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Abstract
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Background: De-identification is a common way to protect patient privacy when disclosing clinical data for
secondary purposes, such as research. One type of attack that de-identification protects against is linking the
disclosed patient data with public and semi-public registries. Uniqueness is a commonly used measure of
re-identification risk under this attack. If uniqueness can be measured accurately then the risk from this kind of attack
can be managed. In practice, it is often not possible to measure uniqueness directly, therefore it must be estimated.

Methods: \We evaluated the accuracy of uniqueness estimators on clinically relevant data sets. Four candidate
estimators were identified because they were evaluated in the past and found to have good accuracy or because
they were new and not evaluated comparatively before: the Zayatz estimator, slide negative binomial estimator,
Pitman'’s estimator, and mu-argus. A Monte Carlo simulation was performed to evaluate the uniqueness estimators
on six clinically relevant data sets. We varied the sampling fraction and the uniqueness in the population (the value
being estimated). The median relative error and inter-quartile range of the uniqueness estimates was measured

Results: There was no single estimator that performed well across all of the conditions. We developed a decision
rule which selected between the Pitman, slide negative binomial and Zayatz estimators depending on the sampling
fraction and the difference between estimates. This decision rule had the best consistent median relative error across

Conclusion: This study identified an accurate decision rule that can be used by health privacy researchers and
disclosure control professionals to estimate uniqueness in clinical data sets. The decision rule provides a reliable way

Background

The public is uncomfortable disclosing their personal
information, or having their personal information pro-
cessed for, secondary purposes if they do not trust
the organization collecting and processing the data.
For example, individuals often cite privacy and confi-
dentiality concerns and lack of trust in researchers as
reasons for not having their health information used
for research purposes [1]. One study found that the
greatest predictor of patients’ willingness to share in-
formation with researchers was the level of trust they
placed in the researchers themselves [2]. A number of
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US studies have shown that attitudes toward privacy
and confidentiality of the census are predictive of
people’s participation [3,4], and also that there is a
positive association between belief in the confidential-
ity of census records and the level of trust one has
in the government [5]. These trust effects are ampli-
fied when the information collected is of a sensitive
nature [5,6].

There is a risk that the increasing number of medical
data breaches are potentially eroding the public’s trust in
health information custodians in general [7,8]. For ex-
ample, the number of records affected by breaches is
already quite high: the U.S. Department of Health and
Human Services (HHS) has reported 252 breaches at
health information custodians (e.g., clinics and hospitals)
each involving more than 500 records from the end of
September 2009 to the end of 2010 [9]. In all, the

© 2012 Dankar et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:kelemam@uottawa.ca
http://creativecommons.org/licenses/by/2.0

Dankar et al. BMC Medical Informatics and Decision Making 2012, 12:66
http://www.biomedcentral.com/1472-6947/12/66

records of over 7.8 million patients have been exposed.
At the same time there is increasing pressure to make
individual-level health data more generally available, and
in some cases publicly available, for research and policy
purposes [10-23].

One of the factors which help to make the public more
comfortable with their health information being used for
research purposes is its de-identification at the earliest
opportunity [1,24-30]. As many as 86% of respondents
in one study were comfortable with the creation and use
of a health database of de-identified information for re-
search purposes, whereas only 35% were comfortable
with such a database that included identifiable informa-
tion [28]. It is therefore important to ensure that the risk
of re-identification is low.

The uniqueness of individuals in the population is
often used as a measure of re-identification risk [31-
36]. In commentary in the Federal Register about the
de-identification standards in the Health Insurance
Portability and Accountability Act (HIPAA), HHS re-
ferred only to uniqueness as the re-identification risk
measure [37,38]. If an individual is unique in the popu-
lation then their risk of re-identification can be quite
high. For example, unique individuals are easier to cor-
rectly re-identify by matching their records in the dis-
closed database with a population registry, such as a
voter registration list [39].

When the data custodian is disclosing the full popula-
tion of patients then it is easy to just measure unique-
ness from the data. However, in practice many data sets
are samples from the population, for example, data
abstracted from a sample of charts, data from surveys
[40,41], and public use microdata files such as census
sample files [42-46]. The population may be all of the
patients at a clinic or all people living in a particular
geographic area.

The custodian may not have the resources to acquire
data on all of the population to measure re-identification
risk [47]. Consequently, the custodian needs to estimate
uniqueness from the available sample data, and then de-
cide whether the risk of re-identification is acceptable or
if further disclosure control actions are required (e.g.,
generalization of the data or putting in place a data shar-
ing agreement with the data recipient).

