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Abstract

Background: The objective of this study was to ascertain the performance of syndromic algorithms for the early
detection of patients in healthcare facilities who have potentially transmissible infectious diseases, using
computerised emergency department (ED) data.

Methods: A retrospective cohort in an 810-bed University of Lyon hospital in France was analysed. Adults who
were admitted to the ED and hospitalised between June 1, 2007, and March 31, 2010 were included (N=10895).
Different algorithms were built to detect patients with infectious respiratory, cutaneous or gastrointestinal
syndromes. The performance parameters of these algorithms were assessed with regard to the capacity of our
infection-control team to investigate the detected cases.

Results: For respiratory syndromes, the sensitivity of the detection algorithms was 82.70%, and the specificity was
82.37%. For cutaneous syndromes, the sensitivity of the detection algorithms was 78.08%, and the specificity was
95.93%. For gastrointestinal syndromes, the sensitivity of the detection algorithms was 79.41%, and the specificity
was 81.97%.

Conclusions: This assessment permitted us to detect patients with potentially transmissible infectious diseases,
while striking a reasonable balance between true positives and false positives, for both respiratory and cutaneous
syndromes. The algorithms for gastrointestinal syndromes were not specific enough for routine use, because they
generated a large number of false positives relative to the number of infected patients. Detection of patients with
potentially transmissible infectious diseases will enable us to take precautions to prevent transmission as soon as
these patients come in contact with healthcare facilities.
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Background
Patients who have potentially transmissible infectious
diseases at the time of admission to healthcare facilities
are a source of hospital-acquired infections. For example,
studies on the incidence rates of diarrhoea, and particu-
larly of acute viral gastroenteritis, recorded rates ranging
from 0.15–19% in paediatric services [1-3]. The imple-
mentation of standard precautions and control measures
after epidemic confirmation has proven efficiency in
reducing rates of infection. Jusot et al. determined that
some measures, e.g., “restricting the patient’s mobility
outside his or her room, keeping the patient’s door
closed, and having fewer than 20 beds in the ward,”
were associated with lower rates of hospital-acquired
diarrhoea in departments where they were applied [1].
A rapid and efficient warning system for early detection

of patients with potentially transmissible infections who
are admitted to hospital via the emergency department
(ED) would facilitate prevention of transmission and
deployment of control measures. Because the diagnosis
of infections is not systematically implemented during
ED visits, it is necessary to develop and adopt syndromic
detection systems. Such a system would help infection
control practitioners to work with clinicians in applying
transmission-based precautions in a quick to react way.
There is little published literature evaluating syndromic

surveillance systems intended to detect community-ac-
quired transmissible infections among admitted patients
[4]. Most syndromic surveillance systems that analyse
ED data are designed to detect anomalous events
occurring in the community. They provide syndrome
classification by processing ED chief complaints [5-10]
or ED discharge diagnoses [11,12]. These systems detect
outbreaks efficiently because they consider a large amount
of data to ascertain differences from baseline.
An automated clinical decision support system, aimed at

detecting patients admitted to hospital with potentially
transmissible infectious diseases, is being developed at
Hôpital de la Croix-Rousse in Lyon (France). This system
analyses computerised ED data entered in real time,
not only chief complaints and discharge diagnoses but
also clinical observations, specialists’ notes, prescriptions,
etc. The system is based on the processing of structured
and unstructured data from ED medical records. The
technique of extraction and processing of textual data has
already been described in a previous publication [13]. The
objective of this new study, describing the stage after data
processing, is to build and evaluate syndromic algorithms
that use computerised ED data for early detection of
patients with potentially transmissible infectious diseases.
These algorithms will be direct applications of logistic
models, using a common modelling strategy for different
syndrome groups: respiratory system, gastrointestinal and
cutaneous syndrome groups.
Methods
Setting and selection of patients
Syndromic algorithms to detect patients with potentially
transmissible infectious diseases were built and evaluated
in a retrospective cohort. The study population consisted
of patients who were admitted to the ED and then
hospitalised in Hôpital de la Croix-Rousse (University
Hospital of Lyon, France) between June 1, 2007, and
March 31, 2010. This hospital has 810 acute beds and
exclusively manages adult patients. The total number of
patients included in the cohort for this study was
N=10,895.

