Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

BMC
Medical Informatics & Decision Making

SOFTWARE Open Access

Design and implementation of the mobility
assessment tool: software description

Ryan T Barnard!", Anthony P Marsh?, Walter Jack Rejeski?, Anthony Pecorella' and Edward H Ip!

Abstract

Background: In previous work, we described the development of an 81-item video-animated tool for assessing
mobility. In response to criticism levied during a pilot study of this tool, we sought to develop a new version built
upon a flexible framework for designing and administering the instrument.

Results: Rather than constructing a self-contained software application with a hard-coded instrument, we designed
an XML schema capable of describing a variety of psychometric instruments. The new version of our video-animated
assessment tool was then defined fully within the context of a compliant XML document. Two software
applications—one built in Java, the other in Objective-C for the Apple iPad—were then built that could present the
instrument described in the XML document and collect participants’ responses. Separating the instrument’s definition
from the software application implementing it allowed for rapid iteration and easy, reliable definition of variations.

Conclusions: Defining instruments in a software-independent XML document simplifies the process of defining
instruments and variations and allows a single instrument to be deployed on as many platforms as there are software
applications capable of interpreting the instrument, thereby broadening the potential target audience for the
instrument. Continued work will be done to further specify and refine this type of instrument specification with a
focus on spurring adoption by researchers in gerontology and geriatric medicine.

Background

In previous work[1,2], we developed and described an 81-
item video-animated tool for assessing self-perception of
mobility, which we have called the Mobility Assessment
Tool (MAT). Items in the MAT consist of a video and
a corresponding measurement item. The videos depict a
wooden mannequin performing a wide range of physical
activities, and the measurement item consists of a ques-
tion about the participant’s ability to perform the task,
measured on a discrete scale. Participants interact with
the software via a capacitive touch screen (Figure 1).

In response to criticisms levied against MAT in a
pilot study, we sought to develop a new version of the
tool, but because we also anticipated multiple subsequent
variations—as well as, potentially, a host of additional
instruments using the same (or a similar) structure—we
elected to construct a flexible framework upon which new
versions of MAT could be implemented.

*Correspondence: rybarnar@wakehealth.edu

1 Department of Biostatistical Sciences, Public Health Sciences, Wake Forest
School of Medicine, Winston-Salem, North Carolina, USA

Full list of author information is available at the end of the article

() BiolVled Central

Motivation for the MAT family of software

In the original version of the testing software, every-
thing was constructed largely by hand as a series of
barely-connected web pages, video files, and scripts. This
approach worked perfectly for the pilot study as it was
very quick and easy to construct, but it was also fragile
and tedious to perform significant changes. Any variation
in the number or order of the test items would require
(a) the web forms for every affected item (along with
their immediately preceding and succeeding neighbors)
to be hand-edited and tested, (b) the processing scripts
to be updated to reflect the new instrument, and (c) the
database schema to be rebuilt.

Though acceptable for the short-lived pilot study, these
design deficiencies were not acceptable in the context of
the project growing and maturing. In particular, the soft-
ware behind the new MAT projects needed to permit
fast, painless, and reliable manipulation of the instru-
ment, including the ability to easily retain the original
test and any other variations without requiring massive
duplication of shared resources.

© 2013 Barnard et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

Page 2 of 11

animations.

Figure 1 Touchscreen interface. A study participant interacting with the touchscreen to answer the questions accompanying each set of

The MAT family of software arose from these simple
requirements, providing the following key components:

1. A common XML-based data file describing all of the
important properties of the instrument,

2. An application written in Java to support participants
using Mac, Windows, and Linux computers,

3. An application written in Objective-C for
participants with access to Apple iPad devices, and

4. A workflow for very quickly and reliably producing
customized versions of both the Java and the iOS
applications from the source instrument.

MAT software requirements and architecture

The success of the pilot study and similar work in the
past motivated us to build a solution to the above needs
that is more flexible than simply meeting the minimum
requirements. We envisioned using a test platform with
the capabilities described above in several pending future
projects, and thus planned the MAT tool accordingly.
In particular, while designing the software, we sought to
satisfy two philosophical objectives:

1. Build a system that is sufficiently extensible that it
can handle a variety of similar studies without
redesigning the software, and

2. Avoid designing a tool so general that there is
resultant loss in sensitivity in the assessment process
or that requires exorbitant resources to design and
maintain.

Requirements

The central capability is the ability to define a complete
psychometric measurement instrument. Such an instru-
ment must be composed of:

1. A set of test items, consisting of (a) a question with
text and a video or image accompanying it and (b) a
discrete set of possible participant responses, where
each response is composed of a textual label and a
numeric value associated with it;

2. A set of instructions, including possible example
questions, that would precede the test items; and

3. An explicitly defined scoring mechanism to
automatically associate a numeric value with a
particular sequence of responses.

