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Abstract

Background: Due to the low statistical power of individual markers from a genome-wide association study
(GWAS), detecting causal single nucleotide polymorphisms (SNPs) for complex diseases is a challenge. SNP
combinations are suggested to compensate for the low statistical power of individual markers, but SNP
combinations from GWAS generate high computational complexity.

Methods: We aim to detect type 2 diabetes (T2D) causal SNP combinations from a GWAS dataset with optimal
filtration and to discover the biological meaning of the detected SNP combinations. Optimal filtration can enhance
the statistical power of SNP combinations by comparing the error rates of SNP combinations from various
Bonferroni thresholds and p-value range-based thresholds combined with linkage disequilibrium (LD) pruning. T2D
causal SNP combinations are selected using random forests with variable selection from an optimal SNP dataset.
T2D causal SNP combinations and genome-wide SNPs are mapped into functional modules using expanded gene
set enrichment analysis (GSEA) considering pathway, transcription factor (TF)-target, miRNA-target, gene ontology,
and protein complex functional modules. The prediction error rates are measured for SNP sets from functional
module-based filtration that selects SNPs within functional modules from genome-wide SNPs based expanded
GSEA.

Results: A T2D causal SNP combination containing 101 SNPs from the Wellcome Trust Case Control Consortium
(WTCCC) GWAS dataset are selected using optimal filtration criteria, with an error rate of 10.25%. Matching 101
SNPs with known T2D genes and functional modules reveals the relationships between T2D and SNP
combinations. The prediction error rates of SNP sets from functional module-based filtration record no significance
compared to the prediction error rates of randomly selected SNP sets and T2D causal SNP combinations from
optimal filtration.

Conclusions: We propose a detection method for complex disease causal SNP combinations from an optimal SNP
dataset by using random forests with variable selection. Mapping the biological meanings of detected SNP
combinations can help uncover complex disease mechanisms.

Background
Detecting causal single nucleotide polymorphisms (SNPs)
from genome-wide association studies (GWASs) has
been focusing on measuring the statistical power of single
SNPs, which have a relatively small effect on predicting

disease susceptibility and ignore prior biological informa-
tion about the target disease. Especially in complex dis-
eases such as type 2 diabetes (T2D), the effect of each
single SNP is too small to explain the disease association
significantly.
To enhance the statistical power, we propose consider-

ing combinations of SNPs. Yang et al. discovered that esti-
mates of variance explained by genome-wide SNPs are
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unbiased with the proportion of SNPs used to estimate
genetic relationships in human height [1]. Although SNPs
with relatively low statistical power are considered
together, the statistical power is not significantly affected.
In addition, Park et al. compared the discriminatory power
of the risk models in Crohn’s disease and prostate and col-
orectal (BPC) cancer and found that a risk model with all
the predicted susceptibility loci has more discriminatory
power than a risk model with only the known susceptibil-
ity loci [2]. Therefore, combinations of SNPs with not only
significant SNPs that satisfy the genome-wide significance
threshold but also common SNPs that have larger p-values
than the genome-wide significance threshold may improve
the prediction power of disease risk.
To rank SNPs and find SNP combinations, various

methods are applied: Bayes factors [3], logistic regression
[4,5], Hidden Markov Model (HMM) [6], Support Vector
Machine (SVM), [7,8] and Random Forests (RF) [8-12].
Among the applied standard statistical methods and the
machine learning-based methods, RF effectively ranks cau-
sal SNPs to detect SNP interactions [13,14].
Basically, RF is known to have a relatively low risk of

overfitting compared to other machine learning algorithms
[15]. However, if the number of variables is excessively lar-
ger than the number of samples, overfitting could occur.
Furthermore, large datasets can increase the computa-
tional complexity greatly. Although Meanner et al. [9] and
Wang et al. [10] did not apply specific threshold criteria
for the GWAS dataset and applied 355,649 SNPs and
530,959 SNPs on RF analysis, respectively, previous causal
SNP studies applied various threshold criteria to reduce
the number of variables. Roshan et al. ranked T1D causal
SNPs using RF and SVM from the Wellcome Trust Case
Control Consortium (WTCCC) T1D dataset and the
Genetics of Kidneys in Diabetes (GoKinD) T1D dataset by
using Bonferroni thresholds [8]. Because of the computa-
tional capacity, Liu et al. selected the top 65,000 SNPs,
which corresponded to a p-value threshold of 0.13 for
SNP interaction screening, and selected 862 SNPs to ana-
lyze with RF [11]. To accommodate the computational
requirements of SNPInterForest, Yoshida et al. selected
the top 10,000 SNPs from a single SNP association analy-
sis [12]. The optimal filtration method is required to avoid
overfitting and to reduce the computational complexity.
From T2D GWA studies, approximately 40 causal indi-

vidual SNPs have been identified [16]. However, the herit-
ability of T2D is not yet fully understood and only about
10% of the T2D risk is explained by the causal SNPs that
have been detected so far [17]. In addition, the accuracy of
the T2D risk prediction with GWAS datasets from recent
studies was approximately around 0.55-0.63, which is
lower than that of other complex diseases such as T1D,
Crohn’s disease, rheumatoid arthritis, Alzheimer’s disease,
and multiple sclerosis [18]. The statistical simulation with

heritability indicated that the accuracy of the T2D risk
prediction can be improved to 0.8-0.9 if more common
SNPs are combined [17]. Therefore, finding the missing
heritability by combining common SNPs is essential to
discover the T2D mechanism and clinical applications.
To detect T2D causal SNP combinations, Ban et al.

tried to find SNP combinations from a dataset containing
408 SNPs in 462 T2D cases and 456 controls using SVM.
From p-values that were less than 0.6, a SNP combina-
tion with 14 SNPs was selected using a p-value-based fil-
tering method, and the prediction accuracy was 0.653 [7].
Ban et al. successfully suggested the possibility of T2D
causal SNP combinations, but the size of the dataset was
small and the accuracy was not significantly improved.
Recently, we presented T2D causal SNP combinations

from an optimal SNP dataset and find the biological
meaning of the detected causal SNP combination [19].
Our previous method was one of the first T2D SNP com-
bination-finding studies using RF with biological meaning
detection, even though RF has advantages for detecting
SNP combinations. To avoid overfitting and to reduce the
computational complexity, our previous method applies
linkage disequilibrium (LD) pruning and finds an optimal
SNP dataset by comparing the error rates of the selected
SNP combinations from Bonferroni thresholds and
p-value thresholds. In addition to our previous research,
we apply expanded GSEA on not only T2D causal SNP
combinations but also genome-wide SNPs to find the T2D
associated functional modules and we compare the predic-
tion error rates of T2D causal SNP combinations from an
optimal SNP dataset and from a functional module-based
filtration.

