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Abstract

Background: Lymph node metastasis (LNM) in gastric cancer is a very important prognostic factor affecting long-
term survival. Currently, several common imaging techniques are used to evaluate the lymph node status. However,
they are incapable of achieving both high sensitivity and specificity simultaneously. In order to deal with this com-
plex issue, a new evidential reasoning (ER) based model is proposed to support diagnosis of LNM in gastric cancer.

Methods: There are 175 consecutive patients who went through multidetector computed tomography (MDCT)
consecutively before the surgery. Eight indicators, which are serosal invasion, tumor classification, tumor
enhancement pattern, tumor thickness, number of lymph nodes, maximum lymph node size, lymph node station
and lymph node enhancement are utilized to evaluate the tumor and lymph node through CT images. All of the
above indicators reflect the biological behavior of gastric cancer. An ER based model is constructed by taking the
above indicators as input index. The output index determines whether LNM occurs for the patients, which is
decided by the surgery and histopathology. A technique called k-fold cross-validation is used for training and test-
ing the new model. The diagnostic capability of LNM is evaluated by receiver operating characteristic (ROC) curves.
A Radiologist classifies LNM by adopting lymph node size for comparison.

Results: 134 out of 175 cases are cases of LNM, and the remains are not. Eight indicators have statistically significant
difference between the positive and negative groups. The sensitivity, specificity and AUC of the ER based model are
88.41%, 77.57% and 0.813, respectively. However, for the radiologist evaluating LNM by maximum lymph node size, the
corresponding values are only 63.4%, 75.6% and 0.757. Therefore, the proposed model can obtain better performance
than the radiologist. Besides, the proposed model also outperforms other machine learning methods.

Conclusions: According to the biological behavior information of gastric cancer, the ER based model can diagnose
LNM effectively and preoperatively.
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Background
Gastric cancer has become one of the major causes of
cancer-related deaths in the world [1]. Lymph node metas-
tasis (LNM) is a very important prognostic factor regarding
long-term survival [2]. The TNMa staging system based on
American Joint Committee on Cancer is taken as the
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evaluated standard and has been widely accepted [3]. Based
on this standard, the 5-year survival rate of patients in N0
stage after surgery is 86.1%, while N1, N2 and N3 stage pa-
tients can obtain 58.1%, 23.3% and 5.9%, respectively [4].
Currently, doctors diagnose LNM empirically based on

the size of lymph nodes which relies on various imaging
methods, such as endoscopic ultrasound (EUS), abdom-
inal ultrasound, multi-slice spiral computerized tomog-
raphy (CT), Magnetic Resonance Imaging (MRI) and
Positron Emission computed Tomography (PET). How-
ever, none of the above imaging tools can acquire the
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Table 1 Patient characteristics

Clinic pathological features Value

Number of patients 175

Average age(y) 59.8(30-85)

Ratio of men to women 125:50

Histopathology

Adenocarcinoma 173(98.9%)

Well differentiated 6(3.4%)

Moderately differentiated 91(52%)

Poorly differentiated 76(43.5%)

Small cell carcinoma 2(1.1%)

lymph node metastasis

Positive 134(76.6%)

Negative 41(23.4%)
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lymph node status in a satisfactory way. Meanwhile, a
systemic review shows that EUS, MDCT, conventional
MRI, and FDG-PET cannot be used to confirm or ex-
clude the presence of LNM reliably [2]. The reason is
that large lymph nodes may be caused by inflammation,
while small ones may be caused by metastasis. There-
fore, single lymph node size is not a strong predictor. In
fact, many studies have shown that LNM is related to
tumor size, pathological lymphatic involvement, histo-
logical type and other factors [5-8]. Therefore, a method
which combines lymph node size with these factors
should be considered. Furthermore, a few researches
[9-11] have discussed the diagnostic capabilities of mor-
phological characteristics in rectum cancer. According
to these studies, the morphological characteristics in-
cluding border contour and signal intensity of lymph
nodes may partly improve the diagnostic ability of me-
tastasis. However, these studies mainly focus on the MRI
imaging in rectum cancer. For patients with gastric can-
cer in clinical practice, abdomen CT is a more common
used imaging modality than MRI examination. Hence,
we consider building a model to diagnose LNM with
multiple indicators.
As there are qualitative and quantitative data in eight

indicators, a method which can integrate these two types
of data should be adopted. The ER approach was origin-
ally proposed to deal with multiple attribute decision
analysis problems that involve both qualitative and
quantitative attributes under uncertainty [12]. The ker-
nel is the ER algorithm which is developed on the basis
of the decision theory and the Dempster-Shafer (D-S)
theory of evidence [13,14]. As ER can integrate the
qualitative information and quantitative data reasonably,
it is applied. One of the aims in this paper is to analyze
which indicators are related to the biological behavior of
gastric cancer and construct a mathematical model to
assess LNM preoperatively.