Infectious syndrome groups studied
The infectious disease studied in respiratory, cutaneous
and gastrointestinal syndrome groups were defined based
on the characteristics of the corresponding potentially
transmissible infections. Syndromes selected for the study
are those for which appropriate hygiene precautions
should be applied to prevent the risk of transmission
(contact precautions, droplet precautions and airborne-
infection isolation precautions) [14]. Syndrome group
of the respiratory system (abbreviated in the following
text by “SGRS”) included lower-airway infections (e.g.,
pneumonia, influenza and influenza-like illness), upper-
airway infections (e.g., pharyngitis) and tonsillitis. Ton-
sillitis was included in this group because transmission
based precautions are common to other syndromes of
the respiratory system (eg. viral tonsillitis, streptococcal
tonsillitis). Then, it is interesting for the infection control
practitioners, to also detect these infections. Cutaneous
syndrome group included varicella-zoster, measles, rubella,
scabies, erysipelas, suppurative abscess, cellulitis and
phlegmons. Gastrointestinal syndrome group included
viral gastroenteritis and diarrhoea due to bacterial
infection (e.g., salmonella, dysentery and Clostridium
difficile).

Data collection and processing
In Hôpital de la Croix-Rousse, ED patient records are
computerised. Clinical data consist of both structured
variables (age, gender, discharge diagnostic code, etc.)
and unstructured variables (chief complaints, clinical
observations, etc.). Data stored daily in the hospital data
warehouse were extracted by queries written by our
Department of Information Systems, using Business
Objects software.
The extracted data are:

– Identification number (anonymised for the study)
– Date and time of ED admission
– Date and time of ED discharge
– Residence postcode
– Age
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– Gender
– Type of admission (e.g., spontaneous consultation,

sent by family physician, brought by ambulance)
– Circumstances of admission
– CCMU code (French clinical classification of ED

patients, Classification Clinique des Malades
aux Urgences)

– Vital signs upon arrival (blood pressure, pulse,
respiratory frequency, dyspnea, temperature,
chills, purpura)

– Chief complaint*
– Clinical observation*
– Biological procedures*
– Technical diagnostic and therapeutic procedures*
– Type of imaging prescribed
– Type and free-text* of specialists’ notes
– Discharge diagnoses: ICD-10 codes and

associated labels*
– Discharge prescriptions*
– Type of discharge (hospitalisation in the same

hospital, hospitalisation in another hospital,
discharge to home)

– Destination (department or hospital where the
patient is hospitalised)

Natural medical-language variables (followed by * in
the list above) need to be processed before their use.
The method for doing so is described in another
Codes tallying with Signs of
fever

“MSH / D005334 / fever” 
“SNO / F-0A440 / hyperthermia” 
“SNO / F-03003 / increased body
temperature” 
“ICD / R50.9 / fever unspecified”
“DCR / 11355_CRI / + - fever” 
“ICP / A03 / fever” 

Natural medical 
language variable of 
the computerised ED 

records

“Chief Complaint”
OR

“Observation”
OR

“Specialists’ notes”
OR

“Text of diagnosis”
OR

“Diagnostic codes”

If

Codes tallying with Signs of
fever

Temperature > 37.5

Structured variable of 
the computerised ED 

records

“Vital signs upon arrival”

“SNO / F-03260 / chills”
“DCR / 11391_CRI / + - chills” 
“ICP / A02 / chills” 

“MSH / D012768 / shivering” 

“MSH / D013696 / temperature”
“SNO / A-80190 / temperature 
NOS”)

“SNO / F-03270 / chills and fever

Figure 1 Example of data processing for extracting the symptom “fev
record. ICD, International Classification of Diseases, 10th revision (ICD-10); S
3.5); MSH, Medical Subject Headings (MeSH); ICP, International Classification
Results (DCR); NOS, Not Otherwise Specified.
publication [13]. These variables were automatically
processed using the UrgIndex application and the
French-language medical multi-terminology indexer
(French acronym, ECMT: Extracteur de Concepts Multi-
Terminologique) [15]. Medical terms were coded ac-
cording to standardised international terminologies. At
the end of the automated process, only codes for infec-
tious signs and symptoms were selected. Figure 1 shows
an example of data processing for the symptom “fever,”
including the coding process when it appears in natural
language, in one of the variables in the medical record.

