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Abstract

similar problem in a non-biomedical context.

development strategies.

Background: A large body of work in the clinical guidelines field has identified requirements for guideline systems,
but there are formidable challenges in translating such requirements into production-quality systems that can be
used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful
in helping define sub-requirements to the point where they are implementable. Further, additional requirements
emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering
efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system.

Methods: In addition to requirements described by guideline-system authors, comparative reviews of such
systems, and publications discussing information needs for guideline systems and clinical decision support systems
in general, we have incorporated additional requirements related to production-system robustness and
functionality from publications in the business workflow domain, in addition to drawing on our own experience in
the development of the Proteus guideline system (http://proteme.org).

Results: The sub-requirements are discussed by conveniently grouping them into the categories used by the

review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements
under each category, and provide example of similar work in software-engineering efforts that have addressed a

Conclusions: When analyzing requirements from the implementation viewpoint, knowledge of successes and
failures in related software-engineering efforts can guide implementers in the choice of effective design and

Background

Numerous papers have proposed or described models
and clinical guideline systems (CGS) to support compu-
ter-executable guidelines. Comprehensive comparative
reviews of different CGSs, notably the reviews of Peleg
et al. [1] and de Clerq et al. [2] and the more current
review of Isern and Moreno [3] have assisted in defining
high-level requirements of guideline systems. In addi-
tion, Sweidan et al. [4] deal with evaluation measures
associated with clinical software that could be applied to
CGSs. However, as the Isern and Moreno review points
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out, no model appears to have been deployed as produc-
tion-level software that assists patient management on a
daily basis: though one commercial product, Arezzo [5]
is based on the PROforma model [6], no peer-reviewed
publications describing its use in routine healthcare
have appeared to date.

Apart from content-related issues such as guideline
quality and comprehensiveness, and their acceptance by
clinicians, software-engineering challenges include inte-
gration with existing electronic medical record systems
(EMRs), and non-clinical hospital software (e.g., schedul-
ing, billing, resource utilization and inventory systems).

Translating the undoubted theoretical advantages of
computerized guidelines into better patient care will
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eventually require switching from models and proto-
types to robust operational implementations. To be suc-
cessful, we believe that such efforts can benefit from
careful study of existing software technologies and engi-
neering efforts relevant to CGSs. Benefits include the
following:

« System requirements become defined at a much
more detailed and granular level, leading in turn to
more comprehensive technical specifications. (As
defined by Weigers [7], requirements define the “what”,
while specifications define the “how”.) For example,
while practically all systems claim to support guideline
repositories, production-level sub-requirements include
whether and how such repositories support secure
access to authorized users, how permissions (read/write
vs. read-only, user groups, roles, etc.) are managed, how
its content can be searched, and whether it supports
version control/audit trail of changes. In existing CGS-
related systems, HeCaSe2 [8] has a security model, and
the Vaidurya search engine [9] supports search (in part
by using standard biomedical vocabularies), but we are
not aware of a repository that supports all of the above
sub-requirements.)

» Additional requirements may emerge that are of no
concern in research prototypes. Such chores rarely con-
stitute “publishable research”, but their implementation
is essential for production-capable systems. For example

- Security infrastructure related to guideline content
and execution must be closely integrated with the
EMR within which it is embedded (or with which it
communicates, if a separate system): the former can-
not be inconsistent with the latter with respect to
individual permissions.

- Audit trails must record actions taken by clinicians
with respect to individual patients and guidelines at
various stages of guideline execution. Clinicians may
entirely comply with, ignore, or modestly vary from
a guideline: in case of adverse patient outcome, the
audit trail may determine legal culpability.

- The system must be highly scalable in terms of abil-
ity to deal with large numbers of patients in different
stages of varied clinical conditions concurrently.

« Study of successes and failures can provide insight as
to which approaches may work (both in the short and
long-term), and which may be inadvisable.

