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Abstract

Background: Detecting protein complexes is one of essential and fundamental tasks in understanding various
biological functions or processes. Therefore accurate identification of protein complexes is indispensable.

Methods: For more accurate detection of protein complexes, we propose an algorithm which detects dense
protein sub-networks of which proteins share closely located bottleneck proteins. The proposed algorithm is
capable of finding protein complexes which allow overlapping with each other.

Results: We applied our algorithm to several PPI (Protein-Protein Interaction) networks of Saccharomyces cerevisiae
and Homo sapiens, and validated our results using public databases of protein complexes. The prediction accuracy
was even more improved over our previous work which used also bottleneck information of the PPI network, but
showed limitation when predicting small-sized protein complex detection.

Conclusions: Our algorithm resulted in overlapping protein complexes with significantly improved F1 score over
existing algorithms. This result comes from high recall due to effective network search, as well as high precision
due to proper use of bottleneck information during the network search.

Background
Most proteins are known to be involved in complex biolo-
gical processes or functions in a cell, forming a protein
complex with other proteins [1]. Therefore, detecting pro-
tein complexes is one of essential and fundamental tasks
in understanding various biological functions or processes.
A protein complex can be modelled as an undirected
graph of which node is a protein and edge is a physical
interaction between two protein nodes. This physical
interaction of two proteins is called PPI (Protein-Protein
Interaction). Representative methods to find those interac-
tions are two-hybrid system [2] and Mass Spectrometry
[3]. Recent development of those high-throughput meth-
ods has resulted in abundant PPI network.
A protein complex is a set of proteins that interact with

each other, so it is frequently assumed that distances
between its member proteins are short, and its members

tend to form clique-like structure in the PPI network.
Accordingly, a protein complex is often assumed as a
dense sub-graph in the PPI network. There have been
active researches to develop algorithms for detecting pro-
tein complexes, and many of them are based on search-
ing dense sub-graph in the PPI network. MCODE [4]
gives high weight to nodes of which degree is high, and
searches the network using those nodes as seeds. It
enforces local search on the network, and finds sub-net-
work whose nodes are highly interconnected. CMC [5]
gives weight to PPIs using an iterative scoring method to
assess the reliability of PPI, finds maximal cliques from
the weighted PPI network, and then removes or merges
overlapping maximal cliques based on their interconnec-
tivity. MCL [6] detects clusters by distinguishing the
strong and weak connections in the network and parti-
tioning the network, based on manipulation of transition
probabilities or stochastic flows between vertices of the
graph. MCL has been reported to have good perfor-
mance, and many variations of it have been proposed
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[7-9]. However, they are known to suffer from imbalance
of resulting clusters [9].
These network clustering algorithms commonly do not

allow overlapping between identified protein complexes.
In other words, a protein can be involved in only one pro-
tein complex. Recently, algorithms that allow overlapping
have been extensively studied. DPClus [10] detects initial
protein complexes starting from the seeds and then
including neighbours so as to maintain the edge’s density
of the sub-network above the threshold. Then it finds
overlapped protein complexes extending the initial protein
complexes. CFinder [11] is based on Clique Percolation
Method (CPM) [12], which defines a protein complex as a
union of k-cliques that share (k-1) vertices. The result of
CFinder is sensitive to the value of k. As k increases, it
tends to find smaller, but highly denser sub-network. Link
Cluster [13] firstly substitutes edges to virtual nodes, and
then make edge between those virtual nodes (edges) that
share nodes. Virtual nodes of the substituted network are
closer as their connectivity increase. Hierarchical cluster-
ing of those virtual nodes results in the clusters of the
edges, and as a result, those clusters can share nodes.
Allowing the overlaps between resulting protein com-
plexes obviously leads to higher recall and precision,
because a protein is frequently involved in several protein
complexes [10]. Becker et al. [14] proposed Overlapping
Cluster Generator (OCG) which decomposes a network
into overlapping clusters for correct assignment of multi-
functional proteins. The OCG makes initial overlapping
classes that are iteratively fused into a hierarchy according
to an extension of Newman’s modularity function.
Precise prediction of protein complexes is important

since they are likely to be fundamental units for various
biological functions or processes. Also, the validation cost
of predicted protein complexes is high. For more precise
detection of protein complexes, we used the characteristics
of bottlenecks in the network. A bottleneck of a network is
a node that the information of the network is concen-
trated. The bottleneckness of a node can be calculated
using betweenness centrality, which is a measure of a
node’s centrality in a network, and equal to the number of
shortest paths going through it. Yu et al. [15] revealed that
bottleneck proteins tend to be essential proteins and cor-
respond to the dynamic component of the PPI network.
Moreover, they can be global connectors between func-
tional modules of the PPI network. Therefore, sub-graphs
of which boundary proteins are bottleneck proteins have
higher chance to be functional modules. We expected that
finding these sub-graphs as candidate protein complexes
will efficiently filter the possible false predictions out.
Previously, we proposed the protein complex prediction

