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Abstract

Background: The present study aimed to develop an artificial neural network (ANN) based prediction model for
cardiovascular autonomic (CA) dysfunction in the general population.

Methods: We analyzed a previous dataset based on a population sample consisted of 2,092 individuals aged
30–80 years. The prediction models were derived from an exploratory set using ANN analysis. Performances of
these prediction models were evaluated in the validation set.

Results: Univariate analysis indicated that 14 risk factors showed statistically significant association with CA
dysfunction (P < 0.05). The mean area under the receiver-operating curve was 0.762 (95% CI 0.732–0.793) for
prediction model developed using ANN analysis. The mean sensitivity, specificity, positive and negative predictive
values were similar in the prediction models was 0.751, 0.665, 0.330 and 0.924, respectively. All HL statistics were
less than 15.0.

Conclusion: ANN is an effective tool for developing prediction models with high value for predicting CA
dysfunction among the general population.
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Background
The prevalence of cardiovascular autonomic (CA) dys-
function is increasing worldwide, particularly in develop-
ing countries. The disease is not only a major factor in
the cardiovascular complications of diabetes mellitus
(DM) [1], but it also affects many other major segments
of the general population, such as the elderly and pa-
tients with hypertension (PH), metabolic syndrome
(MetS), and connective tissue disorders [2-4]. CA dys-
function has become a major health concern in China
following rapid changes in lifestyle. The prevalence of
CA dysfunction in diabetic patients was found to be
30–60% [1]. CA function testing using HRV is sensitive,
noninvasive, and reproducible; therefore, it is easily ap-
plicable for screening a large number of individuals in
the general population [5].
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In clinical medicine, a prediction model refers to the
type of medical research study using which researchers
try to identify the best combination of medical signs,
symptoms, and other findings that may be used to pre-
dict the probability of a specific disease or outcome [6].
These models may aid the clinician in the decision-mak-
ing process regarding clinical admission, early preven-
tion, early clinical diagnosis, and application of clinical
therapies. An artificial neural network (ANN) refers to
a mathematical model inspired by biological neural net-
works [7]. ANNs employ nonlinear mathematical models
to mimic the human brain’s own problem-solving process,
by using previously solved examples to build a system
of “neurons” that makes new decisions, classifications,
and forecasts [8]. According to learning paradigms, each
corresponding to a particular abstract learning task, these
are supervised learning, unsupervised learning and
reinforcement learning. ANN is often applied to model
complex relationships between inputs and outputs or
to find patterns in data. In clinical medicine, ANN
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models have been applied in the diagnosis of diseases
such as myocardial infarction [9]. ANN models have
also been successfully used to predict trauma mortality
and in clinical decision-making in the management of
traumatic brain injury patients [10,11]. A previous study
developed ANN models to be used in the prediction of
living setting after hip fracture [12]. However, no studies
in literature have used ANN for modeling of CA dys-
function prevalence in the general population. The aim
of this study was to develop a prediction model for CA
dysfunction using ANN analysis.
Methods
Study population
The study protocol was approved by the Ethics Commit-
tee of Huashan Hospital, Shanghai, China. We analyzed
a previously constructed database of a CA dysfunction
survey carried out in a random sample of middle-aged
Chinese individuals. Participants were recruited from
three communities in Shanghai, China, primarily from
the Baoshan District area. Participants with undiagnosed
CA dysfunction, aged 30–80 years, were included in this
study. A total of 3,012 subjects were invited to a screen-
ing visit between 2011 and 2012. Subjects with potential
confounding factors that may influence cardiac auto-
nomic function were excluded from the study. A total of
2,092 (69.46%) participants with complete baseline data
were obtained. Written consent forms were obtained
from all the patients before the start of the study.
The subjects were interviewed to document their