While all studies we intended to support would include
requirement 1, requirements 2 and 3 should be optional
so that the system is capable of handling them, but does
not at any point depend upon them to function. The needs
of these types of instruments are fairly uniform within the
aims we set out to achieve:

1. Respondents can be required to provide non-scored
identifiers before beginning to allow correlation with
externally gathered data,

2. The ability to control test presentation policies—such
as requiring an item video to be viewed to
completion before permitting the participant to
respond—that may vary on a study-to-study basis
rather than being hard-coded into the software,

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

3. Stored data for a single run of the test for a single
participant should include: (a) any identifiers the
participant provided, (b) the value of each individual
response, (c) the participant’s overall score, if
computed, and (d) the time, date, and duration of the
test.

4. All recorded test data should be retrievable as a
single table for use and analysis by non-technical
researchers instead of just providing, for example, an
XML file or a relational database and expecting the
researchers, who may have no experience in such
technical matters, to retrieve and format the data as
they need.

5. Studies are likely to be performed in multiple
countries in multiple languages, so
internationalization and localization features should
be incorporated as fundamental design aspects of the
system.

Beyond these 5 critical needs, the ability for the tool to
automatically submit responses to a central server would
dramatically aid in collecting and organizing response
data in large studies. Finally, heterogeneity across varying

Page 3 of 11

sites suggests a strong need to build a system with a good
deal of interoperability between other systems.

Architecture

The resulting MAT software that we describe in this
paper successfully meets all of the described objectives
and requirements discussed above. In this section we dis-
cuss the architecture we have developed that underlies the
actual implementations we have produced.

The most basic desire that we were able to identify
was a need to separate the structure and content of mea-
surement instruments from the software presenting those
instruments and collecting responses. This naturally sug-
gests a layer of abstraction between software and data,
and guided by this observation we designed an XML
schema that would allow us to expressively describe a
complete measurement instrument, including localiza-
tions and specific study requirements, without having to
write any actual code. Confidence in this decision was
bolstered by the successful use of XML for various appli-
cations throughout healthcare and medical informatics
[3-7], especially when structured by an appropriate XML
schema [4,8]. Figure 2 provides a partial listing of the

1 | <?xml version="1.0" encoding="UTF-8"7>

2 | <xs:schema targetNamespace="http://wfuhs.wfubmc.edu/mcat/test-processor/instrument" ...>

3 <xs:element name="instrument" type="ins:instrumentType"/>

4 <xs:complexType name="instrumentType">

5 <xs:sequence>

6 <xs:element type="ins:instrumentPoliciesType" name="instrumentPolicies"

7 minOccurs="0" maxOccurs="1"/>

8 <xs:element type="ins:instructionsType" name="instructions" minOccurs="0" maxOccurs="1"/>
9 <xs:element type="ins:itemsType" name="items" minOccurs="1" maxOccurs="1"/>

10 <xs:element type="ins:scoringType" name="scoring" minOccurs="1" maxOccurs="1"/>

11 </xs:sequence>

12 </xs:complexType>

13 S

14

15 <!-- Instrument Policies -->

16 <xs:complexType name="instrumentPoliciesType">

17 <xs:sequence>

18 <xs:element type="ins:policyType" name="policy" minOccurs="0" maxOccurs="unbounded"/>

19 </xs:sequence>

%0 </xs:complexType>

1 .

22

23 <!-- Instructions -->

24 <xs:complexType name="instructionsType">

25 <xs:sequence>

26 <xs:element type="ins:instructionTextsType" name="instructionTexts" minOccurs="1" maxOccurs="1"/>
27 <xs:element type="ins:practiceItemsType" name="practiceltems" minOccurs="0" maxOccurs="1"/>
28 </xs:sequence>

29 </xs:complexType>

30 S

31
32 <!-- Items —-->
33 <xs:complexType name="itemsType">
34 <xs:sequence>

35 <xs:element type="ins:itemType" name="item" minOccurs="0" maxOccurs="unbounded"/>

36 </xs:sequence>

37 </xs:complexType>

38 <xs:complexType name="itemType">

39 <xs:sequence>
40 <xs:element type="ins:descriptionsType" name="descriptions" minOccurs="1" maxOccurs="1"/>
41 <xs:element type="ins:scoringCategoryRefType" name="scoringCategory" minOccurs="1" maxOccurs="1"/

>

42 <xs:element type="ins:mediaType" name="media" minOccurs="1" maxOccurs="1"/>
43 </xs:sequence>
44 <xs:attribute type="xs:integer" name="number" use="required"/>
45 <xs:attribute type="xs:string" name="id" use='required"/>
46 <xs:attribute type="xs:string" name="cluster" use="optional"/>
47 </xs:complexType>
48 .
49

50 <!-- Scoring -->

51 <xs:complexType name="scoringType">

52 <xs:sequence>

53 <xs:element type="ins:categoriesType" name="categories" minOccurs="1" maxOccurs="1"/>

54 <xs:element type="ins:scoreComputationType" name="scoreComputation” minOccurs="0" maxOccurs="1"/>
55 </xs:sequence>

2(73 </xs:complexType>

58 | </xs:schema>

Figure 2 Abridged XML schema for instrument definitions.