Methods
Linkage disequilibrium pruning based filtration
T2D association of single SNPs is analyzed by measuring
the statistical power of individual markers. The WTCCC
[3] GWAS dataset contains 500,567 SNP markers from
1,999 T2D cases and 3,004 controls. Quality control (QC)
is applied for single SNP association analysis. To identify
and remove poor quality samples, per-individual QC is
applied as a sample missing genotype rate of > 3%. To
identify and remove the poor quality SNPs, per-marker
QC is applied as a SNP missing genotype rate of > 1%,
minor allele frequency (MAF) < 1%, and Hardy-Weinberg
Equilibrium (HWE) p-value ≤ 10-4. After QC, 409,656
SNPs remained. For single SNP association analysis,
Cochran-Armitage trend test statistics is applied using
PLINK 1.07 (http://pngu.mgh.harvard.edu/purcell/plink/)
[20].
To reduce the number of variables, LD pruning is used

on 409,656 SNPs after the single SNP association analy-
sis. Reducing the number of variables has advantages for
reducing the computational complexity and avoiding the
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possibility of overfitting. In addition, to map SNP combi-
nations at the gene level and the functional module level,
LD pruning is an effective solution to avoid overestima-
tion of a specific gene or a functional module containing
multiple SNPs. The most significant SNP is selected
among the SNPs in LD with r2 > 0.8 within 1 Mb. After
LD pruning, 42,798 SNPs were selected for the SNP com-
bination analysis.

Finding SNP combinations from an optimal SNP dataset
To reduce the computational complexity, the proposed
method finds an effective threshold of the significance of
SNPs by comparing the error rates of the SNP combina-
tions from the Bonferroni threshold, the p-value rank-
based threshold and the p-value range-based threshold
criteria. Based on the Bonferroni threshold criteria, r is
defined as the number of SNPs within the corrected
p-value threshold that is determined as 0.05 divided by
the total number of SNPs. The Bonferroni thresholds r,
2r, 5r, and 10r are applied to select SNP datasets. Based
on the p-value rank-based threshold criteria, 500 SNP
sets that are generated from the SNPs of p-value ranks
1-500, which are calculated using a cumulative approach,
are fully tested to find the patterns of error rates.
Furthermore, the p-value range-based threshold criteria
are applied with p-value cutoffs of 0.01, 0.05 and 0.1 to
1.0 based on a cumulative approach. The error rates of
SNP combinations from the SNP datasets with various
threshold criteria are compared to find the optimal SNP
dataset.
The RF algorithm is a combinational classifier that con-

tains multiple classification trees to aggregate them into
one classifier. Each classification tree is generated from a
bootstrapped sample set, and the Gini index is measured
for splitting. RF is selected to find SNP combinations
because of its effective performance in ranking the causal
SNPs. In addition, RF can detect SNPs with small statisti-
cal power because separate models are automatically fit to
subsets of data from early splits in the tree [14]. To find
an SNP combination from a GWAS dataset, RF with a
variable selection algorithm is applied [21]. The R package
varSelRF can select very small sets of features such as
SNPs or genes that retain high predictive accuracy [22].
For the optimal parameter settings of varSelRF for find-

ing a SNP combination from the WTCCC T2D dataset,
various values are applied to mtryFactor (the multiplica-
tion factor to decide the number of variables for the split-
ting), ntree (the number of trees for the first forest),
ntreeIterat (the number of trees for all additional forests),
and vars.drop.frac (the drop fraction of variables at each
iteration). The error rates are not significantly affected by
ntree and ntreIterat when ntree is changed from 500 to
10,000 and ntreeIterat is changed from 200 to 4,000. How-
ever, the error rates decrease as the values of vars.drop.frac

decrease from 0.35 to 0.2, even though the computation
time is greatly increased. Furthermore, mtryFactor values
from 0 to 13 are tested, and the error rates are smaller than
0.12 for mtryFactor values between 0.75 and 2. Therefore,
the default values of arguments from varSelRF are accepted
for the SNP combination analysis: mtryFactor = 1, ntree =
5,000, ntreeIterat = 2,000, and vars.drop.frac = 0.2.

Mapping the biological meanings of SNP combinations
and functional module-based filtration
T2D genes are collected to find the biological meanings of
SNP combinations by using gene level mapping. T2D
genes are collected from public disease gene databases
such as OMIM [23], KEGG [24], and GAD [25]. From
DrugBank [26], KEGG Drug and PharmGKB Drug [27]
databases, 36 T2D drug targets were collected.
To discover the biological meaning and disease

mechanism of a SNP combination that consisted of SNPs
from diverse genes, an expanded gene set enrichment
analysis (GSEA) is applied to test the disease association
of functionally related genes [28]. Expanded GSEA can
help to find the biological processes and pathways of
underlying complex diseases.
Various functional modules are collected for a better

understanding of the biological functions of a SNP combi-
nation (Table 1). First, pathway functional modules are
collected from KEGG [24], KEGG Modules, BioCarta,
Reactome [29], NCI-Nature [30], PANTHER [31], Uni-
Pathway [32], and MetaCyc [33]. Moreover, transcription
factor (TF)-target functional modules and miRNA-target
functional modules from promoters and 3’-untranslated
region (UTR) motifs are collected from MSigDB [34]. To
collect protein complex functional modules, COFECO
[35], which contains data from Reactome, CORUM [36],
Gene Ontology (GO) [37] cellular component category,
PINdb [38], and Mpact [39] is selected. The GO biological
process category is also collected to find the biological
processes of selected SNPs. Compared with recently pub-
lished studies, the functional module data used in the pro-
posed method are increased in terms of both the number
of resources and the number of gene sets [28,40,41].
Whereas recent GSEAs used gene sets in the range of
200-1,000, primarily from KEGG, GO, MSigDB and Bio-
Carta, collected gene set data for the expanded GSEA con-
tained 3,663 functional modules from 11 resources.
Expanded GSEA applied Fishers Exact test using the col-
lected functional module data. Expanded GSEA is applied
on both whole WTCCC T2D dataset and detected SNP
combination to find the significantly T2D associated func-
tional modules and biological meaning of the SNP combi-
nation. Significantly T2D associated functional modules
from expanded GSEA are selected for functional module-
based filtration. Functional module-based filtration selects
SNPs within the same functional module and selected
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SNP sets are tested to measure the effect sizes of func-
tional modules.