medical histories and medication, history of smoking
habits, laboratory assessment of cardiovascular disease
risk factors, and standardized examination for HRV. All
study subjects underwent a complete CAF evaluation
after fasting for eight hours. The evaluation included:
(a) history and physical examination, (b) heart rate and
blood pressure, (c) fasting serum glucose and insulin,
and (d) fasting plasma lipids. The body mass index was
calculated as the weight in kilograms divided by the
square of the height in meters. Fasting plasma glucose
(FPG) was quantified by the glucose oxidase procedure,
and HbA1c was measured by ion-exchange high-
performance liquid chromatography (HPLC; Bio-Rad,
Hercules, CA, USA). The serum total cholesterol (TC),
high-density lipoprotein (HDL) cholesterol, triglyceride
(TG) levels, creatinine (Cr), and uric acid (UA) levels
were measured enzymatically with a chemical analyzer
(Hitachi 7600–020, Tokyo, Japan). Systolic and diastolic
blood pressure (BP) values were the means of two mea-
surements obtained by the physician on the left arm of
the seated participant. The day-to-day and inter-assay
coefficients of variation at the central laboratory in our
hospital for all analyses were between 1% and 3%.
Short-term HRV test was applied to evaluate CA func-
tion. HRV was measured non-invasively by power spec-
tral analysis. Subjects were studied while awake and in
the supine position after 20 minutes of rest. Testing
times were from 8:00 AM to 11:00 AM, and 1:30 PM to
4:30 PM. A type-I FDP-1 HRV BRS non-invasive detec-
tion system was used (version 2.0; Department of Bio-
medical Engineering, Fudan University, Shanghai, China).
Electrocardiography and respiratory signals and beat-to-
beat blood pressure were continually and simultaneously
recorded for 15 minutes by using an electrosphygmograph
transducer (HMX-3C) placed on the radial artery of the
dominant arm and an instrument respiration sensor.
Short-term HRV analysis was performed for all the sub-
jects using a computer-aided examination and evalu-
ation system for spectral analysis to investigate changes
in autonomic regulation.

Definition
PH was defined as blood pressure ≥140/90 mmHg or
history of anti-hypertensive medication. BMI was classi-
fied on the basis of Chinese criteria: normal, <24.0 kg/
m2; overweight, ≥24.0 kg/m2 <28.0 kg/m2; obese, BMI ≤
28.0 kg/m2. Fasting plasma glucose (FPG) levels ≥ 5.6
mmol/L were considered high. Central obesity was de-
fined using ethnicity-specific values: waist circumference
(WC) ≥90 cm in men or ≥80 cm in women [13]. Serum
triglyceride (TG) levels ≥1.7 mmol/L were considered
high. Serum high-density lipoprotein-cholesterol (HDL-C)
levels <0.9 mmol/L in men or <1.0 mmol/ L in women
were considered low. Diabetes was diagnosed by the oral
glucose tolerance test (OGTT) and determined by either
HbAlc ≥ 6.5% or the use of insulin or hypoglycemic medi-
cations. Individuals meeting three or more of the updated
National Cholesterol Education Program/Adult Treatment
Panel III criteria (WHO Western Pacific Region obesity
criteria) were diagnosed as having MetS [13]. CAN was
diagnosed on the basis of at least two abnormal cardio-
vascular autonomic reflex test results [1].

Statistical analysis
The Kolmogorov-Smirnov test was used to determine
whether continuous variables followed a normal dis-
tribution. Variables that were not normally distributed
were log-transformed to approximate normal distribu-
tion for analysis. The results are expressed as means ±
standard deviation or medians, unless otherwise stated.
The subject characteristics according to MetS severity
scores were assessed using one-way analysis of variance
(ANOVA) for continuous variables and the χ2 test for
categorical variables. Potential CA dysfunction risk fac-
tors, which are known clinically and in literature to be
associated with CA dysfunction, were selected for the
evaluation. These factors included age, gender, BMI,
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WC, current smokers (yes/no), resting HR, diabetes, hy-
pertension, blood glucose profile, lipid profile, and renal
profile. Univariate analyses were performed to estimate
the significant predictors of CA dysfunction.