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73

http://www.biomedcentral.com/1472-6947/13/73

Page 4 of 11

1 | <instrument>

2 <instrumentPolicies>

3 <policy key='"requireRespondentId" value="true" />

4 <policy key='"requireVisitCode" value="false" />

5 <policy key="showComputedScore" value="false" />

6 </instrumentPolicies>

7 <instructions>

8 <instructionTexts>

9 <instructionText lang="en-US">This survey consists of 10...</instructionText>
10 <instructionText lang="fr-CA">Ce questionnaire se compose de 10...</instructionText>
11 </instructionTexts>

12 <practiceItems>

13 <item number="0" id="practice">

14 <descriptions>

15 <description lang="en-US">How many times could you walk up this incline, with a cane and

using a handrail, at the pace shown?</description>
16 <description lang="fr-CA">Combien de fois pourriez-vous monter cette pente avec 1l’aide d’une
canne et en utilisant une main courante au rythme démontré?</description>

17 </descriptions>

18 <scoringCategory>B</scoringCategory>

19 <media type="movie">Cane_Ramp_Rail_Slow</media>
20 </item>
21 </practiceltems>
22 </instructions>
23 <items>
24 <item id="item0" number="0">
25 <descriptions>
26 <description lang="en-US">Could you walk through rocky, inclined terrain at the pace shown?</

description>
27 <description lang="fr-CA">Pourriez-vous marcher sur un terrain rocailleux et en pente au rythme
démontré?</description>

28 </descriptions>

29 <scoringCategory>C</scoringCategory>
30 <media type="movie">Terrain_4</media>
31 </item>
32 </items>
33 <scoring>
34 <categories>
35 <category id="C">
36 <mappingFunction lang="Lua"><![CDATA[
37 value
38 11></mappingFunction>
39 <responses>
40 <response value="0">
41 <label lang="en-US">No</label>
42 <label lang='"fr-CA">Non</label>
43 </responses>
44 <response value="1">
45 <label lang="en-US">Yes</label>
46 <label lang="fr-CA">0ui</label>
47 </responses>
48 </responses>
49 </category>

50 </categories>

51 <scoreComputation>

52 <lookupTable filename="table.csv"/>

53 <!-- Alternatively:

54 <scoringFunction lang="Lua">

55 <! [CDATA[Like mappingFunction 11>

56 </scoringFunction>

57 ->

58 </scoreComputation>

59 </scoring>
60 | </instrument>

Figure 3 Minimal instrument XML example. An example instrument configuration using the MAT XML schema.

schema and Figure 3 provides a minimal example XML
document exemplifying that schema.

It is important to note here that this architecture allows
an instrument to be modified by altering the content of
its associated configuration XML file, and that, although
the software implementation that runs the instrument
need not be recompiled to reflect those changes, no spec-
ification or requirement is provided in support of user

modifications at runtime. For our purposes, it is suffi-
cient that a software developer be able to quickly create
instrument variations involving only modification of the
configuration XML file, but each instrument variation
may be distributed as a complete, self-contained applica-
tion. This approach also simplifies tracking of instrument
variations in version control systems, as only a single XML
file need change.

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

Page 5 of 11

Table 1 Elements of the instrument specification which support multiple languages

instructionText The text that should be displayed when presenting usage instructions to the participant.
description The textual description that accompanies an instrument item; usually in the form of a question.
label The textual label associated with one of the possible item responses.

Instrument schema The former is an arbitrary, unique string for identifying

Our schema is built upon the notion of the instrument
as the root concept, which includes 4 children describ-
ing the constituent components of an instrument:
instrumentPolicies, instructions, items, and
scoring. Throughout the schema there are many ele-
ments that contain human-readable text that is intended
to be displayed to study participants. Each such element
has an optional attribute called 1ang that specifies which
localization that text applies to. If the l1ang attribute is
absent, the element is assumed to be the default local-
ization to display in the event the system locale is not
available. (It is an error for more than one element to be
the default.) The elements to which this attribute applies
are listed in Table 1.

instrumentPolicies The instrumentPolicies
section is a simple key-value list of properties defining cer-
tain policies of the instrument’s presentation (see Table 2
for a list of configurable policies).

Instructions The Instructions section provides
a mechanism for defining the instructions and accom-
panying practice test items that will be presented to a
participant prior to the actual test. instructionText
is just a textual element containing the actual instructions
to present. The practiceItems child is identical in
structure to the items child of instrument described
below.

Items The Items section contains a sequence of item
elements, each of which defines a single test item. Test
items contain the required attributes id and number.

that item uniquely regardless of its position in the test, and
number is a 0-based index indicating the order in which it
appears in the instrument. The description child ele-
ment contains a list of textual item descriptions which will
usually be the text of the questions themselves. media
identifies any media item that is to be presented along-
side the item text, such as a video clip or an image. Note
here that the value of media is ot a filename but rather an
identifying key from which the test application can deter-
mine the appropriate media file based on the platform and
language.

Finally, scoringCategory is a reference to one of the
children of scoring. Because most studies will consist of
many items that all share a common set of legal responses,
we have elected to define those responses separately from
the items they belong to, instead permitting the i tems to
simply indicate which category of responses is appropri-
ate for it. Though this minimizes repetition and ensures
consistency, this decision could be considered a drawback
in the worst-case scenario that each item is permitted a
distinct set of responses. In this case, the logical separa-
tion between the item definition and its corresponding
response definition could lead to confusion, but it is our
belief that such cases are very rare if existing at all among
the audience of possible users of our system.

