and word affixes, i.e., prefixes and suffixes. The
affix-capturing features were introduced based on the
observation that certain prefixes and suffixes are quite
common amongst phenotypic expressions, e.g., the pre-
fix hyper- in hypertension and the suffix -emia in lipide-
mia and anemia. Using the gold standard annotations
in the training set, a registry of prefixes/suffixes of
lengths two to five was first automatically compiled (fol-
lowing [43]), serving as a look-up list during feature
extraction. In this set of experiments, we trained various
models using different feature sets in conjunction with
each ML algorithm on the training part of the corpus,

Figure 1 Distribution of phenotypic information types in the corpus. Phenotypic concepts were manually annotated by our domain experts.

Table 2 Inter-annotator agreement on the PhenoCHF
annotations.

Discharge summaries Articles

Phenotypic class Exact Relaxed Exact Relaxed

Cause 0.84 0.95 0.59 0.78

Risk factor 0.84 0.94 0.86 0.79

Sign & symptom 0.69 0.97 0.53 0.82

Non-traditional risk factor 0.77 0.83 0.81 0.72

Macro-average 0.82 0.92 0.69 0.77

F-scores were calculated using both exact and relaxed matching.
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and evaluated the models on our test set, using bag-of-
word features as the baseline. Separate sets of experiments
were carried out for the different text types in the corpus,
i.e., discharge summaries and literature articles.
A subsequent set of experiments aimed to determine

the extent to which a model trained on one text type is
robust to the features of alternative text types. We
trained a model on the set of PhenoCHF discharge sum-
maries and tested it on all of the scientific articles, and
vice versa. Furthermore, in order to report results which
aim to eliminate the possibility of models overfitting the
training data, we performed five-fold cross validation on
PhenoCHF’s records and articles combined.
The portability of the models trained on PhenoCHF was

furthermore demonstrated through their application to
the corpus released for the NER task of ShARe/CLEF 2013
[32], whose annotations partially overlap with those in
PhenoCHF. In the former, mentions of disorder terms
were annotated and mapped to corresponding concepts in
the SNOMED CT terminology [44], whose disorder
semantic group covers phenotypic information. However,
the annotated information in ShARe/CLEF corpus is
much broader in subject scope than PhenoCHF, whose
annotations (and hence, systems trained using the corpus)
are restricted to information concerned with heart disease.
Thus, to provide a fair evaluation of our models against
the ShARe/CLEF corpus, we applied them only to a subset
(i.e., 135 and 76 records from the training and test sets,
respectively) which contains terms mapped to concepts
within the “heart disease” subtree of SNOMED CT.

Results and Discussion
Table 3 shows the results of the various NER methods, i.e.,
dictionary-based (MetaMap), rule-based (Rules) and the
three machine learning algorithms (MEMM, HMM and
CRF), when applied separately to the different text types in
the corpus (i.e., discharge summaries and literature
articles).
Rules achieved the highest F-score for both parts of the

corpus, and outperformed the other methods, as shown
in Table 3. However, it is important to note that this
method is also the most costly, since the manual exami-
nation of textual patterns that is required to construct
the rules can be very time-consuming.
Most of the false negatives resulting from the rules can

be attributed to phenotype information that is not pre-
sent in the training data, and hence was not accounted
for by the rules. The false positives, meanwhile, are due
to some non-phenotype terms sharing similar syntactic
patterns to phenotypic terms, which the rules failed to
discriminate. For instance, the rule in Example 1 will
incorrectly recognise the phrase abdomen is benign
because many signs or symptoms are expressed using the
same syntactic pattern, e.g., abdomen is distended.

Although the rule tries to filter out phrases that refer to
normal conditions by excluding certain patterns in the
training data (e.g., chest is normal, heart is regular), it
failed to filter out the unseen phrases matching the rule
in the test data.
Meanwhile, the dictionary-based method produced a

greater number of false positives, even though we
restricted the semantic types recognised by MetaMap to
those belonging to the disorder group. Whilst MetaMap
recognised all disorders, such disorders were only anno-
tated in PhenoCHF if they were mentioned in the context
of CHF. Furthermore, MetaMap suffers from low recall
due to some spelling mistakes in the corpus (i.e., aneamia
instead of anaemia) and multi-word phenotypic expres-
sions that MetaMap segments into different terms
(e.g., worsened renal function split into worsened and renal
function). Recall is even worse using exact matching,
mainly because, unlike systems trained using PhenoCHF,
MetaMap was not designed to recognise phenotypic infor-
mation expressed as multi-word expressions with modi-
fiers, e.g., moderate to mild cough.
Results obtained by the ML-based methods are very

competitive with those from the application of our rule-
based method, especially on the discharge summaries. As
CRFs achieved the best performance on both the discharge
summary and article subsets of PhenoCHF, we used only
this method to train models in further experiments.
Whilst CRFs achieved the highest F-scores, MEMMs pro-