A number of different uniqueness estimators have
been proposed in the literature. It is important to know
which of these works best on clinical data sets. How-
ever, many of these estimators have not been compared,
and therefore we do not know which ones would pro-
vide the most accurate estimates. In this study we use a
Monte Carlo simulation to compare four different
methods for estimating population uniqueness to deter-
mine which is the most accurate, and under what
conditions.
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Methods

Definitions

Quasi-identifiers

The variables that are going to be included in a risk as-
sessment are called the quasi-identifiers [48]. Examples
of common quasi-identifiers are [33,49-52]: dates (such
as, birth, death, admission, discharge, visit, and specimen
collection), locations (such as, postal codes, hospital
names, and regions), race, ethnicity, languages spoken,
aboriginal status, and gender.

Equivalence classes

All the records that have the same values on the quasi-
identifiers are called an equivalence class. For example,
all the records in a dataset about 17 year old males ad-
mitted on 1° January 2008 are an equivalence class.

Uniqueness

A unique record is one that is in an equivalence class
of size one. For example, if our quasi-identifiers are
age, gender, and postal code, then if there is only one
90 year old female in the postal code “N3E 6Y4” then
her record would be unique. Other sensitive variables
that are not considered quasi-identifiers are not taken
into account in the computation of uniqueness. The
term “uniqueness” is used to characterize the amount
of unique records in a data set. The way it is measured
will depend on other factors, and these are discussed
further below.

Threat model and risk measurement

Context

Consider the common situation whereby a data custo-
dian wishes to disclose a data set to a researcher. A con-
dition of the disclosure by the research ethics board was
that the data has to be de-identified. To decide whether
the data set is sufficiently de-identified, the data custo-
dian needs to measure re-identification risk.

One of the common threat models that is consid-
ered when disclosing health data sets is that an ad-
versary will match against the voter registration list
[39], and in the responses to comments on the
HIPAA Privacy Rule regulations published in the Fed-
eral Register, the Department of Health and Human
Services (DHHS) explicitly considers voter registration
lists as a key data source that can be used for re-
identification [37,38]. Some legal scholars argue that
threat models should only consider public information
which an adversary can get access to and not infor-
mation that may be privately known by the adversary
or in private databases [53].

The voter registration list is assumed to represent the
whole adult population. Many states in the US make
their voter registration lists readily available for a
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nominal fee or free, and these often include the name,
address, date of birth, and gender of individuals [39].
The matching example is shown in Figure 1.

Under this example the data that is being disclosed is
considered a sample, and the voter registration list is
considered the population. In our analysis we assume
that the adversary does not know who is in the sample
data set. For instance, the sample may be charts ran-
domly selected for abstraction.

Here we have 14 individuals in the sample data set.
An examination of that data set indicates that 9 of
the 14 records are unique on the quasi-identifiers
(they are highlighted in the figure). Given that they
are unique in the data set, then the custodian may
assume that if an adversary links these records with
the voter list they will all match successfully and all 9
can be re-identified: a re-identification rate of ap-
proximately 64%, which would be considered high by
most standards. The data custodian may then proceed
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to generalize the year of birth to a decade of birth
such that none of the records in the data set is
unique and suppresses three records in the data set
(approximately 21% suppression). This is illustrated in
de-identification path (a) in Figure 1. By eliminating
uniqueness the adversary would not be able to match
with certainty any of the disclosed records. This de-
identification has resulted in the loss in precision of
the date of birth variable and 21% suppression.
However, the data custodian did not need to
generalize the year of birth at all. For a correct match
to occur with certainty, a record needs to be unique
in both, the disclosed data set as well as in the voter
registration list. As shown in Figure 1, only 2 of the 9
records that are unique in the original data set are
also unique in the voter registration list (the unique
records in the voter registration list are highlighted).
Therefore, under our threat model the data custodian
could have disclosed the original data with the full year