Scoring The Scoring section contains a required
categories element and an optional scoreCom-
putation element. The children of categories each
describe one of the possible categories of item responses
referenced by test items. In addition to the id ele-
ment used to uniquely identify the categories, each

Table 2 Instrument policies that can be configured in the instrumentPolicies section of the instrument specification

Policy key Policy type Description

requireRespondentId boolean Indicates whether participants are required to enter a personal
identification code before beginning the test.

requireVisitCode boolean Indicates whether participants are required to enter a visit code
before beginning the test.

requireVideoViewing boolean Indicates whether participants must view the entire animation
before being permitted to respond.

startVideoAutomatically boolean Indicates whether the video should automatically begin playing.

serverSubmissionURL URL Specifies the URL of the server to which collected data should
automatically be submitted.

showComputedScore boolean Indicates whether the computed score (if applicable) should be dis-

played to the participant following completion of the instrument.

Each boolean-valued policy defaults to false and serverSubmissionURL defaults to an empty string.

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

category contains a set of responses and an optional
mappingFunction. The set of responses lists each
possible response that the participant can select along
with the id that response represents. Note that ids
must be unique; association between a response id
and the numeric value that it represents is defined
by the mappingFunction. The label portion may be
defined in one of two ways: as an attribute of the
response element itself (in the case that the label is com-
mon across all supported localizations) or as a list of
children, where each child specifies the relevant lan-
guage.

The mappingFunction is different from the other
elements discussed thus far. Because responses are
often “binned” into a smaller number of categories, the
mappingFunction provides a mechanism for arbi-
trarily associating the unique response id to a numeric
value. Currently, the mapping function supports sim-
ple expressions manipulating a variable named value,
which represents the numeric value of a response. Should
the need for additional functionality arise, interpre-
tation of the mapping function could be performed
using a domain-specific language built on a more
sophisticated, embeddable scripting environment such as
Lua.

Instruments that support automatic scoring by the test
application can define their scoring mechanism under
scoreComputation, using either the lookupTable
or scoringFunction element. The scoring method in
use in the MAT uses proprietary software (MULTILOG
from Scientific Software International, Inc.) to com-
pute IRT item parameters and thus the scores for any
sequence of responses. Because we are prohibited by
licensing restrictions from distributing the MULTILOG
software, we instead computed a lookup table of all pos-
sible response sequences. This lookup table is referenced
in the lookupTable element, which provides the file-
name of a two-column table containing a list of all pos-
sible combinations of response values for the instrument
in the first column and the real-valued score it maps
to.

Construction of an exhaustive lookup table is only
appropriate for instruments having a sufficiently small
space of possible responses that their enumeration
and pre-computation is not prohibitively time- or
space-consuming. Other instruments can use the
scoringFunction to calculate the score at run-
time using the same built-in scripting support as
mappingFunction, thus permitting the score to be
calculated by completing a computation, invoking a web
service, or performing some other function in the domain-
specific language. Note here that need has not yet arisen
for such sophisticated functionality, and thus, at present,

Page 6 of 11

the scoringFunction and mappingFunction fea-
tures support only trivial arithmetic expressions as a
proof-of-concept.

Test application architecture

The described instrument schema only addresses the
XML files that would define an instrument, and the task
of actually presenting that instrument to participants
and collecting their responses for later analysis requires
separate construction of a software application.

Our immediate needs for continuation and expansion of
the Mobility Assessment Tool dictated support for both
desktop computers (running either Windows or Mac OS
X) and Apple iPad devices, and the software we built
for each platform shares a common 3-layer architecture
consisting of a Presentation layer that interacts with the
user, a Logic layer that handles the tasks of managing
test execution and progress, and a Data layer that han-
dles interpreting the instrument definition XML files and
management of collected user data.

Again, note that no runtime, user-friendly manipulation
of the instrument is included among these requirements
and specifications.

Presentation The presentation layer is the layer that
directly interacts with the user. It supports two user activ-
ities: the test activity and the score viewing activity. The
former provides a mechanism for the user to provide
whatever demographic data is required, optionally present
the instructions and practice test items, display instru-
ment items and wait for the participant’s feedback, and
finally to pass the participant’s responses to the Logic
layer.

The score viewing activity lists previous tests that have
been completed and permits examination, for each partic-
ipant, of each response provided and their overall score. It
also provides the tools for exporting scores to simple table
files that can be examined in external software.

Logic The logic layer performs management functions
between the presentation and data layers, ensuring that
tests conform to required policies and that only valid data
is presented to the user or stored in the database. In partic-
ular, the responsibilities of the logic layer include: ensuring
that any required demographics are collected from the
participant before presenting the test, iterating through
test items from beginning to end in the correct order (and
possibly discarding the test if incomplete), validating and
recording data collected from participants’ test sessions,
computing the score for completed tests as required, and
(if appropriate) ensuring that tests are eventually submit-
ted to a central server even if submission fails at the time
a test is completed.