Methods
Patients
In this experiment, 175 CT cases obtained from Peking
University Cancer Hospital & Institute (Beijing, China
P. R.) constitute the sample set. According to the inter-
national treatment guideline of gastric cancer, CT is one
of the most commonly used inspections [15]. However,
other methods such as PET and EUS are used as selected
check. These patients were administered preoperative
contrast enhancement abdominal in the CT examina-
tions and received the gastrectomy between April 2006
and September 2008. This retrospective study was ap-
proved by institutional review board (IRB). They were
preoperatively examined with MDCT. Note that we have
obtained the informed consent from all selected patients
prior to the routine clinical course of CT examinations.
There are 125 males and 50 females among these pa-
tients, and their average age is 59.8 years. The details are
shown in Table 1.

Indicators
There are eight indicators which were extracted by two
radiologists, one with three years and another with eight
years experience in abdominal CT. The eight indicators
were measured and counted manually on MDCT images
as follows:

(1)Serosal invasion: Axial and MPR images are
evaluated to determine the serosal invasion
simultaneously. The entire thickening stomach wall
abnormally enhances linear or reticular structures in
the fatty layer surrounding the stomach indicated
serosal invasion [16].

(2)Tumor classification: Early gastric cancer or
Bormann classification of advanced cancer in MPR
images is confirmed.

(3)Tumor enhancement pattern: Tumor enhancement
is divided into three patterns at portal phase of CT
images, which are mucosal surface enhancement,
homogeneous enhancement and heterogeneous
enhancement.

(4)Tumor thickness: The maximal thickness of tumor
is measured at the axial CT images.

(5)The number of lymph nodes: The number of the
gastric regional lymph nodes with size larger than
3 mm in MDCT images by groups is counted [17].
As the lymph nodes, which are smaller than 3
mm, are too tiny to make them discernible,
they are omitted.

(6)Maximum lymph node size: The short axis of
the largest lymph node detected in CT images is
measured.



Table 2 Description of eight indicators

Patient data LNM(-) LNM(+)

Patient number 41/175 134/175

Measurement data

Tumor thickness(mm) 13.3 ± 14.0 16.6 ± 28.4

Maximum lymph node size(mm) 6.5 ± 2.8 10.0 ± 5.5

The number of lymph nodes 7 ± 4 12 ± 8

Lymph node enhancement 39.5 ± 58.5 62.5 ± 66.5

Count data

Tumor enhancement pattern

Pattern 1 13/175 6/175

Pattern 2 26/175 118/175

Pattern 3 2/175 10/175

Serosal invasion

Yes 15/175 120/175

No 26/175 14/175

Tumor classification

Early gastric cancer 9/175 1/175

Borrmann I 2/175 0/175

Borrmann II 3/175 9/175

Borrmann III 27/175 121/175

Borrmann IV 0/175 3/175

Lymph nodes station

Station 1 29/175 44/175

Station 2 12/175 54/175

Station 3 0/175 36/175

The value of the measurement data was measured manually, and the count
data was the number of data.
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(7)Lymph node station: The lymph node station with
MDCT images based on the Japanese classification
of gastric carcinoma is determined [17].

(8)Lymph node enhancement: It means CT attenuation
value of lymph node, which is measured at the
portal venous phase of CT image.

In this paper, all the indicators are measured manu-
ally. The number of lymph nodes is the amount of
lymph nodes around the stomach. Maximum lymph
node size and lymph node enhancement is extracted
from the maximal lymph node. The objective is to pre-
dict whether LNM occurs other than maximum lymph
node has LNM. In other words, the object is to predict
whether LNM occurs for each patient. The final result
for LNM diagnosis is decided by the surgery and histo-
pathology. The pathological result can definitely con-
firm whether LNM occurs or not. We do not want to
predict metastasis for each lymph node. The reason is
that one-to-one lymph node’s correspondence with CT
and pathology depends on very precise and excellent
experience of radiologist. It is usually not consistent
adequately for different radiologists, which may affect
the prediction accuracy of the mathematical model.
Therefore, we did not make the one-to-one corres-
pondence for every lymph node. The details are de-
scribed in Table 2.