Artificial neural network models
A computerized random number generator was used to
select three-fourths of the patients to make up the ex-
ploratory set to develop prediction models. The remaining
one-fourth of the patients comprised the validation set.
The exploratory and validation sets were similar for all
developed models.
The ANN applied in this study was a standard feed-

forward, back-propagation neural network with three
layers consisted of an input layer, a hidden layer, and an
output layer. The input layer contained 14 input neurons,
the hidden layer contained 18 neurons, and the output
layer contained 1 output neuron (Figure 1). The number
of hidden layer neurons was determined through trial
and error, since no accepted theory currently exists for
predetermining the optimal number of hidden layer
neurons [14]. The number of hidden layer neurons was
selected to lead to a predictive network with the best
sensitivity and specificity. During the training, the lear-
ning rate and momentum for network training were set
to 0.20 and 0.9, respectively. To obtain the connection
weights, the network first underwent a training process
Figure 1 Artificial network model showing input variables
(nodes), hidden nodes, and connection weights with output
node for data on CA dysfunction. The ANN model including 14
input nodes, 18 hidden nodes and 1 output node. BMI- Body
mass index, WC-waist circumference, SBP- systolic blood pressure,
DBP- diastolic blood pressure, FPG- fasting plasma glucose, PBG- plasma
blood glucose, IR-insulin resistance, TG- triglyceride, UA- uric acid,
HR-heart rate, PH- Hypertension, DM- Diabetes, PHD- Hypertension
duration, DMD- Diabetes duration.
using the back-propagation of error method, which em-
ploys the generalized delta learning rule. This is an it-
erative process by which input derivation sets are used
to the ANN, and outputs are calculated. The output is
then compared to the desired output, and the connection
weights are adjusted based on the error in output. A valid-
ation dataset was developed to avoid an over-fitting ANN
model. In general, one-fourth of the patients were ran-
domly selected from the exploratory set. The training
was run until a minimum average square error (MSE)
of <0.001 or an increasing MSE was found in the valid-
ation dataset.
A developed prediction model generated the proba-

bility value for CA dysfunction from output node. The
probability value was calculated for each participant.
The performance of the prediction model developed in
this study was evaluated in the validation set.

Model evaluation
Discrimination and calibration were both measured. Dis-
crimination refers to the ability of a model to distinguish
between individuals with and without CA dysfunction.
The discriminatory power of the models was analyzed
using a receiver-operating characteristic (ROC) curve
and area under the curve (AUC). ROC curves were
constructed by plotting true positives versus the false
positive fraction. Sensitivity (the probability of a positive
test given the individual has the disease), specificity (the
probability of a negative test given the individual does
not have the disease), positive predictive value (the prob-
ability of having the disease given a positive test), and
the negative predictive value (the probability of not hav-
ing the disease given a negative test) were calculated for
each cutoff score. The cutoff score that gave the max-
imum sum of sensitivity and specificity was considered
optimum [15]. Calibration refers to how accurately the
models predicted over the entire range. The calibration
of models was computed using the Hosmer-Lemeshow
(HL) test, which is a single summary measure of the
calibration and is based on comparing the observed and
estimated prevalence of disease grouped by estimated
prevalence [16]. The HL statistic follows a χ2 distribu-
tion, with degrees of freedom equal to two less than the
number of groups. The overall accuracy (ratio of sum-
mary of the number of true positive and true negative
results to the total sample size) of the prediction model
was calculated by comparing the predicted values with
the actual events.
All parameters of discrimination were evaluated in the

five validation sets. The mean the AUC, sensitivity, spe-
cificity, and predictive values were calculated and com-
pared using paired t tests (P < 0.05). Odds ratios (OR)
with 95% confidence intervals (CI) were calculated for
the relative risk of predictors with outcome. Results were