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

Data Lastly, the data layer handles the technical tasks
related to marshalling and unmarshalling the data struc-
tures that the presentation and logic layers depend upon
to and from disk, database, or web server. In particular,
the responsibilities of the data layer include: interpretation
of dataset files in as robust a fashion as possible; pro-
viding to the logic layer, when requested, the appropriate
localization of human-readable text elements; commu-
nicating with the central server and actually perform-
ing the data transmissions requested by the logic layer;
and automatically keeping backup archives of user’s test
responses.

The data layer and its implementation are intimately
dependent upon particulars of the instrument schema and
as the instrument schema evolves, so too must the support
mechanisms in place in the data layer. The current schema
(and implemented data layers) have been stable through
several versions of the MAT software, and it is expected
to remain stable for the foreseeable future. However, the
MAT architecture is not intended to be a one-size-fits-
all solution to computerized instruments, so significant
modifications would be necessary to cope with significant
departures from the assumptions of MAT.

Implementation

As discussed in the previous section, the Mobility Assess-
ment Tool needed to be implemented for both desktop
computers (running either Windows or Mac OS X) and
Apple iPad devices, and the disparity between these two
platforms precluded the use of the same software for
both. Due to greater urgency, the Windows/Mac version
was first implemented nearly a year earlier than the iPad
version, and as such it is a considerably more mature
product. In spite of that, the core functionality was eas-
ily provided on both platforms, each of which perform
identical functions using the same instrument defini-
tion XML file, thus demonstrating the viability of our
instrument schema for defining an interactive measure-
ment instrument independently of the instrument’s actual
implementation.

The test applications themselves are very simple soft-
ware applications that conform to the requirements
previously discussed and require no unusual expertise
to implement. As such, details of implementation are
omitted here; instead, this section only highlights a few
noteworthy design decisions and implementation issues
for each application. (Readers wishing to learn more
about these applications may visit http://mat-sf.wfuhs.
arane.us/.)

Java implementation

The requirement of providing functionality on both Win-
dows and Mac OS X machines naturally leads to the
decision to build an application using a cross-platform

Page 7 of 11

language. We elected to use Java due to its maturity, ubiq-
uity, and the vast collection of freely available third-party
libraries with compatible licensing terms.

The Java-based MAT implementation depends particu-
larly heavily upon the Spring libraries and several libraries
from Apache Commons as a foundation. XStream was
instrumental in quickly building a stable and reliable data
layer, as it handles all responsibilities related to mar-
shalling and unmarshalling the Java objects representing
response data. The ability to export response data tables
to Excel was provided by JExcelApi. And finally, Apache
Commons HttpClient transmitted data to the collection
server.

Video playback

Video playback provided the most substantial hurdle
in building a stable, reliable application. Initially, we
depended upon QTJava, a Java wrapper around Apple’s
QuickTime software, to decode and play the animations.
Unfortunately, we discovered that QT]Java is a deprecated
library [9], and that only 32-bit versions of the native
binaries that act as the gateway between the Java por-
tion of the library and QuickTime are available. Because
of this, users on 64-bit machines would have to ensure
that they had a 32-bit Java Runtime Environment (JRE)
installed even if a 64-bit JRE was already installed, which
led to a considerable amount of time lost providing basic
support.

Because of this and other difficulties with QTJava, we
elected to switch to a 100% Java-based video playback
library to ensure that incompatibilities regarding native
libraries would not cause problems. We eventually chose
to build upon Cortado, an open-source, cross-platform,
Java-based video playback library.

The Cortado library was used largely intact, but
a number of important modifications were made to
the playback subsystem. In particular, a number of
non-essential—for MAT—features such as audio play-
back and subtitle support were removed in order to
reduce CPU load and improve framerate. Additionally,
the playback and buffering mechanisms were adjusted
so that playback of video files from the local filesys-
tem, from a JAR file, or from a web resource would
all behave identically. And finally, support for directly
retrieving (and changing) the playback position of a
video—again, irrespective of the video’s data source—
were added.

Due to the ease of format conversion offered by tools
such as ffmpeg and the highly modular nature of our
Java implementation, switching from QuickTime MOV to
Ogg Theora videos (as required by Cortado) was without
incident, and the newest version of our Java-based MAT
software appears to run perfectly on Mac OS X, Windows,
and Linux.

http://mat-sf.wfuhs.arane.us/
http://mat-sf.wfuhs.arane.us/

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

Apple iPad implementation

The iPad version of the MAT software was motivated
by a desire for a mobile implementation of the tool. The
desire to use a widely available, commercial, off-the-shelf
(COTS) device with a touchscreen interface, extensive
networking capabilities, and an established community of
developers led to a choice between the Apple iOS platform
and the Google Android platform. Positive institutional
experience with iOS coupled with a preference to avoid
the implementation issues inherent in any system with
significant heterogeneity motivated the decision to tar-
get i0S. Though the similarities between the iPad and
the iPhone/iPod Touch devices far exceed their differ-
ences, the compatibility between the iPad’s larger display
and the practical needs of a geriatric participant popula-
tion dictated our final decision to support only the larger
device.