Measurement of prediction error rates from random
forest analysis
We compare the prediction error rates of SNP combina-
tions and SNP sets from an optimal SNP dataset and from
a functional module-based filtration. To measure the pre-
diction error rates from RF, the R package varSelRF is
applied. The default argument values (mtryFactor = 1,
ntree = 5,000, ntreeIterat = 2,000, and vars.drop.frac = 0.2)
are accepted for analyzing the gene sets and SNP sets. In
addition to top T2D-associated gene sets, various SNP sets
are analyzed with RF to measure the significance of T2D-
associated gene sets.

Results
SNP combinations from an optimal SNP dataset
The detection of T2D causal SNP combinations consider-
ing common SNPs with low statistical power in single
SNP association analysis may perform better in disease
risk predictions because common SNPs can explain criti-
cal effects if they interact with other SNPs as a SNP com-
bination. An optimal SNP combination can be selected by
comparing the error rates from RF analysis with variable
selection. To avoid overfitting and to reduce the computa-
tional complexity, the proposed method detects an opti-
mal SNP dataset by comparing the error rates of SNP
combinations from Bonferroni thresholds and p-value
thresholds.

First, Bonferroni thresholds are applied to 42,798
SNPs selected from the WTCCC T2D GWAS dataset.
In Table 2, r is the number of SNPs within the Bonfer-
roni correction with p-values. While the T1D analysis
from Roshan et al. found that the Bonferroni threshold
of 2r improved the ranks of causal variants and achieved
higher power, T2D analysis from the proposed method
shows that 10r has higher power than r, 2r, and 5r. T2D
is known to be more complex disease than T1D, and
the disease risk prediction rates of T2D from previous
studies were lower than the disease risk prediction rates
of T1D. From the error rates of SNP combinations with
Bonferroni threshold-based cutoff criteria, we can infer
that T2D has more causal SNPs than previous studies,
which used 10-20 SNPs.
Figure 1 shows the changes in error rates of RF analysis

considering the top 500 ranked SNPs with or without vari-
able selection. The error rate without variable selection is
0.3392 for the top-ranked SNP, and it dramatically
decreases to 0.1171 with top 116 SNPs, which is almost
same as the error rate that was calculated with variable
selection with top 116 SNPs. However, the error rate with-
out variable selection increases when the number of con-
sidered SNPs is increased to more than 116 SNPs, while
the error rate with variable selection is stable. RF with
variable selection effectively selects T2D causal SNP com-
binations consisting of 1-161 SNPs (average 76.55 SNPs)
from 1-500 SNPs, and has low error rates. As shown in
Figure 1, the number of T2D causal SNPs for the T2D dis-
ease risk prediction could be more than that predicted by

Table 1 Databases used for enrichment analysis of expanded functional module.

Database Gene Set Category Web address

BioCarta Pathway http://www.biocarta.com/genes/index.asp

COFECO Complex http://piech.kaist.ac.kr/cofeco/

GO Function http://www.geneontology.org/

KEGG Pathway http://www.genome.jp/kegg/pathway.html

KEGG Modules Pathway http://www.genome.jp/kegg/module.html

MetaCyc Pathway http://metacyc.org/

MSigDB TF-target, miRNA-target http://www.broadinstitute.org/gsea/msigdb/index.jsp

NCI-Nature Pathway http://pid.nci.nih.gov/

PANTHER Pathway http://www.pantherdb.org/pathway/

Reactome Pathway http://www.reactome.org/

UniPathway Pathway http://www.grenoble.prabi.fr/obiwarehouse/unipathway

Table 2 Error rates of SNP combinations from GWAS dataset with Bonferroni threshold based cutoff criteria.

Bonferroni threshold Number of SNPs No. of SNPs in SNP combination Error rate

r 82 82 0.117553

2r 164 67 0.116953

5r 410 69 0.114954

10r 820 88 0.114154
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previous studies, which used 10-20 diabetes-related SNPs
[7,17]. The proposed method shows that SNP combina-
tions of more than 100 SNPs have lower error rates than
SNP combinations of the top 10-20 SNPs. Furthermore,
even though the error rates with variable selection seem
almost stable with 116 SNPs, the error rate is slightly
decreased when the number of considered SNPs is
increased. Therefore, we expanded the threshold criteria
to include p-values from 0.01 to 1.0.
As shown in Table 3, the error rates of a SNP combina-

tion is measured with p-value range-based cutoff criteria,
with p-value cutoffs of 0.01, 0.05, and 0.1-1.0. Although

p-value ranges smaller than 0.05 are usually accepted as a
standard cutoff, most of the error rates of SNP combina-
tions from p-value ranges larger than 0.05 were lower
than those from p-value ranges smaller than 0.05. From
Table 2 and Table 3, we can infer that if even a SNP was
without significant p-value from a single SNP association
analysis, the prediction power of a SNP combination
could be boosted by including a SNP with low statistical
power. Error rates tend to decrease from p-value ranges
less than 0.01 to p-value ranges less than 0.6 when more
SNPs with low statistical power are considered together.
The best error rate of SNP combinations was 0.102538

Figure 1 Error rates of RF analysis with/without variable selection.