Voter Registraton List
IDENTIFYING QUASI-IDEN TIFIERS
. _ VARIABLE st
Original Database to Disclose i) Nanic Ceder Y ear of Birth
1 John Smith Male 1959
QUASI-IDENTIFIERS | 2 Alan Smith Male 1962
Gender Year of Birth Test Result "-{' Aiic‘e“B‘»i’ow‘n i .Féma.le ) 1955 B
Male 1959 +ve : - . - -
Male 1962 e 4 | HaeleGioon | Male | 099
Female 1955 ve | 5 Alicia Freds Female 1942
Male 1959 -ve 6 Gill Stringer Female 1975
iemlle g‘;i ve i Marie Kirkpa trick Female 1966
emale & -ve I 8
Fomale 1966 T 8 LC.S].lC Hall Female 1987
Female 1987 Ve 9 1 Bill N&ih l_\_/l_alc ) 1975 B
Male 1975 = 10 | Albert Blackwell Male 1978
Male 1978 -ve 11 Beverly McCulsky Female 1964
F;[mfle :zg; v 12 Douglas Henry Male 1959
ale +ve 5
Fetiale 1975 o 13 Freda Shields Female 1975
Male 1967 Ve 14 Fred Thompson Male 1967
Matching 15 Joe Doe Male 1961
16 Mark Fractus Male 1974
(a) _ . ( 17 Lillian Barley Female 1955
Re-laentification 18 Jane Doe Female 1942
19 Nina Brown Female 1975
(T A T 20 | William Cooper Male 1975
_OUASI-IDENTIFIERS - Gender Year of Birth | Test Result 21 Kathy Last Female 1965
Gender | Decade of Birth | _Test Result Male 050 e
Male 1930-1939 ve = 22 Deitmar Plank Male 1967
Male 1960-1969 e Female go3 e
Male 1950-1950 g I_Mulu; ;:g -ve 23 Anderson Hoyt Male 1967
Female 970-1979 ve EeHRe Ve T , '] emale
o o195 e Fouale 975 = 24 Alexandra Knight Female 1966
Male 970-1979 e F:dmfic ; -ve 25 Helene Arnold Female 1977
Mal 970-1979 - Male ve
Sy TR = Male B #e 26 Anderson Heft Male 1975
Male 1950-1959 +ve Female 964 -ve 27 Almond Zipf Male 1978
Female 1970-1979 e Male 959 Hve
Male 1960-1969 e Female 1975 e 28 Alex Long Female 1987
Mle 1967 Ve 29 Britney Goldman Female 1956
30 Lisa Marie Female 1956
) 31 Annie Cheung Female 1986
Disclosed Database 32 William Cooper Male 1978
33 Kathy Last Female 1965
34 Deitmar Plank Male 1967
35 Anderson Hoyt J Male 1971
36 Alexandra Knight Female 1964
37 Helene Arnold Female 1977
38 Anderson Heft | Male 1968
39 Almond Zipf Male 1961
Figure 1 Example of a data set to be disclosed and how uniqueness makes it easier to re-identify individuals by matching to a voter
list.
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of birth and only suppressed these two records (the
male born in 1962 and the female born in 1966). This
is illustrated in de-identification path (b) in Figure 1.
We are only interested in the records that are unique
in the population given that they are unique in the
sample data set.

Notation

We will first introduce some notation. Let N and # be the
number of records in the voter registration list and the
disclosed (sample) data set respectively, K and udenote
the number of non-zero equivalence classes in the voter
registration list and the disclosed data set respectively,
and F; and f; denote the size of the i™ equivalence class in
the voter registration list and the disclosed data set re-
spectively, where i € {1,...K} ({1,...,u} respectively).

Measuring uniqueness

One can measure the conditional probability that a rec-
ord in the voter registration list is unique given that it is
unique in the original data set by [54]:

S Ifi=1,F=1)
’ Zl(ﬁzl) (1)

where () is the indicator function. For example,
I(f; = 1,F; = 1) is one if the sample equivalence class is
a unique as well as the corresponding population
equivalence class, otherwise it is zero.

However, as a risk metric for the whole data set
that will be disclosed, 1; can be misleading. In our
example, 2 out of 9 sample unique records were
population unique, giving a risk of 1; =0.22. How-
ever, out of the whole data set only 2 out of 14
records are at risk, therefore the data set risk should
be 0.14. To give a more extreme example, consider a
1000 record data set where there are only two unique
records and they are both also unique in the voter
registration list. In this case 1; = 1 indicating that all
records are at risk, when in fact only 2 out of 1000
records are at risk. A more appropriate risk metric
would then be:

S Ifi=1,F=1)
Ay =

A=

(2)

In the 1000 record example above, this would give a
risk of 1, =0.002 and for the example of Figure 1 it
would be 1; = 0.14 for the original data set, which cor-
responds to what one would expect intuitively.

The risk metric A, approximates the proportion of
records in the voter registration list that are unique under
an assumption of sampling with equal probabilities [54].

n
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The A3 measure is the proportion of records in the voter
registration list that are unique:

> I(F=1)

As N

(3)

The value for 13 in our example of Figure 1 would be
0.15 since six records in the voter registration list are
unique.

To illustrate the relationship between the measures in
equations (2) and (3), we empirically computed the
expected value E();) on the state inpatient database for
the state of New York for 2007. This data set, which is
available from the Agency for Healthcare and Quality,
consists of discharge abstract data for approximately 1.5
million patients (after removing patients with invalid
ZIP codes). We used the following quasi-identifiers: age
in years, gender, the first three digits of the ZIP code,
the time in days since the last visit, and the length of
stay at the hospital in days. In the whole population
0.1815 of the records were unique (i.e.,, 13 = 0.1815).
We drew 1000 random samples at varying sampling
fractions from that population data set and computed
the mean 1,. As you can see in Figure 2, the E(1,) value
is very close to the A3 value across sampling fractions.