Whereas the Java application relied upon the use
of numerous third-party libraries, the iPad applica-
tion depended almost exclusively upon frameworks
native to iOS, with a single external dependency upon
MGSplitViewController to enhance the appearance
and ease-of-use of a single interface element.

The iPad data layer was implemented using a vari-
ety of built-in frameworks. The built-in functionality
provided by Core Data simplified persistence of col-
lected responses. Response data was transmitted to the
server using the URL loading system of the Foundation
framework.

At the time of writing, the iPad MAT software is being
successfully implemented in three studies and is fun-
damentally complete with respect to the requirements

Page 8 of 11

of presenting the measurement instrument and collect-
ing responses. However, the only present mechanism for
retrieving collected data from the device is to enable sub-
mission of results to a central server, thus preventing its
use when such a server is unavailable or inappropriate.
Additional functionality will be provided in subsequent
iterations of the software.

Implementation comparison
The iPad implementation of the MAT software offers
nearly all of the functionality of its more mature coun-
terpart (Figure 4), but required substantially less time to
complete. Whereas the first fully-functional Java imple-
mentation required roughly 7 working days to complete,
the iPad implentation consumed only 1.5 days. The devel-
opers attribute this primarily to (a) the simplicity of
targeting a locked-down, homogeneous device and (b)
the availability of OS-level APIs that provide support for
building consistent user interfaces, performing video play-
back, marshalling and unmarshalling data, and communi-
cating with the server. Though greater familiarity with the
problem domain likely accounted for some portion of that
speedup, the number of lines of code in each application
is a valid, concrete metric that can help quantify the rel-
ative simplicity of the iPad implementation [10-12]. After
retrieving from the version control system used during
development a version of the Java application with an
identical feature set, we calculated 8566 lines of Java code
in the Java application and 3527 lines of Objective-C code
in the iPad application.

It is important to note that this comparison does not
offer generalizable conclusions regarding the suitability of

~ 05 Simulatar - iPad J 105 4.3.2 (HT)

MAT Item 06 / 10

Could you walk through rocky, inclined terrain at the pace shown?

No

(a) tPad Version

Figure 4 iPad and Java Implementations, Side-By-Side. Screenshots of the iPad—Ieft, in panel (a)—and Java—right, in panel

(b)—implementations of the MAT software.

IR S . A
e el o i e
Play

Could you walk through rocky, inclined terrain at the pace shown?

No Yes

(b) Java Version

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

iOS-targeted Objective-C over Java or vice-versa. Rather,
it is presented here as a noteworthy observation as it may
have implications for the cost of continued development
and maintenance of the MAT software in the future and as
such is an important metric to consider when examining
the outcome of our efforts.

Results and discussion

The process of designing the successor to the original
pilot study has been underway for over a year and within
that span we have successfully constructed two different
implementations of the testing software that satisfy our
initial objectives. Additionally, both versions are virtually
identical from a participant’s point-of-view and literally
identical from the perspective of specifying the instru-
ment, as the same instrument XML file can be used for
both versions.

The Java application is currently being used in two
separate studies while the iPad application is being imple-
mented in three others. Additionally, because of the sim-
plicity of defining instrument variations, we have been
able to accommodate requests for specific alterations with
a turnaround time bound by the effort involved in creating
new media, effectively eliminating the difficulty of modi-
fying the instrument as a barrier to experimentation and
adaptation.

Use of a common instrument specification that is sepa-
rated from the instrument implementation has the added
benefit that an instrument can be immediately used on
any platform for which the test application software has
been written, with no additional burden to the study
designer, thus potentially expanding pool of eligible study
sites.

Computerized adaptive testing

The success of the instrument specification and test appli-
cation software has already led to plans for its continua-
tion and expansion.

First, we have begun implementation of a computer-
ized adaptive test (CAT) for MAT on the iPad platform.
MAT presents a static, pre-defined set of items out of
the original 81. These items were selected by careful,
manual analysis of the data obtained through the 81-
question long-form pilot study. However, an active area
of investigation is the use of CAT for instruments in the
health domain [13,14]. For example, the Patient Reported
Outcomes Measurement Information System (PROMIS)
provides a range of CAT instruments that cover several
domains of health including physical, mental, and social
health [15]. An important advantage of CAT implementa-
tion is that it can bring a substantial reduction in patient
response burden, as well as alleviating both ceiling and
floor effects, which are sometimes seen in traditional
mode of assessments.

Page 9 of 11

Though not yet implemented, the MAT architecture
provides a flexible framework for allowing the incorpora-
tion of one (or more) adaptive approaches.

One challenge in computerized adaptive testing is the
scoring of participants and the selection of items. Tech-
niques such as maximum likelihood and maximum a
posteriori often incur a significant computational penalty
after every item, which is not practical for deployment
onto mobile and low-cost computing platforms. Existing
CAT tools suffer from these limitations and are conse-
quently unsuitable for IRT-based instruments like MAT.
We thus seek to implement a MAT-CAT that overcomes
these obstacles while retaining the significant contextual
advantages conferred by the MAT video animations.