Table 3 Error rates of SNP combinations from a GWAS dataset with p-value range-based cutoff criteria.

p-value range No. of SNPs in p-value range No. of selected SNPs in SNP combination Error rate

<0.01 854 114 0.116953

<0.05 2960 83 0.114754

<0.1 5297 95 0.115131

<0.2 9831 91 0.114731

<0.3 14192 104 0.102938

<0.4 18407 87 0.104937

<0.5 22612 134 0.106136

<0.6 26743 101 0.102538

<0.7 30797 59 0.109934

<0.8 34789 85 0.104138

<0.9 38815 60 0.113332

<1 42798 83 0.114731
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with 101 SNPs from the 26,743 SNPs that had a p-value
less than 0.6. Therefore, SNP combination with 101
SNPs from a p-value range less than 0.6 is selected for
the biological meaning mapping.
Figure 2 indicates the relationship between the p-values

and the variable importance values of 101 SNPs from RF
analysis. Although the p-values of SNPs from the SNP
combination are dramatically increased, the variable
importance values maintained their stability. From 101
SNPs in the SNP combination, 13 SNPs have a p-value
that is greater than 0.05. Although the p-values of 13
SNPs are much higher than those of other selected SNPs
in the SNP combination, the variable importance of the
13 SNPs calculated from RF analysis have similar value
to those of other SNPs; for most SNPs, lower p-values
results in higher importance values. In addition, com-
pared with SNPs that are not selected in the SNP combi-
nation, the selected SNPs have significant variable
importance values within a small range. The error rates
of SNP combinations tend to decrease when the p-value
range is increased (Table 3) because SNPs with high
p-values and high importance values may play important
roles through interactions with other SNPs and genes.

Biological meaning mappings of SNP combinations
The selected SNP combination from RF analysis contains
101 SNPs that can be mapped to 107 nearby genes (see
Additional file 1 for the Additional Table 1). To find the
biological meaning of the selected SNP combination, mul-
tiple levels of information are matched. SOS1 and FTO
are found to be T2D-related genes by matching with

collected disease genes. In addition, TFB1M is recently
revealed as a T2D-related gene with a common variant
that is associated with insulin secretion. [42]
From the collected 5,289 functional modules, 1,305

functional modules are selected with 101 SNPs from RF
analysis. Among the 1,305 functional modules, 87 func-
tional modules recorded a false discovery rate (FDR) less
than 0.05 with Fisher’s exact test. Table 4 shows the path-
way functional modules matched with 101 SNPs from the
SNP combination. The epidermal growth factor (EGF)
receptor (ErbB1) signaling pathway is known to affect
T2D by regulating pancreatic fibrosis [43]. The platelet-
derived growth factor (PDGF) signaling pathway, which
controls islet regeneration and proliferation, is inactivated
in T2D cases [44]. In addition, the Rho GTPase pathway is
activated in the T2D model and in cell lines with high
concentrations of glucose [45].
Table 5 demonstrates a part of the significant TF-target

functional modules and miRNA-target functional mod-
ules from the SNP combination. Among the TFs from
the significant TF-target functional modules, signal trans-
ducer and activator of transcription 4 (STAT4), androgen
receptor (AR), pre-B-cell leukemia transcription factor 1
(PBX1), and paired box 6 (PAX6) are matched with T2D-
related genes. In addition, signal transducer and activator
of transcription 5 (STAT5) activity in pancreatic b-cells
showed susceptibility to T2D [46]. Organic cation trans-
porter 1 (OCT1) is related to the hepatic uptake of met-
formin, which is one of the most used drugs for T2D,
and the genetic variation in the OCT1 gene can affect
individual drug response to metformin [47]. From GO

Figure 2 P-values and variable importance values of SNPs from the SNP combination.
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biological process category, angiogenesis is the most sig-
nificant functional module, with an FDR value of 3.15E-
02, and suppressed angiogenesis is one of the characteris-
tic features of T2D complication [48].

Expanded gene set enrichment analysis of WTCCC T2D
dataset
From the 42,798 SNPs filtered from the WTCCC T2D
GWAS dataset, 451 T2D-associated gene sets with a
p-value threshold of <0.05 are detected from the expanded

GSEA to match with the collected T2D-associated genes.
In all, 2,112 gene sets contains T2D-associated genes from
3,663 expanded gene sets. Surprisingly, 441 gene sets con-
tains T2D-associated genes from the detected 451 T2D-
associated gene sets from the expanded GSEA. Moreover,
the average number of T2D-associated genes from the
selected 441 gene sets with expanded GSEA is 11.188,
whereas the average number of T2D-associated genes from
selected 2,121 gene sets from total expanded gene sets is
6.554.

Table 4 Pathway functional modules from SNP combination.

Functional Module Name Category # of genes # of genes in functional module p-value FDR

Focal adhesion KEGG 6 175 3.144E-03 7.982E-03

Hemostasis Reactome 6 207 7.080E-03 1.091E-02

ErbB1 downstream signaling NCI-Nature 4 101 9.465E-03 1.662E-02

Endometrial cancer KEGG 3 48 7.073E-03 1.755E-02

Formation of Platelet plug Reactome 4 106 1.116E-02 1.840E-02

PDGF signaling pathway PANTHER 4 108 1.190E-02 2.053E-02

Viral myocarditis KEGG 3 54 9.792E-03 2.506E-02

BCR signaling pathway NCI-Nature 3 63 1.487E-02 2.703E-02

amine and polyamine degradation UniPathway 1 4 3.236E-02 3.236E-02

Rho GTPase cycle Reactome 3 73 2.196E-02 3.420E-02

Regulation of RAC1 activity NCI-Nature 2 26 1.900E-02 3.498E-02

Signaling by Rho GTPases Reactome 3 73 2.196E-02 3.633E-02

Thrombin-mediated activation of PARs Reactome 1 3 2.437E-02 3.841E-02

Fc epsilon RI signaling pathway KEGGM 3 63 1.487E-02 4.051E-02

EGF receptor (ErbB1) signaling pathway NCI-Nature 4 132 2.313E-02 4.096E-02

Table 5 TF-target functional modules and miRNA-target functional modules from SNP combinations.