« Awareness of general-purpose technologies/tools
may allow their repurposing for clinical-guideline infra-
structure rather than attempting to create tools de novo.
Such awareness also helps to determine what tasks or
sub-tasks lie within the purview of a guideline frame-
work, and which do not. We refer to such technologies
throughout the paper where relevant.
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In this paper, we will avoid detailed recapitulation of
themes that have been discussed extensively in the
guideline literature (e.g., procedural vs. declarative
knowledge). If a particular requirement is broadly
accepted in the literature, we will simply take it as a
given, and cite relevant previous work. We will then
focus on sub-requirements that, we believe, have either
not been considered in the literature at all (i.e., are
novel), or which may have been proposed but whose
implications may have not been adequately explored:
here, either supporting or (occasional) contrary evidence
from existing projects will be presented.

Methods
The requirements we list in this paper include the fol-
lowing sources:

« A PubMed search of the published requirements
listed by authors and developers of different guideline
models and systems, as well as guideline-related papers
that specify information needs. We used the search term
“practice guidelines as topic” [mesh] AND informatics
AND “2000"[Publication Date]: “3000” (i.e., to date),
which return 350 results (48 reviews), whose titles and
abstracts were then used to filter to the topic of interest.
Because computer-science conference proceedings are
under-represented in PubMed, the search was augmented
using Inspec/Engineering Village (which focuses on Engi-
neering and Computer Science) using the term “Clinical
guideline” and limiting to publications after 2000.

« Publications in the business workflow domain, which
has requirements similar to clinical guidelines, and is
mature in terms of operational implementations and
third-party add-ons. Inspec was searched for “workflow”
in the title and “requirements” in the title/subject/
abstract, limited to publications after 2000. 1209 publi-
cations were then filtered manually for articles relevant
to this paper’s theme.

« Our own motivations and wish-list for the Proteus
system [10] our experience in its development for over a
decade, and its implementation at Henry Ford Health
System, within the Semantic Data Capture Initiative pro-
ject [11].

Summary of previous comparative reviews

The reviews cited earlier have compared various feature
sets of a variety of guideline systems (the systems
reviewed varied with the paper). Feature-sets are closely
related to requirements: a well-implemented feature in
one system that is relevant to the task being addressed
becomes a desideratum for future systems. Peleg et al.
[1] and Mulyar et al. [12] focused on various dimensions
of expressivity; de Clercq et al. [2] dealt with knowledge
representation and support for guideline acquisition,
verification and runtime execution.
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The most recent comparative review, Isern and Mor-
eno [3], addressed a larger variety of themes listed
below, which we shall use as the skeleton for the suc-
ceeding text. (We have changed their original order,
because certain topics are closely related.)

1. Language and knowledge-representation issues (at
a summary level).

2. Support for complex coordination.

3. Runtime execution engine

4. Support for distributed execution.

5. Availability of graphical guideline authoring/
editing.

6. Support for connectivity with an EMR and non-
EMR administrative software (termed “clinical man-
agement systems” by the authors)

7. Use of standard terminology or representation
language

8. Support for security.

9. Support for guideline repository storage.

Requirements

We will discuss each theme in the above order (with the
exception of security, where we do not have anything
special to contribute above what we have briefly
explored in the Introduction). The framework for dis-
cussion is presented in Table 1.

Knowledge representation

For guideline implementation, support for both declara-
tive and procedural approaches is necessary. Guideline
frameworks such as PROforma [6], GLIF [13] and Asbru
[14] use a declarative approach (which may or may not
use XML syntax) for higher-level specification, while
employing an expression language (e.g., GELLO [15] for
GLIF) for low-level procedural tasks. The specification
may be executed by a runtime interpreter or (in the
case of PROforma) compiled to code in a general-pur-
pose language (e.g., Prolog) that is then executed by an
off-the-shelf interpreter.

One area that we believe has remained under-empha-
sized in frameworks is the ability to support real-life
complexity. Complexity and the solutions that can
address it have several related dimensions some of
which we address in this section.