duced the lowest scores, having suffered from its known
label bias problem [40], in which the model develops a bias
towards classes with fewer outgoing transitions, thus
requiring a very large amount of training data. Overall, our
experiments demonstrate that ML methods exhibit good
levels of precision, but suboptimal recall. This is partly due
to the fact that they are sensitive to textual heterogeneity,
such as the use of different vocabulary, e.g., synonyms and
term variants, and different writing styles [40].
Regarding the contribution of different features to the

performance of the ML models (provided as Additional
File 2), we have observed that the POS and chunk features
contributed little to improving the overall performance of
the system, whilst the highest performance was achieved
when prefix and suffix features were incorporated. A pos-
sible reason is that distinctive sets of prefixes and suffixes
typically occur within terms referring to phenotypic infor-
mation, e.g., the suffix -emia is especially common in risk
factors (e.g., hypercholesterolemia, hyperlipidaemia).
For literature articles, the performance margin of the

rule-based methods over ML is considerably greater than
for clinical records. This can be explained by the smaller
size of the article subset, and the greater scarcity of its
annotations (compared to the clinical records corpus),
which meant that ML models trained on this corpus sub-
set had less observations to learn from.
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Reinforcing this finding is our set of experiments
which demonstrated that the model trained on the arti-
cles and tested on the discharge summaries performs
with significantly lower F-score than the model trained
on the discharge summaries and tested on the literature
articles, as shown in Table 4. The specific and complex
characteristics of EHRs mean that the literature-trained
model exhibits even lower performance when applied to
the different text type. In contrast, the larger size of the
discharge summary portion of PhenoCHF, and the
richer annotations contained within it, allowed for a
more accurate model to be trained.
This does not mean, however, that the literature part

of the corpus is not useful for machine learning, since
our best results are achieved by training and evaluating
models using 5-fold cross validation on the pooled cor-
pus of both records and articles, as shown in Table 4.
This result is in contrast to other related studies (e.g.,
[18]) which have found that pooling corpora of different
text types normally decreases the performance of the
trained model. However, our results show that the
annotation of heterogeneous textual sources according
to a common set of guidelines can allow training of a
single classifier that is robust to different text types.
The robustness of the model on different text types,

together with the superiority of CRF models in this con-
text, are further reinforced by the results obtained when
applying the PhenoCHF-trained models to the ShARe/
CLEF corpus. Again, the best results were obtained with
the CRF model trained on the complete, pooled Phe-
noCHF corpus, as shown in Table 5. Most of the false

positives found by our model are due to the discrepancies
in the annotations contained in the two different corpora.
To evaluate the extent to which the discrepancies

between the output of our system and the annotations in
ShARe/CLEF corpus are due to the different annotation
scopes, our expert annotators reviewed both the false posi-
tives (FPs) and false negatives (FNs) output by our system,
in comparison to the ShARe/CLEF annotations. The
annotators identified how many of the FPs output by our
system actually represent valid phenotypic information,
and how many of the FNs represent information that is
out of the scope of CHF (and hence could not be expected
to be recognised by our system). This validation revealed
that the majority of FPs recognised by our system repre-
sent valid phenotypic information in the context of CHF,
and correspond to the wider range of semantic types that
are annotated in PhenoCHF. In particular, our signs and
symptoms category encapsulates the UMLS finding seman-
tic type (e.g., chest pain), which is excluded from the
ShARe/CLEF corpus. A smaller number of FPs was found
to correspond to genuine errors made by our system.
However, these were found to correspond largely to cases
where non-phenotype terms share the same morphologi-
cal form as correct phenotype terms. As an example, the
suffix -uria is common amongst phenotypic information
related to CHF, especially non-traditional risk factors (e.g.,
dysuria), but can also be used in non-phenotypic terms
i.e., cystnuria. The FNs (e.g., endocarditis) were mainly
due to the broader scope of ShARe/CLEF annotation,
compared to the very focussed scope of PhenoCHF.
A further source of error concerns acronyms and

Table 3 Comparison of different methods developed and evaluated on the PhenoCHF training and test sets, respectively.

Discharge summaries Articles

Exact Match Relaxed Match Exact Match Relaxed Match

Methods P R F P R F P R F P R F

Dictionary (MetaMap) 0.22 0.29 0.25 0.39 0.51 0.44 0.42 0.25 0.30 0.67 0.33 0.44

Rules 0.88 0.86 0.87 0.92 0.93 0.92 0.83 0.88 0.85 0.88 0.90 0.89

MEMMs 0.67 0.33 0.52 0.87 0.60 0.54 0.18 0.55 0.24 0.20 0.56 0.28

HMMs 0.90 0.63 0.74 0.90 0.65 0.76 0.30 0.55 0.39 0.32 0.58 0.41

CRFs 0.88 0.77 0.82 0.90 0.86 0.88 0.48 0.62 0.54 0.53 0.69 0.60

For MEMMs, HMMs and CRFs, only the results from the model with the best performing combination of features are presented (P=precision, R=recall, F=F-score).