Functional Module Name Category # of genes # of genes in functional module p-value FDR

TGACAGNY_V$MEIS1_01 TF-target 15 620 1.553E-04 1.901E-04

V$STAT4_01 TF-target 8 200 2.348E-04 2.786E-04

YTATTTTNR_V$MEF2_02 TF-target 13 545 5.034E-04 6.157E-04

V$CDP_02 TF-target 5 89 8.079E-04 9.780E-04

V$RORA1_01 TF-target 7 193 1.037E-03 1.249E-03

V$YY1_01 TF-target 7 195 1.101E-03 1.262E-03

TGCCAAR_V$NF1_Q6 TF-target 12 545 1.658E-03 1.731E-03

TTGTTT_V$FOXO4_01 TF-target 24 1549 1.435E-03 1.873E-03

V$OCT1_06 TF-target 7 218 2.086E-03 2.121E-03

V$NKX25_01 TF-target 5 102 1.491E-03 2.128E-03

V$CDC5_01 TF-target 7 217 2.032E-03 2.720E-03

V$AR_Q6 TF-target 6 178 3.419E-03 3.618E-03

V$POU6F1_01 TF-target 6 185 4.129E-03 4.403E-03

V$POU3F2_01 TF-target 4 83 4.764E-03 5.687E-03

V$STAT5A_03 TF-target 6 198 5.732E-03 5.794E-03

V$STAT6_02 TF-target 6 192 4.944E-03 5.855E-03

V$EVI1_03 TF-target 3 44 5.546E-03 7.165E-03

V$PBX1_01 TF-target 6 194 5.197E-03 7.461E-03

V$SRY_02 TF-target 6 196 5.460E-03 7.484E-03

V$AFP1_Q6 TF-target 6 204 6.607E-03 7.991E-03

ACTTTAT,MIR-142-5P miRNA-target 7 254 4.854E-03 9.791E-03
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The proposed expanded GSEA successfully selected
T2D-related gene sets with superior performance than
previous analyses regarding significance and coverage.
Table 6 displays all selected pathways from expanded
GSEA with a p-value < 0.05 in the WTCCC T2D data-
set. In total, 34 pathway functional modules were
selected with expanded GSEA, while 9 pathways were
selected from Perry et al.’s analysis with a p-value < 0.05
[49]. Compared with selected pathways by Perry et al.,
the WNT signaling pathway was the most significant
pathway gene set in both analyses. The WNT signaling
contains TCF7L2 which is significantly associated with
T2D in GWAS and may influence to T2D by affecting
GLP-1 levels [50,51]. Compared with functional modules
from SNP combination and functional modules from

genome-wide SNPs, focal adhesion, EGFR (ErbB1) sig-
naling pathway, and hemostasis functional modules are
enriched in both expanded GSEAs.

Measurement of prediction error rates from random
forest analysis
To measure the susceptibility of functional modules,
we measured prediction error rates of functional mod-
ules from RF analysis. Table 7 presents the RF-based
prediction error rates of SNP sets from functional
module-based filtration and SNP combinations with
various thresholds from the WTCCC T2D dataset.
From the 42,798 SNPs filtered from WTCCC T2D
GWAS dataset, 66 T2D-associated functional modules
with FDR < 0.05 were selected from the expanded

Table 6 Selected pathways from expanded GSEA with a p-value < 0.05 in the WTCCC T2D dataset

Database Pathway Size p-value FDR

PANTHER WNT signaling pathway 130 0.001 0.056

KEGG Calcium signaling pathway 105 0.002 0.073

KEGG Pathways in cancer 193 0.002 0.081

KEGG Focal adhesion 132 0.004 0.090

KEGG Neuroactive ligand-receptor interaction 127 0.01 0.153

KEGG MAPK signaling pathway 146 0.012 0.168

KEGG Cell adhesion molecules (CAMs) 61 0.016 0.208

NCI-Nature Regulation of RhoA activity 73 0.03 0.287

PANTHER Huntington disease 58 0.03 0.277

Reactome Signalling by NGF 107 0.03 0.359

KEGG Non-small cell lung cancer 38 0.031 0.303

KEGG Natural killer cell mediated cytotoxicity 56 0.035 0.232

PANTHER Muscarinic acetylcholine receptor 1 and 3 signaling pathway 30 0.035 0.325

Reactome Integrin cell surface interactions 57 0.036 0.330

KEGG Axon guidance 74 0.036 0.419

Reactome Cell Cycle, Mitotic 120 0.039 0.254

NCI-Nature Notch signaling pathway 49 0.04 0.259

NCI-Nature Signaling events mediated by focal adhesion kinase 42 0.041 0.260

NCI-Nature EGF receptor (ErbB1) signaling pathway 94 0.043 0.379

Reactome Gene Expression 146 0.043 0.379

KEGG ErbB signaling pathway 55 0.043 0.379

NCI-Nature Neurotrophic factor-mediated Trk receptor signaling 67 0.044 0.384

PANTHER Beta1 adrenergic receptor signaling pathway 24 0.044 0.379

NCI-Nature Hypoxic and oxygen homeostasis regulation of HIF-1-alpha 46 0.044 0.274

PANTHER Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway 68 0.045 0.492

KEGG Cytokine-cytokine receptor interaction 105 0.046 0.393

Reactome Signaling in Immune system 118 0.046 0.399

Reactome G-protein mediated events 27 0.047 0.346

NCI-Nature Thromboxane A2 receptor signaling 40 0.047 0.346

PANTHER FGF signaling pathway 60 0.048 0.403

KEGG Adherens junction 52 0.048 0.406

KEGG Leukocyte transendothelial migration 62 0.049 0.356

Reactome Integration of energy metabolism 79 0.049 0.363

Reactome Hemostasis 145 0.049 0.526
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GSEA and all 66 T2D-associated functional modules
were analyzed with RF. Among these 66 functional
modules, the lowest error rate was 32.12%, and the aver-
age prediction error rate from 66 functional modules
was 36.98%. For the comparison, the average prediction
error rate of 66 SNP sets consisting of randomly
selected 1615 SNPs was measured as 36.57%, which
contained nearly identical numbers as the average num-
ber of SNPs in 66 functional modules. Compared to ran-
domly selected SNP sets, functional modules showed no
significance on T2D.
Various p-value based SNP sets were also applied as