Table 1 Subject characteristics

Variables Entire sample Individuals with
CA dysfunction

Individuals
without CA
dysfunction

P
value*

N 2092 387 1705

Age 60.42 ± 8.68 62.94 ± 8.43 59.85 ± 8.64 <0.001

Gender
male,%

705 (33.7%) 143 (36.95%) 562 (32.96%) 0.134

Height cm 161.46 ± 7.79 161.45 ± 7.83 161.46 ± 7.78 0.987

Weight kg 63.26 ± 10.61 64.85 ± 11.09 62.9 ± 10.47 0.001

BMI kg/m2 24.21 ± 3.36 24.84 ± 3.69 24.07 ± 3.26 <0.001

WC cm 85.07 ± 9.70 87.68 ± 9.93 84.48 ± 9.54 <0.001

SBP mmHg 127.62 ± 18.68 132.95 ± 20.02 126.41 ± 18.14 <0.001

DBP mmHg 79.83 ± 9.69 81.28 ± 9.93 79.50 ± 9.61 0.001

Laboratory assays

FPGmmol/L 5.53 ± 1.81 6.12 ± 2.53 5.4 ± 1.57 <0.001

PBGmmol/L 7.67 ± 3.56 9.03 ± 4.53 7.36 ± 3.22 <0.001

FINS IU/L 7.19 ± 11.82 9.17 ± 21.66 6.74 ± 8.01 <0.001

TC mmol/L 5.32 ± 1 5.39 ± 1.05 5.31 ± 0.98 0.142

TG mmol/L 1.71 ± 0.98 1.9 ± 1.17 1.67 ± 0.92 <0.001

HDLmmol/L 1.36 ± 0.32 1.34 ± 0.32 1.36 ± 0.33 0.203

LDL mmol/L 3.19 ± 0.77 3.23 ± 0.8 3.18 ± 0.76 0.229

SCr μmol/L 77.81 ± 26.04 78.51 ± 21.93 77.65 ± 26.89 0.561

Ccr 82.01 ± 30.84 81.31 ± 32.65 82.17 ± 30.42 0.624

UA μmol/L 281.21 ± 83.79 285.97 ± 86.04 280.13 ± 83.25 0.216

HRV measurement

HR beats/min 72.42 ± 10.13 79.7 ± 11.26 70.77 ± 9.08 <0.001

TP ms2 873.95 ± 702.47 315.87 ± 410.75 1000.63 ± 693.2 <0.001

LF ms2 190.98 ± 207.88 43.97 ± 57.29 224.34 ± 215.08 <0.001

LF nu 21.33 ± 10.66 15.97 ± 9.19 22.54 ± 10.6 <0.001

HF ms2 183.05 ± 219.43 41.82 ± 59.63 215.11 ± 229.61 <0.001

HF nu 20.67 ± 13.25 17.06 ± 13.98 21.49 ± 12.94 <0.001

LF/HF 1.7 ± 1.98 2.37 ± 3.32 1.55 ± 1.48 <0.001

Medical history

Smoking
yes,%

306 (14.63%) 62 (16.02%) 244 (14.31%) 0.390

PH yes,% 976 (46.65%) 241 (62.27%) 735 (43.11%) <0.001

DM yes,% 446 (21.33%) 139 (35.92%) 307 (18.02%) <0.001

MetS yes,% 833 (39.82%) 204 (52.71%) 629 (36.89%) <0.001

Note: * present the difference between individuals with and without
cardiovascular autonomic (CA) dysfunction.
BMI: Body mass index, WC: waist circumference, SBP: systolic blood pressure,
DBP: diastolic blood pressure, FPG: fasting plasma glucose, PBG: plasma blood
glucose, FINS: fasting blood insulin, IR: insulin resistance, TC: serum total cholesterol,
TG: triglyceride, UA: uric acid, HDL: high-density lipoprotein cholesterol, LDL: low
density lipoprotein cholesterol, SCr: serum creatinine, Ccr: creatinine clearance rate,
HR: heart rate, TP: total power of variance, LF: low frequency, HF: high frequency,
MetS:metabolic syndrome, PH: Hypertension, DM: Diabetes.
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analyzed using the Statistical Package for Social Sciences
for Windows version 16.0 (SPSS; Chicago, IL, USA). The
BP ANN models were developed using Matlab 7.0.

Results
Table 1 indicated that baseline clinical characteristics of
the 2092 subjects. The entire sample included 705 men
and 1387 women (mean age, 60.42 ± 8.68 years; Table 1).
A total of 387 (18.51%) individuals had CA dysfunction.
The mean FPG, TC, and TG levels were 5.53, 5.32, and
1.71 mmol/L in total sample, respectively. The HRV
components decreased with age (data not shown). The
HR of individuals with CA dysfunction was very signifi-
cantly higher than that of individuals without CA dys-
function (P < 0.001). Most HRV parameters were lower
in individuals with CA dysfunction than in those without
CA dysfunction (P <0.01 for all).The prevalence of PH,
DM, and MetS in the entire sample was 46.65, 21.33,
and 39.82%, respectively. The baseline characteristics
were similar between the exploratory and validation sets
(p < 0.05; data not shown).
To estimate the potential risk factors of CA dysfunc-