Therefore, if we can compute or estimate A3 directly,
then we would get a measure of risk for any sample data
set under an assumption of sampling with equal prob-
abilities. This metric would have an intuitive general
meaning.

There is evidence in the responses to commentary on
HIPAA in the Federal Register by DHHS that they were
thinking of A3 as the re-identification risk metric in the
discussion of identifiability, for example, when there is
reference to "At the point of approximately 100,000
population, 7.3% of records are unique" and "4% unique
records using the 6 variables”, which in all cases were
based on analyses of census data and in all cases was re-
ferring to the percentage of all records in the file [37,38].
Furthermore, the actual re-identification risk of data sets
compliant with the HIPAA Safe Harbor standard has
been computed empirically and is always presented in
terms of a A3 metric [55-57].

To know in advance the proportion of records in the
voter registration list that are unique, the data custodian
has two options: (a) obtain a copy of the voter registra-
tion list for all areas of the country for which there are
patients in the data set and compute the number of
records that are unique in the voter registration list on
the quasi-identifiers, or (b) estimate uniqueness in the
voter registration list using the disclosed data set only.
The former can be resource intensive and would require
regularly acquiring an updated voter list. The latter is
less costly and can be fully automated.
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represent the standard deviation. The population risk value is 0.1815.

Sampling Fraction

Figure 2 The mean proportion of unique records in samples drawn from the NY State Inpatient Database data set for 1000 samples at
different sampling fractions for month/year of birth, ZIP3, gender, length of stay in days, and time since last visit in days. The whiskers

0.45 0.55 0.65 0.75 0.85 0.95

Our objective in this paper then is to evaluate exist-
ing uniqueness estimators of the form A3 and identify
one or a combination of estimators that are most ac-
curate. The data custodian can use the estimator with
only the disclosed data set to assess re-identification
risk. If that number is too high then the custodian can
apply various de-identification methods, such as
generalization and suppression, to reduce it to an ac-
ceptable level. The steps of such a process are described
later in the paper.

Estimating uniqueness

Thus far there have been no comprehensive evaluations
of existing uniqueness estimators of the type A;. In this
study we will empirically evaluate a set of population
uniqueness estimators to determine which ones provide
the most accurate estimates.

Various models were used in the literature to estimate
the population uniqueness from a sample. The majority
are based on the superpopulation model approach. This
approach assumes that the population is generated from
a superpopulation by an appropriate distribution. The
problem of population uniqueness estimation then
becomes a problem of parameter estimation. The super-
population methods proposed in the literature are: the
Poisson-gamma model [31], the Poisson lognormal
model [58], the Logarithmic series model [59], the

Dirichlet multinomial model [60], the Ewens model [61],
Pitman’s model [62,63], and the slide negative binomial
model [64]. The mu-argus model [65] has not been used
in the context of population uniqueness estimation, but
can be extended for that purpose. Furthermore, Zayatz
introduced a method which is not dependant on a model
for the population equivalence classes [66].

Hoshino [63] compared 6 superpopulation models: the
Poisson-gamma model, the Poisson lognormal model,
the Logarithmic series model, the Dirichlet multinomial
model, the Ewens model, and Pitman’s model. He con-
cluded that the Pitman model “provides the most plaus-
ible inference” among the models compared. Based on
his comparison, we will discard the 5 models above since
they were inferior in estimation accuracy, and include
only the Pitman model in our evaluation.

Chen and McNulty [64] compared 3 models: the slide
negative binomial (SNB) model, the equivalence class
model and the Poisson-gamma model. They concluded
that the SNB model improves significantly the popula-
tion uniqueness estimation. However, the authors
assumed that the number of equivalence classes in the
population is known and they employed that fact in
assessing the models. In practice however, the number
of population equivalence classes is not known (and
must also be estimated), and for that reason these results
are not realistic. It is necessary to re-run that
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comparison and therefore we will include the SNB
model and the Zayatz equivalence class model in our
evaluation.

In this paper we therefore evaluate the following four
models: Zayatz [66], SNB [64], the Pitman model
[62,63], and mu-argus [65]. Based on existing evidence,
these models are the best candidates for estimating
uniqueness and have not been compared directly on
clinical data sets before.

Empirical evaluation

Simulation

We performed a Monte Carlo simulation to evaluate
the accuracy of the four estimators described above. In
this simulation we mimic what the adversary would do
and therefore we mimic the re-identification success
rate of the adversary. We assume that a disclosed data
set is a subset from a population data set. An adversary
will match the records in the disclosed data set with
the population (as explained in our motivating ex-
ample). The number of records that can be matched
with certainty is on average equal to A3. We could com-
pute A3 exactly from the population data set. This gave
us the actual re-identification success rate of the
adversary.

All estimators were implemented by the authors in
SAS, and all simulations described here were also per-
formed in SAS. The estimators and the parameter
choices, where relevant, are described further in the
Additional file 1: Appendix A.