ER based model
In this model, we represent every case by an over-
complete dictionary whose elements are the training
samples. If sufficient training samples are available from
each class, it will be possible to represent the test
sample.
Assume that training samples are denoted by X = {X1,

X2,…,Xp}∈ Rmxn, where n is the number of training sam-
ples, and m is the number of indicators. y∈{1,2,…,p} is
the label and p is the class index. T = [T1,T2…,Tm]

T de-
notes a test sample. The over-complete dictionary A is
denoted as follows:

A ¼
A1;1;A1;2;…;A1;n

A2;1;A2;2;…;A2;n

⋮ ; ⋮ ;…; ⋮
Am;1;Am;2;…;Am;n

2
664

3
775 ð1Þ

Here A consists of training samples and Am,n repre-
sents every indicator in training samples. According to
the limits of ER, the columns of A and T should be nor-
malized firstly. Then each indicator Ti in test sample is
represented by A and corresponding coefficients wi,i =
1,2,…,m. Then we utilize the ER analytic algorithm [13]
as follows:
Tj ¼
μ�

Yn
k¼1

ωkAj;k þ 1−ωk

Xm
i¼1

Ai;k

 !
−
Yn
k¼1

1−ωk

Xm
i¼1

Ai;k

 !" #

1−μ�
Yn
k¼1

1−ωkð Þ
" #

ð2Þ

μ ¼
"Xm

j¼1

Yn
k¼1
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Xm
i¼1

Ai;k

!
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Yn
k¼1
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Xm
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Ai;k

 !#−1
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All the indicators in T can be represented by A and wi,
i = 1,2,…,m using the ER approach. Assume that ER rep-
resents the ER approach. Therefore, T is represented as
follows:
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T ¼ ER A;ωð Þ ð4Þ
where ω∈Rn is the coefficient vector. However, it is not
possible to guarantee the optimal solution and instead
we replace it by the approximate solution provided in
Equation (5):

T≈ER A;ωð Þ ð5Þ

As the new case can be sufficiently represented by the
training samples from the same class, we obtain the pre-
diction by ω. The objective is to minimize residual be-
tween expectation output and observed output. We
solve this problem by calculating the following l2
minimization problem:

min
ω

jjT−ER A;ωð Þjj22 ð6Þ

where ω is the parameter that needs to be optimized.
The constrained condition is,

Xn
i¼1

ωi ¼ 1;ωi ≥ 0; i ¼ 1;…; n ð7Þ

The commonly used single-objective optimization
methods with constraint handling can be utilized. In this
paper, FMINCON function in MATLAB toolbox is
adopted.
Then the residual rj,j = 1,…,n is calculated between y

and each class in T as Equation (8). The residual is calcu-
lated in the l2-norm. For each class j, let wj be the charac-
teristic function that selects the coefficients associated
Figure 1 ROC curve between ER based model and radiologist. Receive
and the radiologist. The AUC of the proposed model is 0.829, while the rad
with the jth class. When using the coefficients associated
with the jth class, one can approximate the given test
sample y as ŷj = ER(T,wj).

rj Tð Þ ¼ jjT − ER ω;Aj
� �jj22; j ¼ 1;…; p ð8Þ

Finally, we can classify T by assigning it to the object
class that minimizes the residual as follows:

identity Tð Þ ¼ argminrj Tð Þ; j ¼ 1;…; p ð9Þ

The prediction result is the same as the class with
minimum residual. We summarize the procedures as
follows:

Step 1: Input dictionary A = [A1,A2,…,Ak]∈Rmxn and a
new case T∈Rm.
Step 2: Normalize the columns of A and y to have unit
l2-norm.
Step 3: Solve the l2-minimization problem to obtain
ωas in Equation (6).
Step 4: Calculate the residuals rj(T) as Equation (8).
Step 5: Output the final label for which rj(T) is
minimized.

Results
By univariate statistical analysis, it shows that all the in-
dicators including serosal invasion, tumor classification,
tumor enhancement pattern, tumor thickness, number
of lymph nodes, maximum lymph node size, lymph
nodes station and Lymph node enhancement are signifi-
cant different between LNM positive and negative group
r operating characteristic (ROC) curve for LNM with ER based model
iologist is 0.757.



Table 3 AUC values of nine methods on training data

Model Area Std
error

Asymptotic
sig.

Asymptotic 95% confidence interval

Lower bounder Upper bounder

ER based model 0.948 0.020 0.000 0.908 0.988

ANN 0.798 0.043 0.000 0.713 0.882

SVM linear 0.944 0.019 0.000 0.906 0.981

SVM Gaussian 0.955 0.018 0.000 0.920 0.990

SVM Ploynomial2 0.94 0.022 0.000 0.898 0.983

SVM Ploynomial3 0.938 0.022 0.000 0.894 0.982

SVM Ploynomial4 0.941 0.022 0.000 0.898 0.983

Logistic Regression 0.888 0.027 0.000 0.835 0.940
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(P < 0.001). On the other hand, 5-fold cross validation is
used in all the experiments [18].
Taking 7.7 mm as the best cut-off point of maximum