tion, univariate analysis was performed in the entire
sample. These potential risk factors contained the demo-
graphic parameters, blood glucose, and insulin function
parameters; lipid profiles; and medical history factors.
The result indicated that 14 potential risk factors—age,
HR, BMI, WC, SBP, DBP, FPG, PBG, IR, TG, DM and its
duration, and PH and its duration—were significantly as-
sociated with CA dysfunction (P < 0.05 for all parame-
ters; Table 2).
For developing a prediction model, five exploratory

sets were generated using a computerized random calcu-
lator. Each exploratory set consisted of more than 1500
individuals. A total of 15 individuals with 14 risk factors
developed from univariate analysis had missing data, so
that 2077 individuals were available to form the dataset
for development of the artificial neural network predic-
tion model. The same exploratory and validation sets
were applied for the artificial neural network model
and a total of five ANN models were developed. Every
trained ANN included 14 input nodes, 18 layer nodes,
and 1 output node (Figure 1). For training ANN, 101–
112 echoes were performed and the MSE ranged from
0.12–0.13. Five validation sets were developed, all of
which consisted of more than 500 subjects. The area
under ROC curve ranged from 0.738–0.789 (Table 3).
At the respective optimal cutoff points, when applied
to the validation sets, the sensitivity and specificity of
the ANN models were 67.7–82.1% and 64.7–70.4%, re-
spectively. The positive and negative predictive values
ranged from 30.1–37.3% and 89.8–94.0%, respectively.
The diagnostic accuracies of the ANN models are

compared in Table 3. The mean AUC was 0.762 for
ANN models (Table 3). The mean optimal cutoff points
for ANN models were 0.216. The mean sensitivity and
specificity of the ANN models were 75.1% and 66.7%,



Table 2 Univariate analysis for CA dysfunction

Variables β P value OR (95% CI)

Age 0.428 <0.001 1.53 (1.35–1.75)

HR 0.859 <0.001 2.36 (2.09–2.67)

BMI 0.273 0.001 1.31 (1.13–1.53)

WC 0.510 <0.001 1.67 (1.3–2.14)

SBP 0.018 <0.001 1.02 (1.01–1.02)

DBP 0.019 0.001 1.02 (1.01–1.03)

FPG 0.450 <0.001 1.57 (1.39–1.78)

PBG 0.475 <0.001 1.61 (1.41–1.83)

IR 0.279 <0.001 1.32 (1.20–1.46)

TG 0.336 0.003 1.40 (1.12–1.75)

DM 0.936 <0.001 2.55 (2.00–3.25)

DM duration 0.412 <0.001 1.51 (1.30–1.76)

PH 0.779 <0.001 2.18 (1.74–2.73)

PH duration 0.356 <0.001 1.43 (1.28–1.59)

Note: HR: heart rate, BMI: body mass index, WC: waist circumference, SBP:
systolic blood pressure, DBP: diastolic blood pressure, FPG: fasting plasma
glucose, PBG: plasma blood glucose, IR: insulin resistance, TG: triglyceride,
PH: Hypertension, DM: Diabetes, IR: insulin resistance.
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respectively. The mean PPV and NPV were 0.330 and
0.924, respectively. The HL statistics of the prediction
model using ANN analysis were <15.0, indicating that
these prediction models showed good fit. The mean
values of accuracy were 0.681 for prediction models de-
veloped using ANN approaches.

Discussion
We conducted a study to develop the prediction models
using ANN analyses based on a dataset obtained from a
large-scale population-based cross-sectional study. The
database consisted of 2,092 participants from the Chinese
population. The participants were a good representative
sample across the country, and the prediction model
developed in this study might work well even outside
the studied areas in China. The prediction model was
Table 3 Prediction models using artificial neural network