Data sets

The six data sets we used are shown in Table 1. The first
three are public and last three are confidential clinical
data sets. They all have the typical kinds of demographic
quasi-identifiers that are seen in clinical data sets. These
data sets were chosen because of their heterogeneity —
since they represent different types of contexts they in-
crease the generalizability of the results.

Three different versions of each data set were created,
with low wuniqueness (<10% of the observations),
medium uniqueness (between 10% and 50% of the
observations), and high uniqueness (greater than 50% of
the observations). The three versions of the data sets
were created by generalizing the quasi-identifiers in the
original data set. For example, a date of birth may be
generalized to year of birth, or a six character postal
code may be generalized to a three character postal
code. The FARS and Adult data sets only had medium
uniqueness at the outset, therefore there was no possi-
bility of creating a high uniqueness version of these
data sets.
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Measurement

We treat each data set as a population and draw 1000
simple random samples. For each sampling fraction we
compute the median relative bias across the 1000 sam-

ples: median| A, — )Lg/
Ay

quartile range which indicates the dispersion of the rela-
tive bias.

The relative bias is suited to this problem because it
reflects the importance of the error in decision making

better than, say, just the bias (;13 *Ag). Because the

> . We also compute the inter-

most common acceptable values for uniqueness are
often low (for example, between 0.05 and 0.2 [68-70]),
the bias can give misleading results. For example, a bias
of 0.1 when A3 = 0.9 is not going to influence the deci-
sion that the re-identification risk is high. However, a
bias of 0.1 when A3 = 0.11 could make a difference in
deciding whether the risk is acceptable or not. In both
cases the bias is the same, but the impact on the deci-
sion is quite different. The relative bias, on the other
hand, would be quite low in the former case (0.11), and
high in the latter (0.91), which more accurately reflects
the severity of the error.

An alternative evaluation metric that could have been
used was a mean square error (MSE). However, extreme
values for some of the estimators under some simulation
conditions distorted the MSE significantly. Hence, we
chose a robust median to get a more realistic assessment
of performance.

Model combination

Three parameters were varied during this simulation: (a)
the data set used to represent the population, (b) the ex-
tent of uniqueness in the population, and (c) the sam-
pling fraction.

The sampling fraction was varied for each data set as fol-
lows: 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, and 0.9. In total then, there
were 3 (uniqueness levels) x 7 (sampling fractions) x 4 (esti-
mators) = 84 study points per data set simulated 1000 times.

Informed by methods to create ensembles [71,72], we
combined the estimators that we have to try to obtain a
more accurate estimate that utilizes as many of our base
estimation methods as possible. A simple ensemble
would take the mean of the estimates of all of the esti-
mators. However. we expected that some estimators will
work better under different conditions (e.g., for different
values on sampling fraction or population uniqueness
value), and we wanted our ensemble strategy to take that
into account.

We therefore constructed a regression tree across all
study points for each data set [73]. The outcome variable
used when constructing the tree was the relative bias



Dankar et al. BMC Medical Informatics and Decision Making 2012, 12:66 Page 7 of 15
http://www.biomedcentral.com/1472-6947/12/66
Table 1 The data sets that will be included in our simulation
Description Quasi-identifiers No. Records
Adult 32,561
The adult dataset from the UC Irvine machine learning data repository. This is an - Age
extract from the US census and has common demographics and socio-economic Professi
status variables: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult -+ rrotession

- Education

- Marital status

- Race

- Sex

- Country
FARS 43,330
Department of Transportation Fatal crash information: http://www-fars.nhtsa.dot.gov/main.cfim - Age

- Race

- Month of Death

- Day of Death
CcupP 95,412
Data from the Paralyzed Veterans Association on veterans with spinal cord injuries - ZIP code
or disease: http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html Age

- Gender

- Income
Pharm 16,424
Prescription records from the Children’s Hospital of Eastern Ontario pharmacy from - Age
July 2006 to March 2009. This is for inpatients only and excludes acute cases. A Postal code (FSA)
de-identified version of this data was disclosed to commercial data aggregators [67]. + rostal coge

- Admission date

- Discharge date

- Sex
ED 108,344
Emergency department records from Children’s Hospital of Eastern Ontario from 1% - Admission date
June 2007 to 1°" June 2009. This data is disclosed for the purpose of disease Postal Cod
outbreak surveillance. -+ Postal Code

- Date of Birth

- Sex
Niday 637,964
A registry of all newborns in Ontario from 1% April 2004 to 31°" March 2009. This data - Maternal postal code
set is used frequently for research purposes: http://www.bornontario.ca . Baby DoB

- Mother DoB

- Baby sex

Each data set is treated as a population. The data set size as well as the variables which will be included in the analysis are shown.

results for each observation (where there are 84,000
observations). A regression tree provides a succinct de-
scriptive summary of the factors that affect estimation
accuracy and can be helpful in discovering subtle pat-
terns. The input variables for constructing the tree were
the sampling fraction, the estimator, and the uniqueness
level. The tree construction process attempts to reduce
the node deviance, defined as Z(y — )%, where y is the

relative bias and y is the mean relative bias within a
node.