lymph node size, the radiologist achieves an AUC of
0.757 for evaluating LNM. In other words, if lymph node
size is larger than 7.7 mm, it is considered that LNM oc-
curs; otherwise, it does not occur. The sensitivity and
specificity are only 63.4% and 75.6%. However, the
sensitivity, specificity and AUC of the proposed model
are 89.51%, 80%, and 0.829, respectively (Figure 1 and
Table 3). According to statistical analysis, the ER based
model performs significantly better (P < 0.05) than
radiologists.
On the other hand, there are many other machine

learning methods that can be used for evaluating
LNM. Some typical methods are used for comparisons,
Figure 2 ROC curve among eight methods on training data. Figure 2 s
SVM whose kernel function is Gaussian is the largest among eight method
However, it is better than other six methods.
including Artificial Neural Network (ANN) [19,20],
Support Vector Machine (SVM) and logistic regression.
For SVM, a linear, a Gaussian and a polynomial kernel
are tested, and LibSVM2.91 is used [21]. The linear
SVM is named as SVM linear. For Gaussian kernel
(named as SVM Gaussian), the regularization and kernel
parameters are set as {2-3,2-2,…,210}, and the highest rec-
ognition rate is regarded as the output. For polynomial
kernel, three degrees such as 2 (named as SVM polyno-
mial2), 3 (named as SVM polynomial3), and 4 (named
as SVM polynomial4) are tested. The feed forward
neural network in MATLAB toolbox is adopted for
ANN which has a single hidden layer and the number of
nodes is 5. Binary logistic regression in SPSS is used for
logistic regression. 5-fold-cross validation is still used in
all studies. Figure 2 shows the ROC and Table 3 shows
hows the ROC curve for six methods on training data. The AUC of
s. The ER based model is a slightly lower than Gaussian kernel.



Figure 3 ROC curve among eight methods on testing data. Figure 2 shows the ROC curve for six methods on testing data. The AUC of the
ER based model is the largest among six methods.
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the sensitivity, specificity and AUC of these nine methods
on training data, while Figure 3 and Table 4 show the re-
sults on testing data. The experimental results show that
ER based model can obtain better performance than other
commonly used machine learning methods.

Discussion
LNM has a great effect on the surgical treatment of pa-
tients with gastric cancer and is an important factor in
prognosis. Currently, the standard for judging LNM
mainly depends on morphological indicators and lymph
node size is the dominant indicator. However, there are
some different opinions. For example, Fukuya T et al.
Table 4 AUC values of nine methods on testing data

Model Sensitivity Specificity

ER based model 0.8951 0.8

ANN 0.8453 0.6429

SVM Linear 0.8723 0.6765

SVM Gaussion 0.7657 0.6036

SVM Ploynomial2 0.8611 0.6774

SVM Ploynomial3 0.8662 0.6667

SVM Ploynomial4 0.8633 0.6111

Logistic Regression 0.8552 0.6667

Radiologist2 0.634 0.765
1The value of data was AUC + standard deviation.
2Taking 7.7 mm as the best cut-off point of maximum lymph node size, and if lymp
does not occur.
[22] showed CT attenuation and lymph node configur-
ation could aid in diagnosis of malignant adenopathy.
Deutsch SJ et al. [23] pointed out that location, size,
density and contour are not helpful in distinguish benign
from malignant lymphadenopathy. Therefore, the main
constraint is that there is no unified criterion for evalu-
ating LNM preoperatively.
Several other methods are applied to evaluate LNM.

The commonly used method is artificial neural network
(ANN). For example, Bollschweiler et al applied a
single-layer perception to predict LNM in gastric cancer
and the accuracy is 79% [24]. However, it has some defi-
ciencies: 1) ANN is always sensitive to initial parameters
AUC1 P value

(AUC compared with Radiologist)

0.829 ± 0.037 P < 0.001

0.791 ± 0.041 P < 0.001

0.78 ± 0.046 P < 0.001

0.688 ± 0.059 P < 0.001

0.781 ± 0.048 P < 0.001

0.782 ± 0.048 P < 0.001

0.769 ± 0.049 P < 0.001

0.793 ± 0.039 P < 0.001

0.757 ± 0.042

h node size larger than 7.7 mm, it is considered that LNM occurs; otherwise, it
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and needs to spend more time evaluating them. 2), it is
prone to be over fitting. Besides this, other machine
learning methods are also used for evaluating LNM.
Compared with ANN, the new model is generated with-
out assuming system structure or parameters a prior,
thus no parameters needs to be initialized, which can
help circumvent the bottleneck of estimating all initial
parameters. Moreover, the ER based model can obtain a
higher prediction performance among the presented
methods. Therefore, it seems that ER based model is a
suitable method for evaluating LNM.

Conclusions
By utilizing the biological behavior information of gastric
cancer on CT images, the proposed ER based model can
help effectively diagnose the LNM preoperatively.

Endnote
aThe international normative TNM classification de-

scribes the state of the tumor (T), the lymph nodes (N),
and possible metastases (M).
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