algorithm that utilizes the bottleneck proteins as partition-
ing points for detecting the protein complexes, based on

this expectation [16]. It iteratively constructs directed
acyclic graphs of which starting node is bottlenecks in the
PPI network. The search ends at nodes where flows from
the starting node are concentrated. This graph is called
DG (Distance Graph), and terminal nodes of DG tend to
be bottlenecks of the PPI network. Established DGs are
used to identify sub-graphs that may be overlapped with
each other. The sub-graphs having enough edge-density
are reported as protein complexes.
Even though [16] showed improved F1 score over pre-

vious works, it showed limited results when predicting
small-sized protein complexes. For address this problem,
we propose new network search algorithm which
searches dense protein sub-networks of which proteins
share closely located bottleneck proteins.
We applied our algorithm to several PPI networks of

Saccharomyces cerevisiae and Homo sapiens, and validated
our results using public databases of protein complexes.
Our algorithm resulted in significantly improved F1 score
over existing algorithms including our previous work [16].
This result comes from high recall due to effective network
search, as well as high precision due to proper use of bot-
tleneck information during the network search.

Methods
The protein complex detection method proposed in this
study is composed of two parts. First, betweenness cen-
tralities of all the nodes and shortest distances between
all node pairs in the PPI network are calculated. Second,
we search dense protein sub-networks of which proteins
share closely located bottleneck proteins.
The network search starts from sorting nodes by their

betweenness centrality in descending order, and putting
them in the starting node set. Among them, upper BC
threshold (user parameter, %) nodes are called bottle-
neck nodes. Also, each node keeps “close bottlenecks”,
which is a set of bottleneck nodes of which distance
from the nodes ≤ 2.
Each node in the starting node set forms an initial

cluster. The initial cluster grows by including neigh-
bouring proteins iteratively, until no nodes can be
included. Each cluster keeps its set of shared bottle-
necks. In case of the initial cluster, this set means close
bottlenecks of its starting node. From each initial clus-
ter, we include neighbouring protein nodes that satisfy
two conditions: the edge density and ratio of sharing
bottleneck nodes. Given node n, these two conditions
can be expressed by following score function:

score (n) = clutering coefficientwhen n is included in the cluster

× n(shared bottlenecks)
n(shared bottlenecks of the cluster)

× n(shared bottlenecks)
n(colose bottlenecks of n)
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“shared_bottleneck“ indicates intersection of shared
bottlenecks of cluster and close bottlenecks of n. Edge
density can be measured by clustering coefficient, as in
our previous work [16].
We find neighbouring nodes from non-bottleneck pro-

teins in the cluster, except for the initial cluster. In other
words, bottlenecks are nodes where the search ends. For
each neighbouring node that makes clustering coefficient
≥ CC threshold, we calculate its score, and include top k%
scored nodes into next cluster. Throughout the rest of the
paper, we used k = 5. We used priority queue to imple-
ment this mechanism. Using top k% scored nodes rather
than only one node with best score is essential for efficient
network traverse. Higher k enables faster clustering, and
we confirmed that higher k (~ 10%) does not lower the
prediction accuracy through iterative experiments.
Figure 1 shows the example PPI network and its bottle-

neck nodes. Each node keeps its close bottlenecks. Figure
2 describes search process for the example PPI network.
Starting from node G, we can see that its neighbour nodes
are D, E, L and M. We calculate the score of them. Cluster
{G} has shared bottlenecks {G, C, H}. Node D and cluster
{G} share {G, C, H}. So, second term of above formula is
3/3. Node D has close bottlenecks {G, C, H}. So, third
term of above formula is 3/3. Because clustering coeffi-
cient of {D, G} is 1, score(D) is 1. For convenience, we
include just top scored nodes, rather than top k% scored
nodes, into next protein complex in Figure 2. So, initial

cluster {G} grows up to {D, E, G}. The neighbouring nodes
of those nodes are {C, H}. Because nodes C and H satisfy
CC threshold, they are included in the cluster. Also, as
they are bottlenecks, no neighbouring nodes exist, and the
search ends.
After searching for the cluster ends, it is reported as pro-

tein complex if its size ≥ 3, and its member nodes are
removed from the starting node set. This prevents too
much overlapping between resulting protein complexes.
Figure 3 presents the pseudo code of the described
algorithm.