Table 4 Results of CRF model training and evaluation.

Evaluation data Training Data P R F

PhenoCHF Articles Discharge
summaries

0.79 0.47 0.58

PhenoCHF Discharge
summaries

Articles 0.56 0.29 0.38

PhenoCHF (full) 5-fold cross validation 0.89 0.83 0.86

Experiments were performed using different document types (P=precision,
R=recall, F=F-score)

Table 5 Results from the application of PhenoCHF
models on ShARe/CLEF.

Training set Test set

Method P R F P R F

Record model 0.25 0.49 0.33 0.06 0.18 0.09

Article model 0.29 0.22 0.25 0.06 0.07 0.06

PhenoCHF model 0.25 0.53 0.34 0.07 0.18 0.10

Experiments were performed using our various CRF models (P=precision,
R=recall, F=F-score)
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abbreviations. Although there are many examples in Phe-
noCHF, such as CAD (coronary artery disease) and MR
(mitral regurgitation), there are also many abbreviations
and acronyms in ShARe/CLEF that do not appear in Phe-
noCHF, e.g., PAFIB, LBBB, CHB, PDA. The high frequency
with which these appear in the ShARe/CLEF test data set
helps to account for the significantly lower F-score
achieved by our models when applied to this data set.
When we remove the FPs that correspond to real phe-

notypic information, and the FNs that are out of the
scope of our task, the revised precision and recall are
0.56 and 0.54, respectively and the F-score is improved to
0.55 for the training part of ShARe/CLEF, whereas the
new precision and recall for the test part are 0.12 and
0.19, respectively, and the F-score is improved to 0.13.
This provides evidence of the portability of our trained
model to different domain-specific corpora, even when
there are differences in text types between the corpora.
The distribution of the types of phenotypic concepts
relating to CHF in the ShARe/CLEF corpus, recognised
by our model and validated by our experts, is shown in
Figure 2. It is worth noting that the most prevalent phe-
notypic type is sign or symptoms followed by cause, whilst
the least prevalent type is non-traditional risk factor.

Conclusions
In this article, we have described our work towards facili-
tating the development of robust TM systems that can
extract information relating to phenotypes from a range
of different text types. We have developed the PhenoCHF
corpus, which is annotated with information relevant to
the identification of disease-phenotype associations in

the context of CHF, including several types of entities
and relationships that hold between them. The corpus
aims to support the development of new, ML-based
methods to identify phenotypic information in unstruc-
tured texts. Due to rapid advances in biomedicine, dic-
tionary-based methods cannot support the recognition of
new concept variants appearing in text. Machine learning
methods, on the other hand, can recognise new concepts
and variants, based on comparison of their textual and
contextual features with known concept instances.
PhenoCHF includes literature articles and discharge sum-

maries from EHRs, which have been annotated according
to a common set of guidelines, to support the development
of systems that can identify relevant phenotypic informa-
tion from free text, regardless of the source or style of writ-
ing. To demonstrate the utility of PhenoCHF, we have
shown that machine-learning NERs trained on the corpus
can behave with superior performance to the more tradi-
tional dictionary-based methods. Whilst our experiments
show that rule-based methods produce the best results, our
best performing machine-learned classifier (CRF) achieves
competitive performance, and alleviates the need for man-
ual rule construction.
In terms of robustness, we have demonstrated that a sys-

tem trained to recognise phenotype information in EHR
records is able to achieve good levels of performance when
applied to the same extraction task in literature articles.
Further improvements in the portability of the system to
multiple text types were achieved through training on a
combination of literature articles and discharge summaries.
This has been reinforced by the encouraging results
achieved when applying our best-performing CRF model to

Figure 2 Distribution of phenotypic information in the ShARE/CLEF corpus. Phenotypic concepts were automatically recognised by our
model and then validated by our domain experts.
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a related, but wider-ranging corpus, i.e., the ShARe/CLEF
corpus.
As future work, we will investigate the automatic

extraction of relationships between entities, exploiting
the relationship annotation that has been added by our
expert annotators. We intend to employ the EventMine
event extraction system [14], which has achieved superior
performance compared to other state-of-the-art systems
in several extraction tasks on biomedical literature [45].
Its adaptability to multiple text types and domains has
been demonstrated, whilst recent improvements aim to
simplify its configuration to new tasks, without the need
for extensive additional coding [46].

Additional material

Additional file 1: Query used to retrieve the literature articles from
the PubMed Central OpenAccess subset.

Additional file 2: Table showing the contribution of features in
each machine-learning based method.
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