Development method for building the detection algorithms
Data from the cohort (N=10,895) were divided into two
datasets. The first dataset was constituted by randomly
selecting 70% of the study population (N=7,627). This
dataset was used for the training phase. A second
dataset consisted of the remaining 30% of the study
population (N=3,268) and was used to evaluate the
performance of algorithms developed with the first
dataset.
Separate detection algorithms were built for infectious re-

spiratory, cutaneous and gastrointestinal syndrome groups,
and each algorithm was separately assessed using the
training set. To construct the algorithms, the signs and
symptoms describing these syndromes, according to their
locations in the electronic medical records, were fed into
a logistic regression model. The 2 quantitative variables,
 

 

Then

Symptoms

=

Fever

 

”

Unique UMLS concept 
identifier

“C0015967 / fever”

“C0085593 / chills”

“C0036973 / shivering”

“C0085594 / chills & fever”

“C0039476 / temperature”
“C0204688 / temperature 
taking, NOS”

er” from unstructured and structured variables in the medical
NO, Systematized Nomenclature of Medicine, version 3.5 (SNOMED
of Primary Care (ICPC-2); DCR, French Dictionary of Consultation
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age and number of inflammation signs in clinical notes,
were categorized into 4 items for the logistic regression
modelling. The algorithms were built independently for
the different syndrome groups. Consequently, if a patient
presented several infectious diseases corresponding to
different syndrome groups, the patient’s data were used
in the different models for building detection algorithms
of each syndrome group. A descending procedure was
performed to ascertain significant variables (p < 0.05), i.e.,
variables predictive of infection corresponding to the
studied syndrome groups. The best logistic model was
chosen for each syndrome group by including the variable
set that yielded the lowest value of the Akaike information
criterion (AIC). The corresponding individual probability
of infection was calculated for each patient in the training
set. The optimal threshold of detection was determined
into two steps. In the first step, each of the individual
probabilities calculated in the training set was used as the
threshold of detection. The corresponding parameters
of detection performance, sensitivity and specificity were
calculated and plotted on receiver operating characteristic
(ROC) curves. In the second step, the optimal threshold of
detection was determined. For a sensitivity range between
75% (threshold for minimal acceptable sensitivity) and
100%, the number of true and false positives per week
were estimated and plotted on curves. The optimal
threshold corresponded to the individual probability
giving a false positive/true positive ratio of 2 in the
training set. The ratio of 2 for false positive/true positive
was determined by consensus of our infection control
team according to the weekly excess workload judged
acceptable to investigate false positives, as compared to
the work required to investigate true positives.
Evaluation method of detection algorithms
The second dataset (test dataset) consisted of the re-
maining 30% of the study population (N=3,268). Detection
of potentially infected patients in the test dataset used the
following algorithm: 1) parameters estimated with the final
model obtained using the logistic descending procedure
in the training set were applied to the test dataset; 2)
individual probabilities of infection were calculated; 3)
when the individual probability was over the detection
threshold, the patient was categorized as infected, other-
wise the patient was categorized as not infected.
The detection algorithms were evaluated using a cross-

validation procedure, and in terms of performance in
detecting patients with infections corresponding to the
syndrome group studied.
The cross-validation procedure consisted in comparing

the distributions of individual probabilities between the
training and test datasets by t-tests of the means and
areas under the ROC curves.
The algorithms’ performances in detecting patients
belonging to the SGRS, gastrointestinal syndrome group
and cutaneous syndrome group were evaluated by calcu-
lating sensitivity, specificity and positive and negative
predictive values (PPV and NPV). The reference used
for the calculation of these parameters was the medical
diagnosis of infection coded in the French Diagnosis-
Related Group system (DRG; French acronym: PMSI).
A patient was classified as having an infection corre-
sponding to a respiratory, gastrointestinal or cutaneous
syndrome group when the ICD-10 code was assigned in
the French DRG by a physician during hospitalisation.
If the discharge summary did not contain an ICD-10

code corresponding to an infection whose symptoms
were connected to SGRS, gastrointestinal or cutaneous
syndrome group, the patient was classified as not having
an infection corresponding to the syndrome group
considered.
The 95% confidence intervals (CI) of sensitivity, specifi-

city, PPV and NPV were computed by the exact binomial
method. Analyses were undertaken with SAS 9.1 and R
2.8 softwares.