Results
Experimental environment
We downloaded two PPI networks of Saccharomyces cere-
visiae (yeast) from DIP [17] and BioGRID [18] database.
Also, 109,086 human PPIs were downloaded from the I2D
database [21]. PPIs from DIP are biologically validated,
thus the number of PPIs is relatively small, but they tend
to be more accurate. Meanwhile, BioGRID has about ten
times more PPIs than DIP. BioGRID has many predicted
PPIs, which result in much higher false positive error rate.
Table 1 shows the information of the PPI network
datasets.
We also collected known protein complexes (reference)

to validate the results of our algorithm. Two reference data-
sets of Saccharomyces cerevisiae were downloaded from
MIPS [19] and CYC2008 [20] database. One reference

Figure 1 Example PPI network and bottleneck information. First, Betweenness centrality of each node in the PPI network is calculated.
Protein nodes are sorted according to the betweenness centrality in descending order, and put into starting node set. All nodes keep close
bottlenecks, which means distance between node and bottleneck ≤ 2.

Ahn et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 1):S5
http://www.biomedcentral.com/1472-6947/13/S1/S5

Page 3 of 9



dataset of Homo sapiens was downloaded from CORUM
database [22]. For both reference datasets and identified
protein complex sets, we used complexes of which size is
more than or equal to three. Table 2 shows the information
of collected reference datasets.

Performance test
To see whether a complex identified by an algorithm is
matched with protein complexes in the reference data-
sets, we used affinity score. Given set of proteins in a
protein complex in a reference dataset and set of pro-
teins in an identified protein complex, which we call A
and B respectively, affinity score between A and B can
be calculated by the following Equation.

aff (A, B) = n(A ∩ B)2/ (n (A) × n (B))

The searching is successful if a protein complex is iden-
tified with affinity score ≥ 0.2 for any protein complex in a
reference datasets. If this threshold is too big or small, the
affinity score loses its assessment function. Through itera-
tive experiments, we set the affinity score threshold as 0.2,
which makes the difference between results of various
algorithms.
The performance of a clustering algorithm can be

measured using recall, precision and F1 score, which are
calculated as follows:

Recall = |Rhit| / |R| , Precision = |Chit| / |C| ,
F1 score = harmonicmean of Recall and Precision,

Rhit =
{
Ri ∈ R|aff (

Ri,Cj
) ≥ 0.2,Cj ∈ C

}
,

Chit =
{
Ci ∈ C|aff (

Ci,Rj
) ≥ 0.2,Rj ∈ R

}
,

Figure 2 Detecting protein complexes. Network searching process for each node of the starting node set in Figure 1. “BC” in the tables
indicates second and third term of the score function in the Method chapter. “CC” in the tables indicates clustering coefficient of the cluster
when the node is included in the cluster.
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Figure 3 The pseudo code of the proposed algorithm.

Table 1 PPI network datasets

Database (version) Species Number of proteins Number of PPIs

DIP (20071007) Saccharomyces cerevisiae 4,823 16,914

BioGRID (3.1.69) Saccharomyces cerevisiae 5,920 162,378

I2D (1.95) Homo Sapiens 14,610 209,440
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where C is a set of protein complexes found by a clus-
tering algorithm, and R is a set of protein complexes in a
reference dataset. Recall means a rate of protein com-
plexes in the reference datasets that were successfully
found, precision means a rate of protein complexes iden-
tified by an algorithm that are matched with the protein

complexes in the reference datasets, and F1 score means
an overall accuracy of the test.
First, we tested the performance of proposed algorithm

varying two user parameters, BC and CC. The results are
shown in Figure 4. The optimal CC and BC thresholds are
from 0.6 to 0.8 and from 1%~5% respectively, for three

Table 2 Reference datasets

Database
(version)

Species Number of protein
complexes

Number of
proteins

Avg. number of proteins in protein
complexes

MIPS Saccharomyces
cerevisiae

81 885 12.358

CYC2008 (2.0) Saccharomyces
cerevisiae

236 1,627 6.678

CORUM
(17.02.2012)

Homo Sapiens 1,942 4,394 5.789

Figure 4 Experimental results for obtaining optimal user parameters. Each title of the graph indicates “PPI network dataset - reference
dataset”. X and Y axis indicate BC threshold and F1 score, respectively. Zero BC threshold means that we did not use any bottleneck proteins.
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experiments using DIP and I2D datasets (DIP-MIPS, DIP-
CYC and I2D-CORUM). For two experiments using Bio-
GRID dataset, the optimal CC and BC thresholds are from
1% to 15% and 1.0, respectively. The supposed reason of
these differences in optimal thresholds is that BioGRID
has large number of predicted PPI, which leads to higher
false positive complex predictions. Therefore, the precision
would decrease unless CC is high enough, as shown in
these two graphs. For the same reason, relatively large
number of bottleneck seems to be helpful for accurate
prediction.
To see the impact of using bottlenecks, we performed

experiments using only clustering coefficient, which
means score function in Methods chapter is as follow:

score (n) = clutering coefficientwhen n is included in the cluster

For all the experiments, tests using bottleneck infor-
mation brought more accurate results. Especially, pre-
diction accuracies were clearly increased when using
bottlenecks in two cases using BioGRID. This means
that bottleneck information were effective in dense net-
work which may include many false interactions. At the
same time, tests using only clustering coefficient shows
comparable prediction accuracy, which means that the

proposed network searching algorithm is effective for
detecting protein complexes.
We then measured the prediction performance of pro-

posed algorithm, and compared the results with repre-
sentative network clustering algorithms, MCODE [4],
MCL [5], Link Cluster [13], and our previous work [16].
We applied each algorithm including proposed algo-
rithm to PPI networks and two reference datasets. For
each algorithm, we found optimal parameters that result
in best F1 score.
In Table 3, the proposed algorithm shows overall high