Modularity

This refers to capabilities within a language that support
the development of a large body of code as separate
units, possibly by developers working semi-indepen-
dently, with features such as namespaces (which allow
different developers to define variables and functions
with possibly identical names without having to worry
about name-collisions, and information hiding [16],
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Table 1 Requirements for Guidelines Systems

Knowledge representation

Modularity

Support of design patterns

Code base reuse

Technology neutrality

Inferencing-approach neutrality

Parameterization

Adapting guidelines to local practices or patient circumstances

Representing non-evidence-based states within guidelines

Extensibility mechanisms

Complex coordination: relation with business workflow systems

Extensibility

Integration capability

Scalability

Error recovery

Data persistence

Human participation
Auditability

Productive development environment

Execution

Execution modes

Support for multiple guideline versions
Editability

Collaborative authoring

Requirements traceability

Integration with existing systems: Use of standards

Knowledge maintenance

Knowledge Life Cycle Management (KLCM)

Guideline repositories

where a caller of a routine does not need to know any
more than what is passed in and what is returned-allow-
ing the internals of the latter to be modified if needed
without any impact on the calling code. Developers using
modern programming language take such capabilities for
granted, but it is worth remembering that the current
official Arden Syntax standard still lacks basic subroutine
capability, a feature that FORTRAN has possessed since
1956. This may explain the reluctance of most EMR ven-
dors to support it: it offers few advantages over their pro-
prietary technology. Modularity is supported by CGSs to
varying degrees in some frameworks. For example, GLIF
and GLARE [17] are intended to support modularity
through a distributed architecture while HeCaSe2 sup-
ports a distributed architecture of quasi-independent,
intercommunicating “agents” or processes.

Support of design patterns

Design Patterns [18] are higher-level abstractions that
embody algorithmic solutions. An example (implemented
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in Proteus) is an “at least N” compound-Boolean filter,
which yields a result of True if at least N of its input
parameters are true: such filters are used in the Jones Cri-
teria for rheumatic fever and for diagnosis of Ventilator
Associated Pneumonia (VAP). Peleg and Tu [19] have
described the application of design patterns for transfor-
mation of clinical guidelines from narrative to executable
form.

Code base reuse

Reuse of code goes beyond the ability to reuse code
written in the language of the CGS itself. One must be
able to reuse pre-existing compiled, operational code
libraries, even those created elsewhere, without having
to rewrite the logic in the guideline/expression language.
(With proprietary, compiled code, rewriting may not
even be feasible.) For example, vendors provide code
that accesses drug databases for drug/drug or drug/
laboratory interactions; a variety of dosing algorithms
determine drug dosage by adjusting for physiological
and pathological states (e.g., age, impaired renal or liver
function).

Technology neutrality

This implies ability to implement modules using the
tool/language most appropriate to the task- this could
include not just traditional programming languages, but
statistical or mathematical packages, and use them as
black-box modules within the larger framework of a
guideline.

Inferencing-approach neutrality

While certain CGSs, e.g., SpEM [20], rely on production
rules [21], alternative approaches exist that may be
more appropriate on occasion. These include neural net-
works [22], decision trees [23], statistical approaches
including Bayesian reasoning [24]), and temporal rea-
soning and representation of temporal uncertainty [25].
Further, these may be employed in the form of commer-
cial black-box libraries or compiled open-source
packages.

Many of the above issues are discussed more briefly
by Peleg et al. [1]. Issues 2-4 above come under the rub-
ric of extensibility. Today’s mainstream programming
environments provide extensibility in straightforward
ways: in the case of Java, for example, through the Java
Native Interface (JNI) [26]. On platforms such as Win-
dows, many libraries are bundled with COM (Common
Object Model) or .NET wrappers whose contents
(which include skeletal documentation and function
parameters) can be browsed within coding
environments.

Parameterization

Two challenges, though seemingly unrelated, could be
resolved by allowing a guideline to take parameters, in a
fashion similar to subroutines in program code.
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Adapting guidelines to local practices or patient
circumstances

If the modality only allows representing guidelines with
all of their details pre-specified, the likelihood of their
being used at other locations diminishes. Therefore,
some CGSs, e.g., Asbru, support the notion of Goal or
Intention for activities [27]. An example would an activ-
ity with the goal “administration of ACE inhibitor to
lower blood pressure by at least 10 mmHg”, while leav-
ing the medication regime details (ACE agent, dose) to
the clinician.