Results
Characteristics of the study population
The study population consisted of 10,895 adult patients
who visited the ED and were then hospitalised in the
same hospital between June 1, 2007, and March 31,
2010. The mean age of patients was 67.1 (±21.3) years.
There were 5,136 men (47.1%).
The training dataset comprised 7,627 patients, including

713 (9.3%) patients with respiratory infections, 173 (2.3%)
with cutaneous infections and 85 (1.1%) with gastrointes-
tinal infections.
The test dataset consisted of 3,268 patients, including

318 (9.7%) patients with respiratory infections, 73 (2.2%)
with cutaneous infections and 34 (1.0%) with gastro-
intestinal infections.

Detection algorithms
Selection of the variables used in the detection algorithms
To calculate each individual probability of infection, the
detection algorithms used the remaining variables in the
model with the lowest AIC. The results are presented
for respiratory, cutaneous and gastrointestinal syndrome
groups in Tables 1, 2 and 3, respectively.

Determination of the optimal threshold of detection
The optimal threshold of detection was the individual
probability corresponding to sensitivity greater than
75% and with a false positives/true positives ratio equal
to 2 in the training set. Figure 2 shows the number of
corresponding true and false positives for sensitivity
between 75 and 100% in the training set (population



Table 1 Results of logistical regression procedures (final model) for respiratory syndromes (infected = 713;
non-infected = 6,914)

Effect Odds ratio 95% Confidence interval

Age ≤53 years 1 -

Age 54–74 years 1.63 1.21–2.2

Age 75–84 years 1.35 0.99–1.85

Age ≥85 years 1.16 0.85–1.60

Mention of diagnosis of respiratory infection in diagnosis section (ICD-10) 10.71 8.56–13.4

Mention of diagnosis in clinical notes 3.12 2.50–3.89

Cough in clinical notes 1.97 1.59–2.45

Sore throat in chief complaint 9.16 3.03–24.74

Abnormal pulmonary auscultation in clinical notes 1.54 1.22–1.94

Sign of respiratory failure in chief complaint 2.92 1.79–4.69

Sign of respiratory failure in clinical notes 1.93 1.57–2.36

Fever on observation 1.35 1.09–1.65

Microbiology examination in biological procedures 3.94 1.16–12.35

Biology examination in clinical notes 1.27 1.03–1.58

Biology examination in biological procedures 0.73 0.56–0.93
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studied = 7,627 patients). For SGRS, the number of false
positives varied from 6.43 to 66.14 when sensitivity ranged
from 75% (corresponding to a detection threshold set
at an individual probability of 0.1157) to 100% (corre-
sponding to a detection threshold set at an individual
probability of 0.0098), corresponding to a range in the
number of true positives from 5.19 to 6.92.
For cutaneous syndrome group, the number of false

positives varied from 2.08 to 71.81 when sensitivity ranged
from 75% (corresponding to a detection threshold set
at an individual probability of 0.0568) to 100% (corre-
sponding to a detection threshold set at an individual
Table 2 Results of logistical regression procedures (final mod
non-infected = 7,454)

Effect

Mention of cutaneous infection in diagnosis section (ICD-10 codes)

Mention of cutaneous infection in chief complaint

Mention of cutaneous infection in clinical notes

Skin rash in clinical notes

Complication of skin infection in clinical notes

Number of inflammation signs in clinical notes = 0

Number of inflammation signs in clinical notes = 1

Number of inflammation signs in clinical notes = 2

Number of inflammation signs in clinical notes = 3

Fever in chief complaint

Biology examination in biological procedures

Microbiology examination in biological procedures

Opinion on infectious diseases reported in clinical notes

Specific treatment mentioned in clinical notes
probability of 0.0014), corresponding to the range in
the number of true positives from 1.25 to 1.65.
For gastrointestinal syndrome group, the number of

false positives varied from 13.23 to 72.26 when sensitivity
ranged from 75% (corresponding to a detection threshold
set at an individual probability of 0.0115) to 100% (corre-
sponding to a detection threshold set at an individual
probability of 0.0013), corresponding to the range in
the number of true positives from 0.60 to 0.80.
ROC curves obtained with individual probabilities

used as detection thresholds, generated separately for
each studied syndrome group in the training set, are
el) for cutaneous syndromes (infected = 173;