references. The prediction error rate of top 1 SNPs of
p-value rank was 33.93%, and the prediction error rate of
top 10 SNPs was 27.19%, which are relatively lower than
the functional module based prediction error rates when
considering 1500-2000 SNPs. On the basis of the Bonfer-
roni threshold criteria, a SNP set with top 82 SNPs within
the Bonferroni correction with p-values was selected, and
the prediction error rate was 11.76%. The prediction error
rate of a SNP set which was measured with a p-value cut-
off of 0.1 was 11.70% and the prediction error rate of a
SNP set with whole 42798 SNPs was 11.47%. Compared
with various p-value-based SNP sets, no specific functional
module (pathway, GO function, TF-target, miRNA-target,
and protein complex) could significantly explain the T2D
association alone.
To enhance the predictive power, the combination of

top 5 functional modules and top 66 functional modules
was applied. However, the prediction error rates were
slightly reduced, although the number of considered SNPs
was dramatically increased.

Discussion
Various thresholds, including Bonferroni correction
thresholds and p-value-based thresholds, are tested to find
the optimal threshold with considering SNPs with low sta-
tistical power. SNP combinations that contain SNPs with
low statistical power had lower error rates than SNP com-
binations with only significant SNPs. With the considera-
tion of common SNPs with low statistical power, the
disease risk prediction rate can be improved, especially for
complex diseases.
Notable disease genes could be found from SNP combi-

nations. From the selected SNP combination, there are
still many genes that are not yet identified as a T2D-
related disease gene. SNP combinations have high statisti-
cal power. In addition, the activation or inhibition of a
T2D-related pathway could prevent and cure T2D and
T2D complications. For example, the Rho GTPase path-
way inhibitor can prevent T2D development [43].
No specific functional modules from the T2D-asso-

ciated gene sets shows significance in T2D development
from the RF-based prediction error rates. From the
results of the measurement of prediction error rates
from RF analysis, we can infer that significant T2D
SNPs and genes with high importance are widespread in
the genome and are not concentrated in a specific func-
tional module. The expansion of functional modules
with protein-protein interaction network may increase
the susceptibility of T2D.

Conclusions
To overcome the low statistical power of single SNPs,
considering multiple SNPs together becomes a solution

Table 7 RF-based prediction error rates of SNP sets from functional module-based filtration and SNP combinations
with various thresholds from the WTCCC T2D dataset.

Dataset Functional Module Description Number of
SNPs

Error
Rate

Number of
Selected SNPs

Error Rate with Variable
Selection

MIR CACTGCC,MIR-34A, MIR-34C,MIR-449 1876 39.02% 6 32.12%

TF V$NKX25_02 1678 38.56% 59 33.06%

MIR ACTTTAT,MIR-142-5P 1572 38.32% 35 33.42%

Average Average of results from 66 functional modules 1614.86 39.18% 32.24 36.98%

Random
Average

Average of results from 66 SNP sets consisting of
randomly selected 1615 SNPs

1615 38.77% 113.17 36.57%

Combination Top 5 functional modules 7590 38.96% 36 32.78%

Combination Top 66 functional modules 25663 38.66% 62 17.43%

p-value
based

Top 1 SNP 1 33.93% 1 33.93%

p-value
based

Top 10 SNPs 10 27.19% 10 27.19%

p-value
based

SNPs with Bonferroni threshold 82 11.76% 82 11.76%

p-value
based

SNPs with p-value < 0.01 854 14.79% 114 11.70%

p-value
based

All SNPs 42798 37.02% 83 11.47%

Kang et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 1):S3
http://www.biomedcentral.com/1472-6947/13/S1/S3

Page 9 of 11



for analyzing complex diseases. A T2D causal SNP com-
bination is detected using RF with variable selection from
an optimal SNP dataset filtered with a p-value threshold
and LD pruning. From the WTCCC T2D GWAS dataset,
101 SNPs are selected with a SNP combination. Not only
significant SNPs but also common SNPs with low statisti-
cal power are combined as a SNP combination. Mapping
the SNP combination at the SNP, gene, and functional
module levels gives clues to the relationship with T2D.
Functional module-based filtration is also tested using
T2D associated functional modules from genome-wide
SNPs and the results showed no significance compared
to randomly selected SNP sets. The proposed method
can detect a SNP combination with considering SNPs
with low statistical power. Additionally this method can
reveal the biological meaning of the detected SNP combi-
nation by mapping functional modules and mapping the
T2D-related information at multiple levels including dis-
ease genes.

Additional material

Additional file 1: Selected SNPs from the type 2 diabetes causal
SNP combination

Authors’ contributions
CK designed and implemented the proposed method and wrote the
manuscript. HY participated in the implementation of the proposed method.
GSY designed and directed this study, and reviewed the manuscript. All
authors worked on and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This research was supported by the Bio & Medical Technology Development
Program of the National Research Foundation (NRF) grant No.
2012M3A9C4048759, the Basic Science Research Program through the NRF
grant 2012R1A1A2008510, and the NRF grant No. 2012-0001001 funded by
the Ministry of Education, Science and Technology (MEST) of Korean
government.
This work is based on an earlier work: “Detecting type 2 diabetes causal
single nucleotide polymorphism combinations from a genome-wide
association study dataset with optimal filtration”, in Proceedings of the ACM
Sixth International Workshop on Data and Text Mining in Biomedical
Informatics, 2012 © ACM, 2012. http://doi.acm.org/10.1145/2390068.2390070

Declarations
The publication costs for this article were partially funded by the Basic
Science Research Program through the National Research Foundation of
Korea (NRF) grant 2012R1A1A2008510 and the NRF grant No. 2012-0001001
funded by the Ministry of Education, Science and Technology (MEST) of
Korean government.
This article has been published as part of BMC Medical Informatics and
Decision Making Volume 13 Supplement 1, 2013: Proceedings of the ACM
Sixth International Workshop on Data and Text Mining in Biomedical
Informatics (DTMBio 2012). The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcmedinformdecismak/
supplements/13/S1.