Because ensembles are usually created for a single data
set, we had six trees. We then used a subjective process
to combine the regression trees from each data set to
create an overall decision rule. In developing this deci-
sion rule we assumed that under-estimation is worse
than over-estimation. Under-estimation may result in a
data custodian inadvertently disclosing data with a high
amount of uniqueness, and therefore exposing patient
data to a higher re-identification risk than intended.
Over-estimation leads to a conservative approach to
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disclosure where data that has been disclosed has a
lower re-identification risk than intended.

Ethics

This study was approved by the research ethics board of
the Children’s Hospital of Eastern Ontario. The data
custodians for the three non-public clinical data sets also
approved this protocol.

Results
We present the detailed results for the emergency de-
partment data set in the main body of the paper, with
the results for the other data sets in the Additional file
2: Appendix B. The results were quite consistent across
the data sets and therefore here is no loss in generality
by focusing on the emergency department data here.
Figure 3 shows the median relative bias and interquar-
tile ranges of the relative bias for the emergency depart-
ment data when the population uniqueness is below
10%. Each panel in the figure is for a particular sampling
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fraction (denoted by pi), and shows the results for the
four estimators. We see that at low sampling fractions
the models tend to have higher relative bias, and that
approaches zero as the sampling fraction increases. Also,
the amount of variation in the relative bias is not high.

In Figure 4 are the results (the median relative bias
and interquartile ranges of the relative bias) when the
population uniqueness is at a medium level (between
10% and 50%). The general pattern seen for low unique-
ness holds, except there are a number of study points
for which the SNB model fails. Also, the median relative
bias is lower for all sampling fractions compared to the
low uniqueness version of the data set.

Figure 5 shows the results when there is high unique-
ness in the population data set (greater than 50%). All
models perform relatively well in terms of relative bias
and variation of relative bias. This is the case even for
small sampling fractions.

The regression tree for the emergency department
data is given in Figure 6. This shows that for higher
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Figure 3 Median relative bias and inter-quartile range results under the low uniqueness condition for the emergency department data.
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sampling fractions (denoted by pi) all models tend to
perform well with a mean relative bias of 0.22. For lower
sampling fractions the Pitman model and the mu-Argus
model have the lowest mean relative bias at 0.013. When
the sampling fraction is low (below 30%) the SNB and
Zayatz models tend to have high relative bias, irrespect-
ive of the uniqueness levels in the data.

In general we found that the Pitman model emerged
as the most accurate for low sampling fractions. For
higher sampling fractions the most accurate estimate
varies between SNB and Zayatz. However, SNB tended
to fail to converge in a number of instances, making it
an unreliable model in practice and required us to have
a 'replacement’ in our decision rule.

The combined rule from the six data set ensembles is
shown below. The performance of that rule compared
to the original models is given in the results graphs in
Figures 3, 4, and 5 and is labeled as the E1 model. As
can be seen, the performance of E1 is superior to any
of the original models across the full set of conditions.

If 1 <0.1 then
E1 =Pitman
Else
If SNB converges then
if Est(SNB) > Est(Zayatz) then
El =Zayatz
Else
E1=SNB
Endif
Else
El = Zayatz
Endif
Endif

The E1 rule does not use the mu-argus estimator. The
mu-argus estimator consistently performed worse than
the other estimators and was associated with terminal
nodes with high relative bias in all of the regression tree.
Therefore its inclusion would have resulted in a notice-
able deterioration in prediction performance.
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Discussion

Summary and implications

Population uniqueness is a commonly used measure of
re-identification risk [31-36]. In cases where the dis-
closed data set is a sample, the population uniqueness
must be estimated. In this paper we have evaluated four
different uniqueness estimators using a Monte Carlo
simulation on clinically relevant data sets.

Informed by methods to creating ensembles, we con-
structed regression trees that combine the uniqueness
estimators to minimize their relative bias for each data
set. These trees were then converted to a single decision
rule that works across all data sets and performs better
than any of the original estimators.

Our decision rule selects among the best three estima-
tors. It has good and consistent accuracy across multiple
conditions, often with a small overestimation. Applica-
tion of the decision rule requires the implementation of
three estimators. However, it does not require know-
ledge of the general uniqueness level in the population a

priori (i.e, if it is low, medium, or high), which may be
difficult to know in practice, but does require knowledge
of whether the sampling fraction is greater than 10% or
not.

Future studies that need to estimate uniqueness should
consider using the three estimators combined with this
decision rule for maximum accuracy.