Odds ratio 95% Confidence interval

38.37 21.87–68.54

5.44 2.65–11.15

6.29 3.92–10.04

2.89 1.14–6.73

2.29 1.32–3.86

1 -

0.98 0.59–1.62

2.18 1.15–4.06

5.68 2.27–13.92

2.28 1.12–4.31

0.33 0.18–0.58

9.30 1.10–46.99

1.83 1.03–3.14

2.67 1.58–4.41



Table 3 Results of logistical regression procedures (final model) for gastrointestinal syndromes (infected = 85,
non-infected = 7,542)

Effect Odds ratio 95% Confidence interval

Mention of gastrointestinal infection in diagnosis section (ICD-10 codes) 16.06 7.72–33.28

Mention of gastrointestinal infection in clinical notes 1.99 1.14–3.49

Diarrhoea in chief complaint 3.45 1.67–6.88

Diarrhoea in clinical notes 7.45 4.36–12.66

Fever in clinical notes 2.06 1.19–3.61

Biology examination in biological procedures 0.45 0.22–0.83

Microbiology examination in chief complaint 3.21 1.20–7.59

Specific treatment of gastrointestinal infection in therapeutic procedures 7.27 1.18–30.32
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illustrated in Figure 3. For SGRS, the optimal probability
threshold was 0.0661 (Figure 2). The corresponding
expected number of infected patients detected per week
was 6.92. The number of patients detected correctly (true
positives) was 5.72, whereas the number of false positives
was 11.44 in the training dataset (mean population per
week = 73.06). For cutaneous syndrome group, the
optimal probability threshold was 0.0442 (Figure 2). The
corresponding expected number of infected patients
detected per week was 1.65. The number of true positives
was 1.30, and the number of false positives was 2.60.
For gastrointestinal syndrome group, the number of
false positives was high, even at a sensitivity of 75%. It
was not possible to obtain a probability with a false
positives/true positives ratio of 2, and no optimal thresh-
old could be determined for gastrointestinal syndrome
group. The best ratio obtained for a range of sensitivity
between 75% and 100% was 22. The corresponding prob-
ability threshold was 0.0115 (Figure 2). The expected
number of infected patients per week was 0.80; at this
threshold, 0.60 were correctly detected, but 13.23 false
positives were also identified.

Evaluation of detection algorithms
Cross-validation procedure
Differences between the distributions of individual probabil-
ities in the training and test datasets were not statistically
significant for the three syndrome groups (t-test p-values
were 0.346, 0.888, and 0.535, respectively, for respiratory,
cutaneous and gastrointestinal syndrome groups).
ROC curves of the training and test datasets were

compared (Figure 3). Areas under the ROC curves for
the detection of patients with SGRS were 0.8977 (95%
CI 0.8849–0.9106) in the training dataset and 0.9029
(95% CI 0.8856–0.9201) in the test dataset. For the de-
tection of patients belonging to the cutaneous syndrome
group, they were 0.9259 (95% CI 0.8974–0.9543) and
0.9487 (95% CI 0.9152–0.9823), respectively, in the
training and test datasets. For the detection of patients
belonging to the gastrointestinal syndrome group, they
were 0.8668 (95% CI 0.8207–0.9129) and 0.8891 (95%
CI 0.8235–0.8547), respectively, in the training and test
datasets.

Evaluation of the performances of algorithms
The algorithms’ performances were evaluated using the
test dataset. Table 4 details the results of algorithm per-
formance for the optimal threshold of probability deter-
mined previously with training dataset for a false positive/
true positive ratio = 2. Sensitivity is above 75% as it was
fixed in the learning phase, and the PPV reflects the fixed
false positive/true positive ratio, except for the gastro-
intestinal syndrome group, where it was not possible to
achieve a ratio of 2 with a sensitivity of 75%. In the gastro-
intestinal syndrome group, for each true positive detected
and validated, it would be necessary to invalidate 22 false
positive detected if this rule of a threshold of a false posi-
tive/true positive ratio = 2 had not been set.