Model 1 Model 2 Model 3

AUC 0.738 0.763 0.737

Cutoff 0.234 0.229 0.216

Sensitivity 0.694 0.789 0.677

Specificity 0.694 0.663 0.647

Yuden Index 0.388 0.452 0.324

PPV 0.332 0.339 0.301

NPV 0.912 0.935 0.898

HL Statistics 14.64 8.143 8.421

Accuracy 0.695 0.685 0.651

Note: AUC: area under the receiver-operating curve, PPV: positive predictive value; N
developed in the exploratory set and the performance of
the developed model was evaluated in the validation set.
The important finding of this study was that the pre-

diction models developed using ANN analyses have high
value in predicting CA dysfunction in the general popu-
lation. The mean AUCs were 0.762 for ANN models.
In general, a prediction model has a high value for
predicting outcomes if AUC was more than 0.70 for
this model. The mean sensitivity of the models was >75%.
Additionally, the mean specificity of the two models
was > 65%. These models were good-fit models based
on the large-scale dataset (HL statistics < 15.0). The
mean accuracy of predictive model was near 0.70. How-
ever, these prediction model had not very high predict-
ive value (AUC >0.90). this is partly because genetics
risk factor was not considered [17]. CA dysfunction was a
human complex disease attributed to genetics and envir-
onmental factors or/and its interactions. Missing genetics
data was a limitation of this study. Anyway, these findings
support that ANN models have high predictive value and
can be applied to clinical decision making. These findings
support evidence that ANN models were applied to clin-
ical predictive practice.
Currently, LR and ANN are the most widely used

models in biomedicine [11,16,18]. LR can generate excel-
lent models and can serve as a commonly accepted
statistical tool. Its popularity may be attributed to the in-
terpretability of model parameters and its ease of use.
However, the LR model uses linear combinations of vari-
ables, so it is not adept at modeling grossly nonlinear
complex interactions [8]. ANNs are flexible nonlinear
systems, and therefore they may be better suited than
LR-based models to predict outcomes when the rela-
tionships between the variables are complex, multidi-
mensional, and nonlinear, such as those encountered in
complex biological systems [7]. The advantages and dis-
advantages of ANN models can be classified according
to the following criteria [19]. First, development of an
ANN model would require less domain knowledge. ANNs
Model 4 Model 5 Mean ± SD 95% CI

0.783 0.789 0.762 ± 0.025 0.732–0.793

0.227 0.175 0.216 ± 0.024 0.187–0.246

0.777 0.821 0.751 ± 0.065 0.667–0.828

0.704 0.618 0.665 ± 0.035 0.622–0.709

0.481 0.439 0.413 ± 0.063 0.334–0.491

0.373 0.321 0.330 ± 0.026 0.298–0.361

0.932 0.94 0.924 ± 0.018 0.902–0.945

7.424 7.196 9.165 ± 3.103 5.313–13.017

0.714 0.661 0.681 ± 0.026 0.650–0.713

PV: negative predictive value.
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are ideally suited to modeling complex or unclear relation-
ships since no prior knowledge of the underlying data is
required. ANNs therefore can model any implicit interac-
tions among input variables commonly encountered in
medical data. In general, ANNS was prone to over-
fitting model. Development of an ANN model requires
more computation time. ANN models are commonly
called black boxes.
ANN models have its advantages, and the selection of

a model should be based on these advantages and the
intended purpose of the study. ANNs would be par-
ticularly useful when there are implicit interactions and
complex relationships in the data. In clinical practice,
ANN models may be used complementarily to aid in
decision making. ANN models have the potential to help
physicians with respect to understanding CA dysfunc-
tion risk factors and diagnosis. These findings should
be reproducible in other populations. This and similar
models may emerge to be of considerable practical
value in patient triage. Suitable ANN software should
be designed for clinical practice. However, building an
ANN or another hybrid technique that incorporates the
best features of both the LR and ANN models might
result in the development of the ideal prediction model
for CA dysfunction.
This study has several limitations. First, the dataset

was based on a cross-sectional study and could have
been biased by selection. Furthermore, the temporal se-
quence between risk factors and outcome was question-
able. Second, participants were recruited from Shanghai
and external validation was not performed. Therefore,
further investigation is required to determine the genera-
lizability of our prediction model. Third, the association
between HbAlc was not analyzed in the present study,
because data on HbAlc levels were unavailable. Finally,
it is important to mention that our study was per-
formed on the Chinese population, and our findings
may not be relevant to people of other ethnicities.

Conclusion
In conclusion, we developed ANN models for the pre-
diction of CA dysfunction in the general population by
using a cross-sectional dataset. The performance of the
ANN model with high value predicted CA dysfunction.
Validation of the models’ prediction performance in an
external validation set will be conducted. A larger and
more complete database may be used to further clarify
ANN models in terms of prediction of the clinical out-
come following CA dysfunction.
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