Applications in practice
The process within which uniqueness estimates would be
applied is illustrated by the control flow graph in Figure 7.
The first step is for the custodian to understand the
plausible adversaries that can attempt to re-identify the
disclosed data. A useful way to categorize adversaries is
in terms of how constrained they are. Five types of con-
straints to be considered are:

e Financial constraints: how much money will the
adversary spend on a re-identification attack ? Costs
will be incurred to acquire databases. For example,
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Figure 6 The regression tree for the emergency department
data set constructed from the 84,000 simulation results. The
numbers in the nodes are the mean relative error values.

the construction of a single profession-specific
database using semi-public registries that can be
used for re-identification attacks in Canada costs
between $150,000 to $188,000 [49]. In the US, the
cost for the voter registration list from Alabama is
more than $28,000, $5,000 for Louisiana, more than
$8,000 for New Hampshire, $12,000 for Wisconsin
and $17,000 for West Virginia [39].

e Time constraints: how much time will the adversary
spend to acquire registries useful for a re-
identification attack? For example, let’s say that one
of the registries that the adversary would use is the
discharge abstract database from hospitals. Forty
eight states collect data on inpatients [74], and 26
states make their state inpatient databases (SIDs)
available through the Agency for Healthcare
Research and Quality (AHRQ) [75]. The SIDs for
the remaining states would also be available directly
from each individual state but the process may be
more complicated and time consuming in this
example. Would an adversary satisfy themselves only
with the AHRQ states or will they put the time to
get the data from other states as well ?

e Willingness to misrepresent themselves: to what
extent will the adversary be willing to misrepresent
themselves to get access to public or semi-public
registries? For example, some states only make their
voter registration lists available to political parties or
candidates (e.g., California) [39]. Would an
adversary be willing to misrepresent themselves to
get these lists? Also, some registries are available at a
lower cost for academic use versus commercial use.
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Would a non-academic adversary misrepresent
themselves as an academic to reduce their registry
acquisition costs?

o Willingness to violate agreements: to what extent
would the adversary be willing to violate data
sharing agreements or other contracts that s/he
needs to sign to get access to registries? For
example, acquiring the SIDs through the AHRQ
requires that the recipient sign a data sharing
agreement which prohibits re-identification
attempts. Would the adversary still attempt a re-
identification even after signing such an agreement?

e Willingness to commit illegal acts: to what extent
would an adversary break the law to obtain access to
registries that can be used for re-identification? For
example, privacy legislation and the Elections Act in
Canada restrict the use of voter lists to running and
supporting election activities [49]. There is at least
one known case where a charity allegedly supporting
a terrorist group has been able to obtain Canadian
voter lists through deception for fund raising
purposes [76-78].

It should be noted that most known re-identification
attacks were performed by researchers or the media
[79]. This type of adversary is likely highly constrained
with limited time and funds, an unwillingness to misrep-
resent themselves, and unwillingness to violate agree-
ments and contracts. Alternatively, the custodian may
wish to make a worse case assumption and consider a
minimally constrained adversary with unlimited
resources and funds who is willing to misrepresent
themselves and violate agreements and laws. This kind
of assumption would be suitable if the data will be made
publicly available, in which case the data custodian
would have no control over who would get the data. The
choice of constraints will have an impact on which regis-
tries the adversary would plausibly have access to.

The data custodian then needs to select the quasi-
identifiers in the data set. The quasi-identifiers would be
the variables that a potential adversary would be able to
get using public or semi-public registries. Note that an
adversary may combine multiple sources together to
construct a database useful for re-identification [50]. It is
not necessary for the custodian to acquire all of these
registries, but only to know what the variables are in
these registries. Examples of public and semi-public
registries that can be used for re-identification are:

e Voter registration lists, court records, obituaries
published in newspapers or on-line, telephone
directories, private property security registries, land
registries, and registries of donations to political
parties (which often include at least full address).
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e Professional and sports associations often post
information about their members and teams (e.g.,
lists of lawyers, doctors, engineers, and teachers
with their basic demographics, and information
about sports teams with their demographics, height,
weight and other physical and performance
characteristics).

e Certain employers often post information about
their staff on-line, for example, at educational and
research establishments and at law firms.

For a registry to be useful as a potential source of
quasi-identifiers, it must be plausible for the adversary
to get access to it. By considering the constraints on the

adversary, it is then possible to decide how plausible it is
for the adversary to acquire each type of registry and for
which state. For example, if the data to be disclosed is
for patients in California and it is assumed that the ad-
versary is highly constrained, then the voter registration
lists would not be available to the adversary for a re-
identification attack (it is only available for parties, can-
didates, political committees, scholarly or journalistic
purposes).