F1 score. Except for DIP-MIPS experiment, F1 score of
the proposed algorithm is significantly improved over our
previous work [16]. Our previous work showed limited
performance on finding small-sized protein complexes, as
shown in experiments DIP-CYC, BioGRID-CYC and I2D-
CORUM. While high precision was the strength of [16],
we can confirm that the increased F1 score comes from
higher recall, as well as high precision.
We can see that optimal BC thresholds are generally

smaller, and optimal CC thresholds are higher than [16].
This indicates the proposed algorithm detects denser sub-
network. However, this does not means that the proposed
algorithm uses less bottleneck information, because

Table 3 Result of comparison test

PPI network dataset Reference dataset Algorithm Optimal parameters Number of protein complexes Recall Precision F1 score

DIP MIPS Proposed CC = 0.9, BC = 1% 269 0.5556 0.3086 0.3968

[16] CC = 0.51, BC = 20% 76 0.3210 0.4605 0.3783

Link Cluster Partition_density = 0.30 1,177 0.7037 0.1427 0.2373

MCL Granularity = 2.00 614 0.5679 0.0739 0.1298

MCODE Node_score = 0.10 83 0.2930 0.2530 0.2729

CYC Proposed CC = 0.6, BC = 1% 646 0.4877 0.4860 0.4869

[16] CC = 0.38, BC = 20% 333 0.3898 0.4114 0.4003

Link Cluster Partition_density = 0.29 1,179 0.5932 0.2858 0.3857

MCL Granularity = 2.40 639 0.4746 0.1690 0.2493

MCODE Node_score = 0.10 83 0.2119 0.5542 0.3065

Bio-GRID MIPS Proposed. CC = 1.0, BC = 1% 127 0.3457 0.4724 0.3709

[16] CC = 0.54, BC = 20% 69 0.2346 0.3623 0.2848

Link Cluster Partition_density = 0.30 10,463 0.5926 0.0893 0.1552

MCL Granularity = 3.60 216 0.2099 0.0556 0.0879

MCODE Node_score = 0.10 120 0.086 0.0500 0.0633

CYC Proposed CC = 1.0, BC = 15% 506 0.3260 0.3814 0.3515

[16] CC = 0.43, BC = 30% 324 0.2500 0.2160 0.2318

Link Cluster Partition_density = 0.28 10,915 0.5297 0.2802 0.3697

MCL Granularity = 3.00 225 0.1144 0.1111 0.1127

MCODE Node_score = 0.10 120 0.0593 0.1167 0.0787

I2D CORUM Proposed CC = 0.8, BC = 5% 2,508 0.4100 0.3545 0.3802

[16] CC = 0.41, BC = 20% 1,132 0.2961 0.2491 0.2706

Link Cluster Partition_density = 0.21 8,033 0.4576 0.1595 0.2378

MCL Granularity = 1.60 750 0.0623 0.0587 0.0604

MCODE Node_score = 0.10 251 0.0469 0.1076 0.0652
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prediction accuracy was also good for higher BC. Because
our algorithm uses bottlenecks as boundary of the protein
complex, detected sub-networks are basically similar to
the DG. However, division procedure of DG [16] has lim-
itation on detecting dense sub-network. Therefore, we can
say that the network searching algorithm we proposed
overcame the limitation when detecting dense sub-
networks.
Like [16], the proposed algorithm can detect protein

complexes that shares PPIs. We can see that overlapped
region of different protein complexes contains PPIs in
Figure 5. Also, we can confirm that bottleneck proteins
function as boundaries for protein complexes.

Conclusions
We proposed the novel network clustering algorithm
which detects dense protein sub-networks of which pro-
teins share closely located bottleneck proteins. The pro-
posed algorithm showed improved F1 score which comes
from high recall due to effective network search, as well as
high precision due to proper use of bottleneck information
during the network search.
As future works, we extend our algorithm to detect the

hierarchical relationship between sub-networks identified.
This algorithm would help us to elucidate hierarchical
structure of various protein complexes or functional

modules in a cell, and to infer a function of them in con-
junction with various biology databases such as Gene
Ontology database.
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