To address this constraint, we have begun exploration
of a fixed-length CAT implementation of MAT and a
psychometric evaluation of the tool has been recently
reported [16]. We have also begun testing of a pre-
computed tree of possible fixed-length, adaptive presen-
tations of the instrument. In this approach, the set of all
possible permutations of # items drawn from an m-item
question bank is generated, with the score and standard
error computed for each of the i € {1,2,...,n} items in
each possible sequence. This naturally corresponds to a
binary tree structure with depth # and 2"*! — 1 nodes.
Each node in the tree represents an item presented to
the user, with the root of the tree representing the first
presented item, which every respondent answers. The
left child of a node corresponds to the next question
asked if the participant responds in the negative, and the
right child corresponds to the next question asked if the
participant responds in the affirmative. Each node—save
the root—also references the score and standard error
that the respondent has attained based on the preceding
responses, and the values associated with the leaf nodes
are the final scores for the traversal from the root.

Though pre-computation of the CAT tree requires the
tree data to be embedded in the instrument configuration,
it offers several distinct advantages in the often resource-
constrained MAT deployment contexts. First, inclusion of
this CAT algorithm requires only minor changes in the
logic layer of the implementations and trivial changes to
the instrument schema (to reference the tree data). This
facilitates rapid inclusion in any and all MAT implemen-
tations.

Second, retrieval of item i+ 1 after a user has responded
to item i requires only traversal of the binary tree to depth
i + 1, which is bound by O(log, 2°*1) = O(i + 1) = O(i).
(Note that, in practice, the computational complexity will
be O(1) (constant time) by simply storing the tree position
at each item instead of re-traversing from the root.) The
pre-computation approach does have at least one signifi-
cant limitation however: a tree representing the possible
instruments of length 7 will contain 2”1 — 1 nodes, which

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

grows with O(2"*1). This exponential growth means that
pre-computation of instruments containing more than
around 20 items represents an effectively intractable bar-
rier, both in terms of the pre-computation cost and in
terms of the runtime storage requirements. However, our
experience showed that there were only marginal gains
in accuracy after 10-12 items, thus allowing the CAT
version of MAT to be safely terminated at 12 or fewer
items [16].

Because MAT-CAT is an active avenue of investigation,
its implementation requirements and constraints are very
much in flux. However, it is inevitable that incorporat-
ing this (or any) form of CAT into the MAT framework
will require augmentation of the instrument schema and
the data and logic layers of the implementation. How-
ever, because CAT can be envisioned as little more than
a change in instrument flow (from static sequential to
dynamic adaptive), existing architectural elements need
not change, and CAT can be introduced as just a new layer
atop the established schema.

Digitally packaged instrument

The success of decoupling the instrument software from
the instrument specification has motivated us to cre-
ate a more flexible and general model for developing
and disseminating this type of psychometric instru-
ment as a “digitally packaged” solution that can be
(a) flexibly adapted for specific applications and (b)
widely shared within research and clinical communi-
ties and rapidly deployed for implementation. This digi-
tally packaged instrument (DPI) framework will expand
upon the ideas introduced in this paper by defining
a platform upon which a greater diversity of instru-
ments can be constructed in addition to implementing
a more general class of software instrument “engines”
for presenting instruments and collecting data from
participants.

Conclusions

The MAT software family is a flexible and practical frame-
work for the development and distribution of interactive,
video-based assessment tools. The implementation-
independent XML document that defines the instrument
parameters simplifies the process of defining instruments
and variations and reduces the obstacles to modifying
and expanding existing instruments as well as simplifying
creation of new instruments.

Availability and requirements

There are two implementations of the MAT software.
Both provide nearly identical functionality with regards to
the Mobility Assessment Tool. Both implementations are
© 2011 SeedStage Associates.

Page 10 of 11

Java Version

Project home page: mat-sf.wfuhs.arane.us
Operating system(s): Platform independent
Programming language: Java

Other requirements: Java 1.5 or higher

iPad Version

Project home page: ipad-mat.wfuhs.arane.us
Operating system(s): iOS 4.3 or higher
Programming language: Objective-C

Other requirements: Apple iPad

Abbreviations
MAT: Mobility assessment tool; IRT: Item response theory; CAT: Computerized
adaptive testing; DPI: Digitally packaged instrument.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

RB designed and developed the instrument schema, Java application, and iOS
application. AM is a biomechanist and JR is a behavioral psychologist. They are
content experts in physical function and mobility disability who contributed
to the pilot study design and conduct, development of MAT items, calibration
of the instrument, and preparation of this manuscript. AP designed and
created the animations. El is the psychometric expert and co-Pl of the study
and contributed to the data analysis and validation of the tool. All authors read
and approved the final manuscript.

Acknowledgements

Support for this study was provided by (a) National Institutes for Aging P30
AG021332, (b) National Heart, Lung, and Blood Institute grant HL076441-01A1,
(c) General Clinical Research Center grant 5SMO1RR007122-18, and (d) the Wake
Forest University Translational Science Institute.

Author details

L Department of Biostatistical Sciences, Public Health Sciences, Wake Forest
School of Medicine, Winston-Salem, North Carolina, USA. 2Department of
Health and Exercise Science, Wake Forest University, Winston-Salem, North
Carolina, USA.