Discussion
The early detection of patients with potentially transmis-
sible infectious diseases, at the beginning of their hospital
stay, is an important element in the prevention of nosoco-
mial infections. Such detection is based on the principle of
syndromic surveillance, as patients mostly come to EDs
with symptoms rather than diagnoses. Moreover, the diag-
nosis at the time of ED discharge is usually at the stage of
hypothesis rather than confirmation. The surveillance
system we assessed analyses all available data in
computerised ED records, first by automatically process-
ing textual data and then by applying detection algorithms
to textual and structured variables in those records.
Our study revealed that syndromic surveillance makes

it possible to detect patients with potentially transmis-
sible infectious diseases; sensitivity of detection ranged
from 78.08% (cutaneous syndrome group) to 82.70%
(SGRS). Detection algorithms have been developed using
a common modelling strategy for different syndromes
groups. All the variables of the final model presented
odds-ratios above 1 except biological examination in
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false positives per week were calculated in the population studied (mean population per week=73.06; learning dataset). Tables show the values
of optimal detection thresholds (vertical lines) and thresholds corresponding to 75% and 100% sensitivity.
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biological procedures. Biological examination in bio-
logical procedures has odds ratios significantly below 1
in biological procedures (Tables 1, 2 and 3) but the
odds ratio is above 1 in clinical notes (Table 1) and in
chief complaint (Table 3). The probable explanation is
that biological examination mentioned in the biological
procedures of the electronic medical records includes
systematic biological procedures which are not all specific
of the diagnosis procedure of an infection (e.g., blood
cells count, C-reactive protein, blood sedimentation).
These biological examinations are prescribed for many
patients whatever the chief complain (infectious disease
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or myocardial infection or dehydratation…). Globally
this item is then predictive of the absence of infection.
Conversely, when a biological examination is explicitly
mentioned by the clinician in the chief complaint section
or in the clinical note of the electronic medical record, it
is probably more often because the biological examination
provides relevant information in the diagnostic approach
of an infectious disease.
The seasonality was assessed in the regression model,
with « month » and « epidemic season » variables. These
variables were not significant and were not kept in the
final model. This is probably due to the heterogeneity in
infectious diseases included in each syndrome group. For
example, in the SGRS, there were influenza (seasonal varia-
tions) and tuberculosis (no variation according to season).
The thresholds were chosen to obtain the best balance

between the ability to detect true positives (sensitivity)
and excess workload (false positives), in accordance with
the available capacity of the infection-control team at
our hospital to address these issues. The threshold is
customizable according to the risk of transmission of
infection in the hospital where the system will be
implemented and also if a different excess workload
would be judged acceptable to the infection control
team of this hospital.
In evaluating performance, priority was given to high

sensitivity, because the goal of the surveillance system
was to detect patients with potentially transmissible
infectious diseases and thereby allow application of early,
suitable, transmission-based precautions. This is why
the sensitivity range was set between 75 and 100% to
determine the optimal threshold. However, the numbers of
true and false positives as a function of sensitivity (Figure 2)
revealed that for each syndrome, the number of false posi-
tives increased rapidly as sensitivity grew, whereas the de-
tection of true positives did not increase significantly.
Improvements could be made that reduce the number of
false positives. Among symptoms extracted by textual ana-
lysis, one could chronologically distinguish the symptoms
that correspond to the patient’s medical history from those
that correspond to the current medical situation during
the consultation in the ED. For example, in our study,
many patients without gastrointestinal infections had diar-
rhoea among their presenting symptoms in the days be-
fore consultation, or chronically, and were identified as
being potentially infected. Our extraction system in its
current version cannot exclude the symptoms of the med-
ical history, which generates a number of false positives
that would be too large for its routine use in the detection
of gastrointestinal syndromes. The introduction of seman-
tic analysis should allow association of the symptoms with
either the patient’s medical history or the current episode,
and should consequently improve the performance of de-
tection for gastrointestinal syndromes.
Our study has some limitations. In particular, the sub-

jects included only patients who were hospitalised after
ED consultation. The study did not consider those who
were discharged directly after ED consultation, but were
potentially contagious to healthcare workers or other
patients that they met during their ED stay (e.g., in waiting
rooms or elevators). However, our choice to focus exclu-
sively on a hospitalised population was guided by the



Table 4 Performances of algorithms in the test dataset

Syndrome Infected Non-
infected

Optimal threshold
of probability

Sensitivity Specificity Positive
predictive value

Negative
predictive value

% (95% CI) % (95% CI) % (95% CI) % (95% CI)

Respiratory 318 2,950 0.0661 82.70 (78.09–86.70) 82.37 (80.95–83.73) 33.59 (30.28–37.02) 97.79 (97.13–98.33)

Cutaneous 73 3,195 0.0442 78.08 (66.86–86.92) 95.93 (95.19–96.59) 30.48 (23.97–37.62) 99.48 (99.16–99.17)