Published: 5 April 2013

References
1. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR,

Madden PA, Heath AC, Martin NG, Montgomery GW, et al: Common SNPs
explain a large proportion of the heritability for human height. Nature
genetics 2010, 42(7):565-569.

2. Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ,
Chatterjee N: Estimation of effect size distribution from genome-wide
association studies and implications for future discoveries. Nature
genetics 2010, 42(7):570-575.

3. WTCCC Consortium: Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared controls. Nature 2007,
447(7145):661-678.

4. Wu TT, Chen YF, Hastie T, Sobel E, Lange K: Genome-wide association
analysis by lasso penalized logistic regression. Bioinformatics 2009,
25(6):714-721.

5. Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ: Simultaneous Analysis of
All SNPs in Genome-Wide and Re-Sequencing Association Studies. PLoS
Genet 2008, 4(7):e1000130.

6. Wei Z, Sun W, Wang K, Hakonarson H: Multiple testing in genome-wide
association studies via hidden Markov models. Bioinformatics 2009,
25(21):2802-2808.

7. Ban HJ, Heo JY, Oh KS, Park KJ: Identification of type 2 diabetes-
associated combination of SNPs using support vector machine. BMC
genetics 2010, 11:26.

8. Roshan U, Chikkagoudar S, Wei Z, Wang K, Hakonarson H: Ranking causal
variants and associated regions in genome-wide association studies by
the support vector machine and random forest. Nucleic acids research
2011, 39(9):e62.

9. Maenner MJ, Denlinger LC, Langton A, Meyers KJ, Engelman CD,
Skinner HG: Detecting gene-by-smoking interactions in a genome-wide
association study of early-onset coronary heart disease using random
forests. BMC Proceedings 2009, 3(Suppl 7):S88.

10. Wang M, Chen X, Zhang M, Zhu W, Cho K, Zhang H: Detecting significant
single-nucleotide polymorphisms in a rheumatoid arthritis study using
random forests. BMC Proceedings 2009, 3(Suppl 7):S69.

11. Liu C, Ackerman HH, Carulli JP: A genome-wide screen of gene-gene
interactions for rheumatoid arthritis susceptibility. Human genetics 2011,
129(5):473-485.

12. Yoshida M, Koike A: SNPInterForest: a new method for detecting epistatic
interactions. BMC bioinformatics 2011, 12:469.

13. Molinaro AM, Carriero N, Bjornson R, Hartge P, Rothman N, Chatterjee N:
Power of Data Mining Methods to Detect Genetic Associations and
Interactions. Human Heredity 2011, 72(2):85-97.

14. Lunetta K, Hayward LB, Segal J, Van Eerdewegh P: Screening large-scale
association study data: exploiting interactions using random forests.
BMC genetics 2004, 5(1):32.

15. Breiman L: Random Forests. 2001, , 1: 5-32.
16. Imamura M, Maeda S: Genetics of type 2 diabetes: the GWAS era and

future perspectives. Endocrine journal 2011, 58(9):723-739.
17. Herder C, Roden M: Genetics of type 2 diabetes: pathophysiologic and

clinical relevance. European journal of clinical investigation 2011,
41(6):679-692.

18. Jostins L, Barrett JC: Genetic risk prediction in complex disease. Human
molecular genetics 2011, 20(R2):R182-188.

19. Kang C, Yu H, Yi G-S: Detecting type 2 diabetes causal single nucleotide
polymorphism combinations from a genome-wide association study
dataset with optimal filtration. Proceedings of the ACM Sixth International
Workshop on Data and Text Mining in Biomedical Informatics New York:
ACM; 2012, 1-8.

20. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, et al: PLINK: a tool set for whole-genome
association and population-based linkage analyses. American journal of
human genetics 2007, 81(3):559-575.

21. Diaz-Uriarte R, Alvarez de Andres S: Gene selection and classification of
microarray data using random forest. BMC bioinformatics 2006, 7:3.

22. Liu Q, Sung A, Chen Z, Liu J, Chen L, Qiao M, Wang Z, Huang X, Deng Y:
Gene selection and classification for cancer microarray data based on
machine learning and similarity measures. BMC Genomics 2011,
12(Suppl 5):S1.

23. Oyston J: Online Mendelian Inheritance in Man. Anesthesiology 1998,
89(3):811-812.

Kang et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 1):S3
http://www.biomedcentral.com/1472-6947/13/S1/S3

Page 10 of 11

http://www.biomedcentral.com/content/supplementary/1472-6947-13-S1-S3-S1.PDF
http://doi.acm.org/10.1145/2390068.2390070
http://www.biomedcentral.com/bmcmedinformdecismak/supplements/13/S1
http://www.biomedcentral.com/bmcmedinformdecismak/supplements/13/S1
http://www.ncbi.nlm.nih.gov/pubmed/20562875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17554300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17554300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18654633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18654633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19654115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19654115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20416077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20416077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21317188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21317188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21317188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21210282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21210282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22151604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22151604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21934324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21934324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15588316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15588316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21778616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21778616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21198561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21198561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21873261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17701901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17701901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16398926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16398926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22369383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22369383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9743436?dopt=Abstract


24. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
Nucleic acids research 2000, 28(1):27-30.

25. Bezcker KG, Barnes KC, Bright TJ, Wang SA: The genetic association
database. Nature genetics 2004, 36(5):431-432.

26. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C,
Neveu V, et al: DrugBank 3.0: a comprehensive resource for ‘omics’
research on drugs. Nucleic acids research 2011, 39(Database):D1035-1041.

27. Hewett M, Oliver DE, Rubin DL, Easton KL, Stuart JM, Altman RB, Klein TE:
PharmGKB: the Pharmacogenetics Knowledge Base. Nucleic acids research
2002, 30(1):163-165.

28. Wang L, Jia P, Wolfinger RD, Chen X, Zhao Z: Gene set analysis of
genome-wide association studies: methodological issues and
perspectives. Genomics 2011, 98(1):1-8.

29. Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B,
Gillespie M, Jassal B, Lewis S, Matthews L, et al: Reactome: a knowledge
base of biologic pathways and processes. Genome biology 2007, 8(3):R39.

30. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH:
PID: the Pathway Interaction Database. Nucleic acids research 2009,
37(Database):D674-679.

31. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N,
Muruganujan A, Doremieux O, Campbell MJ, et al: The PANTHER database
of protein families, subfamilies, functions and pathways. Nucleic acids
research 2005, 33(Database):D284-288.

32. Morgat A, Coissac E, Coudert E, Axelsen KB, Keller G, Bairoch A, Bridge A,
Bougueleret L, Xenarios I, Viari A: UniPathway: a resource for the
exploration and annotation of metabolic pathways. Nucleic acids research
2012, 40(Database):D761-769.

33. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P,
Karthikeyan AS, Kothari A, Krummenacker M, et al: The MetaCyc database
of metabolic pathways and enzymes and the BioCyc collection of
pathway/genome databases. Nucleic acids research 2010, 38(Database):
D473-479.

34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al: Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences of the
United States of America 2005, 102(43):15545-15550.

35. Sun CH, Kim MS, Han Y, Yi GS: COFECO: composite function annotation
enriched by protein complex data. Nucleic acids research 2009, 37(Web
Server):W350-355.

36. Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C,
Stransky M, Waegele B, Schmidt T, Doudieu ON, Stumpflen V, et al: CORUM:
the comprehensive resource of mammalian protein complexes. Nucleic
acids research 2008, 36(Database):D646-650.

37. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nature genetics
2000, 25(1):25-29.

38. Luc PV, Tempst P: PINdb: a database of nuclear protein complexes from
human and yeast. Bioinformatics 2004, 20(9):1413-1415.

39. Guldener U, Munsterkotter M, Oesterheld M, Pagel P, Ruepp A, Mewes HW,
Stumpflen V: MPact: the MIPS protein interaction resource on yeast.
Nucleic acids research 2006, 34(Database):D436-441.

40. Weng L, Macciardi F, Subramanian A, Guffanti G, Potkin SG, Yu Z, Xie X:
SNP-based pathway enrichment analysis for genome-wide association
studies. BMC bioinformatics 2011, 12:99.

41. Zhao J, Gupta S, Seielstad M, Liu J, Thalamuthu A: Pathway-based analysis
using reduced gene subsets in genome-wide association studies. BMC
bioinformatics 2011, 12:17.

42. Koeck T, Olsson AH, Nitert MD, Sharoyko VV, Ladenvall C, Kotova O,
Reiling E, Ronn T, Parikh H, Taneera J, et al: A common variant in TFB1M is
associated with reduced insulin secretion and increased future risk of
type 2 diabetes. Cell metabolism 2011, 13(1):80-91.

43. Blaine SA, Ray KC, Branch KM, Robinson PS, Whitehead RH, Means AL:
Epidermal growth factor receptor regulates pancreatic fibrosis. American
journal of physiology Gastrointestinal and liver physiology 2009, 297(3):
G434-441.

44. Nyblom HK, Bugliani M, Fung E, Boggi U, Zubarev R, Marchetti P,
Bergsten P: Apoptotic, regenerative, and immune-related signaling in
human islets from type 2 diabetes individuals. Journal of proteome
research 2009, 8(12):5650-5656.

45. Zhou H, Li Y: Long-term diabetic complications may be ameliorated by
targeting Rho kinase. Diabetes/metabolism research and reviews 2011,
27(4):318-330.

46. Jackerott M, Moldrup A, Thams P, Galsgaard ED, Knudsen J, Lee YC,
Nielsen JH: STAT5 activity in pancreatic beta-cells influences the severity
of diabetes in animal models of type 1 and 2 diabetes. Diabetes 2006,
55(10):2705-2712.

47. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA,
Ianculescu AG, Yue L, Lo JC, Burchard EG, et al: Effect of genetic variation
in the organic cation transporter 1 (OCT1) on metformin action. The
Journal of clinical investigation 2007, 117(5):1422-1431.

48. Al-Mulla F, Leibovich SJ, Francis IM, Bitar MS: Impaired TGF-beta signaling
and a defect in resolution of inflammation contribute to delayed wound
healing in a female rat model of type 2 diabetes. Molecular bioSystems
2011, 7(11):3006-3020.

49. Perry JR, McCarthy MI, Hattersley AT, Zeggini E, Weedon MN, Frayling TM:
Interrogating type 2 diabetes genome-wide association data using a
biological pathway-based approach. Diabetes 2009, 58(6):1463-1467.

50. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A,
Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, et al: Variant
of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2
diabetes. Nature genetics 2006, 38(3):320-323.

51. Saxena R, Elbers CC, Guo Y, Peter I, Gaunt TR, Mega JL, Lanktree MB, Tare A,
Castillo BA, Li YR, et al: Large-scale gene-centric meta-analysis across 39
studies identifies type 2 diabetes loci. American journal of human genetics
2012, 90(3):410-425.

doi:10.1186/1472-6947-13-S1-S3
Cite this article as: Kang et al.: Finding type 2 diabetes causal single
nucleotide polymorphism combinations and functional modules from
genome-wide association data. BMC Medical Informatics and Decision
Making 2013 13(Suppl 1):S3.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Kang et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 1):S3
http://www.biomedcentral.com/1472-6947/13/S1/S3

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15118671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15118671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21059682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21059682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21565265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21565265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21565265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18832364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22102589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22102589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19850718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19850718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19850718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17965090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17965090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15087322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15087322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21496265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21496265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21226955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21226955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21195351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21195351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21195351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19608732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19852514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19852514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21309060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21309060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17003334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17003334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17476361?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17476361?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21850315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21850315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21850315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19252133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19252133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16415884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16415884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16415884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22325160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22325160?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Linkage disequilibrium pruning based filtration
	Finding SNP combinations from an optimal SNP dataset
	Mapping the biological meanings of SNP combinations and functional module-based filtration
	Measurement of prediction error rates from random forest analysis

	Results
	SNP combinations from an optimal SNP dataset
	Biological meaning mappings of SNP combinations
	Expanded gene set enrichment analysis of WTCCC T2D dataset
	Measurement of prediction error rates from random forest analysis

	Discussion
	Conclusions
	Authors' contributions
	Competing interests
	Acknowledgements
	Declarations
	References