Received: 4 October 2012 Accepted: 12 July 2013
Published: 23 July 2013

References

1. Marsh AP, Ip EH, Barnard RT, Wong YL, Rejeski WJ: Using video
animation to assess mobility in older adults. J Gerontol A Biol Sci Med
Sci 2011, 66A(2):217-227.

2. Rejeski WJ, Ip EH, Marsh AP, Barnard RT: Development and validation of
a video-animated tool for assessing mobility. J Gerontol A Biol Sci Med
Sci 2010, 65A(6):664-671.

3. Shabo A, Rabinovici-Cohen S, Vortman P: Revolutionary impact of XML
on biomedical information interoperability. /BM Syst J 2006,
45(2):361-372.

4. Catley C, Frize M: Design of a health care architecture for medical
data interoperability and application integration. In Proceedings of
the Second Joint 24th Annual Conference and the Annual Fall Meeting of the
Biomedical Engineering Society Engineering in Medicine and Biology
Volume 3: The Institute of Electrical and Electronics Engineers Inc:
Piscataway, NJ; 2002:1952-1953.

5. LuX, Duan H, Zheng H: XML-ECG: An XML-based ECG presentation for
data exchanging. In The 7st International Conference on Bioinformatics
and Biomedical Engineering: The Institute of Electrical and Electronics
Engineers Inc: Piscataway, NJ; 2007:1141-1144.

http://www.mat-sf.wfuhs.arane.us
http://www.ipad-mat.wfuhs.arane.us

Barnard et al. BMC Medical Informatics and Decision Making 2013, 13:73
http://www.biomedcentral.com/1472-6947/13/73

Shiffman RN, Karras BT, Agrawal A, Chen R, Marenco L, Nath S: GEM: a
proposal for a more comprehensive guideline document model
using XML. J Am Med Inf Assoc 2000, 7(5):488-498.

Philipp F, Jantke M, Finkeissen E, Beedgen B, Linderkamp O, Wetter T:
Introducing DoT-U2-an XML-based knowledge supported checklist
software for documentation of a newborn clinical screening
examination. Comput Methods Programs Biomed 2005, 77(2):115-120.
Vittorini P, Tarquinio A, di Orio F: XML technologies for the Omaha
System: A data model, a Java tool and several case studies
supporting home healthcare. Comput Methods Programs Biomed 2009,
93(3):297-312.

Yun C: QTJava will be depreciated [sic] next year. 2008.
[http://lists.apple.com/archives/quicktime-java/2008/Jun/msg00018.
html]

Coleman D, Ash D, Lowther B, Oman P: Using metrics to evaluate
software system maintainability. Computer 1994, 27(8):44-49.
Rosenberg J: Some Misconceptions About Lines of Code. /EEE Int Symp
Softw Metrics 1997, 0:137.

Lind RK, Vairavan K: An experimental investigation of software
metrics and their relationship to software development effort.

IEEE Trans Softw Eng 1989, 15(5):649-653.

Kandula S, Ancker J, Kaufman D, Currie L, Zeng-Treitler Q: A new
adaptive testing algorithm for shortening health literacy
assessments. BMC Med Inf Decis Making 2011, 11:52.

Jacobusse G: Buuren Sv: Computerized adaptive testing for
measuring development of young children. Stat Med 2007,
26(13):2629-2638.

Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S, Amtmann D,
Bode R, Buysse D, Choi S, Cook K, Devellis R, DeWalt D, Fries JF, Gershon R,
Hahn EA, Lai JS, Pilkonis P, Revicki D, Rose M, Weinfurt K, Hays R: The
Patient-Reported Outcomes Measurement Information System
(PROMIS) developed and tested its first wave of adult self-reported
health outcome item banks: 2005-2008. J Clin Epidemiol 2010,
63(11):1179-1194.

Ip E, Rejeski W, Marsh A, Barnard R, Chen SH: Psychometric properties of
a computerized adaptive test for assessing mobility in older adults
using novel video-animation technology. Qual Life Res 2013.
[http://dx.doi.org/10.1007/511136-012-0346-9]

doi:10.1186/1472-6947-13-73

Cite this article as: Barnard et al: Design and implementation of the
mobility assessment tool: software description. BMC Medical Informatics and
Decision Making 2013 13:73.

Page 11 of 11

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BiolMed Central

http://lists.apple.com/archives/quicktime-java/2008/Jun/msg00018.html
http://lists.apple.com/archives/quicktime-java/2008/Jun/msg00018.html
http://dx.doi.org/10.1007/s11136-012-0346-9

	Abstract
	Background
	Results
	Conclusions

	Background
	Motivation for the MAT family of software
	MAT software requirements and architecture
	Requirements
	Architecture
	Instrument schema
	instrumentPolicies
	Instructions
	Items
	Scoring

	Test application architecture
	Presentation
	Logic
	Data

	Implementation
	Java implementation
	Video playback

	Apple iPad implementation
	Implementation comparison

	Results and discussion
	Computerized adaptive testing
	Digitally packaged instrument

	Conclusions
	Availability and requirements
	Java Version
	iPad Version

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