Because the assumptions made about the adversary
would often not apply to the data custodian, it is import-
ant for the data custodian to be able to estimate re-
identification risk. For example, if it is assumed that the
adversary is willing to misrepresent themselves to get a
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semi-public registry, the data custodian cannot mimic
that and misrepresent themselves to acquire that registry
for the purpose of re-identification risk assessment. The
custodian needs to estimate the risk without acquiring
that registry, which is the problem our uniqueness esti-
mators are solving.

The custodian must then select the uniqueness thresh-
old that will be used to decide whether the re-
identification risk is acceptable or not. There are a num-
ber of precedents that can be useful for deciding on a
threshold. One can, for instance, rely on how HHS clas-
sifies health data breaches, whereby they will not publi-
cize breaches affecting less than 500 records [80]. This
effectively sets two tiers of breaches, and one can argue
that a re-identification affecting less than 500 records
would be considered lower risk. Also, previous disclo-
sures of cancer registry data have deemed thresholds of
5% and 20% of the population at risk as acceptable for
public release and research use respectively [68-70].

Now the data custodian can use the estimators and de-
cision rule described in this paper to measure the actual
uniqueness from the data using the selected quasi-iden-
tifiers. If the uniqueness estimate is larger than the
threshold then the data custodian can de-identify the
data by applying, for example, generalization and sup-
pression [81]. If the uniqueness is below the threshold,
then a decision needs to be made about whether the de-
identified data is suitable for the purpose of the analysis
that will be performed on it. This is a subjective decision
that requires consultation with the data recipients. If the
data is deemed not suitable for the purpose because
there was too much generalization and suppression, then
the threshold can be revised upwards.

Revising the threshold upwards implies that the data
custodian is taking more risk in disclosing that data. To
compensate for that higher risk, the custodian may wish
to impose additional constraints or conditions. For ex-
ample, the custodian may require that regular security
audits be performed of the data recipient’s site. A sys-
tematic way for making these tradeoffs and the check-
lists that can be used for that purpose have been
detailed elsewhere [35,82-84].

Related work

An alternative mechanism for protecting information
that has been proposed in the literature is differential
privacy [85,86]. Generally speaking, differential privacy
requires that the answer to any query be “probabilistic-
ally indistinguishable” with or without a particular row
in the database. Thus differential privacy hides the pres-
ence of an individual in the database by making the two
output distributions (with or without the row) “compu-
tationally indistinguishable” [87]. This is typically
achieved by adding Laplace noise to every query output.
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The noise should be large enough in order to hide the
output contributed by any row in the database. The lit-
erature on differential privacy, although extensive, has
been mostly theoretical [86,88]. Moving from theory to
practice will require specific limitations and considera-
tions to be addressed [88], and it is proving to be a chal-
lenging task [89,90]. Therefore, for the context that we
consider in this paper, the disclosure of individual-level
data, differential privacy does not provide a ready solu-
tion yet, whereas managing uniqueness has been a gen-
erally accepted approach for disclosure control over the
last two decades.

There are other criteria for deciding whether the risk
of re-identification is too high. The most common is the
k-anonymity criterion [91-94]. Uniqueness is the same
as k-anonymity when k=1. If a data set has high
uniqueness then it will fail the k-anonymity criterion for
any value of k > 1. If a data set has low uniqueness, then
it may still fail k-anonymity for a higher value of k.
Therefore, low uniqueness is a necessary but insufficient
condition to achieve k-anonymity for k > 1.

Limitations

One assumption in our current threat model, and in al-
most all threat models used in the disclosure control lit-
erature, is that an adversary will use exact matching to
re-identify individuals. In reality data sets have errors,
duplicates, and other quality problems. Therefore, in
general contemporary re-identification risk metrics tend
to err on the conservative side.

We constructed a rule from six data sets. These were
six data sets that were heterogeneous covering very dif-
ferent settings and were all clinically relevant in that
they had quasi-identifiers often seen in clinical data sets
and that could be used for re-identification. While it
would be better to repeat the analysis on more data sets,
we found considerable consistency in the trees generated
from each data set. Furthermore, the final decision rule
that we created performed well across all six heteroge-
neous data sets. Future work should further validate this
rule on other independent data sets.

Conclusions

Accurately measuring re-identification risk is necessary
when using and disclosing health data for secondary
purposes without patient consent. This allows the data
custodian to ensure that patient privacy is protected in a
defensible manner. Population uniqueness is a com-
monly used measure of re-identification risk. However,
there are multiple methods for estimating population
uniqueness that have been proposed in the literature,
and their relative accuracy has not been evaluated on
clinical data sets. In this study we performed a simula-
tion to evaluate these estimation methods and based on
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that developed an accurate decision rule that can be
used by health privacy researchers and disclosure control
professionals to estimate uniqueness in clinical data sets.
The decision rule provides a reliable way to measure re-
identification risk.
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