Gastrointestinal 34 3,234 0.0115 79.41 (62.1–91.3) 81.97 (80.6–83.28) 4.43 (2.94–6.37) 99.74 (99.46–99.89)
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desire to have a gold standard, namely, validated medical
diagnoses in hospital discharge summaries for the purpose
of ascertaining infections.
The detection algorithms described here represent

overall performance of the automated clinical decision
support system being developed in our hospital for
syndromic surveillance. This automated clinical decision
support processes into two steps: 1) automated extraction
of medical terms in the ED record by Urgindex and 2)
computation of individual probabilities to be infected
using parameters of the logistic final model. The quality
of data used for modelling depends also on the quality
of the information in the ED electronic record and on
UrgIndex performances for automated extraction of the
medical terms. UrgIndex recall was 85.8% (95% CI
84.1–87.3), with precision of 79.1% (95% CI 77.3–80.8)
[13]. The ability of the system to detect patients with
potentially transmissible infectious diseases was sus-
ceptible to variation according to healthcare workers’
vocabulary, because automatic UrgIndex processing is
based on keyword searches and filters. Repeated revision
of detection-tool performance is necessary to adapt the
filters to new vocabulary or acronyms in patient records.
Analysis of the reasons for lack of detection will allow
us to complete different filters, and thus to improve the
functionality of the system.
Methods for detecting respiratory, cutaneous and gas-

trointestinal syndromes from ED records have been
extensively reported in the literature. The syndromic
surveillance systems described to date mostly use free-
text chief complaints as the data source for syndrome
detection [5,6,16-20], and automatic text processing to
classify chief complaints into syndromes [5,6,16,17,19,20].
However, the sensitivity of respiratory, cutaneous and
gastrointestinal syndrome detection has ranged from 43%
to 100%, 46.8% to 100%, and 32 to 98.1%, respectively
[6,18,21-25]. The variability among the published results
can be explained by differences in the syndrome defini-
tions of surveillance systems, divergent detection algo-
rithms and diversity in the data analysed, whereas the
performances reported in our study varied according to
the syndromes considered and the detection algorithms
being tested. The sensitivities we evaluated fell within
the intervals described in earlier publications about
such systems. However, Elkin et al. demonstrated the
superior accuracy of using whole encounter notes,
instead of only chief complaints, to detect patients with
influenza; those authors processed data similar to those
used in our study [26]. At the fixed specificity of 40%,
the sensitivity of using whole encounter notes was
89.0%. Consistent with our results, specificities over
94% have been reported in the literature for the three
syndromes we studied.
A future stage of our project will involve applying

these algorithms to patients who visit the ED, but are
not hospitalised thereafter, for diseases such as measles
or influenza-like illness. These patients need to be de-
tected as soon as possible, to modify their care in EDs
appropriately: isolation in dedicated waiting rooms, rapid
care and limitation of cross-contact between potentially
infected patients and those who are not infected. The
strategy for building the detection algorithms is transfer-
rable to other data environments where explicit outcome
labelling such as the final diagnosis is available. The
method could be applied to other medical topics where
automated detection methods are useful.

Conclusions
Syndromic algorithms for detecting patients with poten-
tially transmissible infectious diseases based on com-
puterised ED records perform reasonably well for SGRS
and cutaneous syndrome group, with an acceptable
balance between sensitivity and excess workload associ-
ated with the validation of false positives. By contrast, the
algorithms tested here for gastrointestinal syndrome group
do not permit their routine application. In this study, the
threshold of detection was parameterized in order to
detect one transmissible disease diagnosis for every three
patients flagged (false positive/true positive ratio = 2),
if this rule catches enough (sensitivity>75%) of the
cases of interest. This threshold was not reached for
the gastrointestinal syndrome group.
Algorithms to detect patients with potentially transmis-

sible infectious respiratory or cutaneous infections need
to be assessed in a prospective syndromic surveillance
system. Based on the results of our feasibility study, we
are developing as part of a new collaborative research
project with two industrial partners, a solution that can
be integrated into the hospital information system and
implemented for routine use (SYNODOS project) [27].
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This development will permit prospective evaluation. This
system will help infection-control practitioners to confirm
that transmission-based precautions are implemented as
soon as patients come in contact with healthcare facilities
to prevent the transmission of infectious diseases.
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