Representing non-evidence-based states within guidelines
Sutton et al., in an evaluation of PROforma [9] also
advocate the ability to “conceal inessential details” by
allowing variation within a guideline (e.g., an observa-
tion period of N weeks, where N, a parameter, is a num-
ber that can be institution/user-specified. (PROforma
currently lacks such a capability.) Such flexibility is
required because of absence of conclusive evidence in
literature, so that certain decisions are best left to clini-
cian-users.

Many general-purpose programs (notably tax-compu-
tation software) support parameterized customization
through mechanisms such as templates or wizards, and
future CGSs should support parameterization of parts of
guidelines similarly. Batet et al. [28] describe a CGS for
home care services that supports both modularization
(using a distributed architecture) and parameterization
with respect to individual intervention plans.

Extensibility mechanisms

The CGS guideline-definition framework should allow
guideline definition at different abstraction levels. For
example, the subject-matter experts can define the
guideline at a relatively high, generic level: lower-level
details (e.g., interfacing with external systems) can be
left as placeholders to be locally customized. For exam-
ple, in some programming languages, production soft-
ware libraries achieve such designs through mechanisms
such as callbacks, where hooks are provided within the
library at critical points for developers to provide their
own functions. (A very early example was the sorz()
function in the C language, which took as a parameter a
developer-supplied sorting function.)

Complex coordination: relation with business workflow
systems

The high-level-design operations provided in guideline
languages closely resemble those in “workflow lan-
guages”, which are intended to address complex coordi-
nation. A workflow is a machine-interpretable model of
a “progression of steps (tasks, events, interactions) that
comprise a work process, involve one or more persons,
and create or add value to the organization’s activities.”
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[29] Mulyar et al. [12] have in fact evaluated guideline
languages in depth with respect to their support of a
variety of workflow coordination patterns, which were
originally characterized by van der Aalst et al. [30].

A workflow is an extension of a flowchart, with nodes
representing activities (tasks) or decision points and the
edges represent flow of control (e.g., branching, looping)
or sequencing of activities. The extension comes from
the ability to specify that certain operations may execute
in parallel, or that certain activities (or a certain number
of activities) must complete before a decision point can
be evaluated, in addition to operations, e.g., suspend,
delay or terminate an operation, etc. (Individual
packages may also support specific operations such as
sending e-mail, writing data, etc.) The graphical nature
of workflows makes them a natural fit for a visual-pro-
gramming metaphor, though a machine-friendly coun-
terpart (typically based on an XML dialect) also exists.

Business workflow frameworks are fairly mature and
widely used products. Standards such as the XML-based
Business Process Execution Language for Web Services
(WS-BPEL) [31] and Business Process Markup Notation
(BPMN) [32] are supported by vendors such as Oracle,
HP and IBM, and tend to be programmer-oriented.
Microsoft Office 2010 SharePoint Server [33], enterprise
integration software such as Microsoft BizTalk and
Enterprise Resource Planning (ERP) systems such as
SAP [34] include proprietary workflow languages with
workflows intended to be authored primarily by non-
programmer domain experts (e.g., business analysts).
Microsoft provides native workflow support within the
Windows operating system through Windows Workflow
Foundation [35]: WWF workflows can be authored in
Visual Studio.

The study of business-workflow technology provides
important lessons for CGS implementers because it
deals efficiently with many issues that CGS implemen-
ters, have yet to address systematically. Below, we sum-
marize these issues: the parallels to patient-care
workflow are obvious.

Extensibility

Extensibility allows developers to add to the capabilities
of the base software through custom code written in
one’s programming language of choice. Workflows are
generally executed in interpreted mode by a runtime
workflow-execution engine. However, they provide an
Application Programming Interface (API) that allows
developers to implement custom tasks (with well-
defined inputs and outputs) using traditional languages.
The compiled code is added to the authoring environ-
ment’s toolbox, to be reused in any workflow. There are
very few limits on what custom tasks may do: Vadaparty
[36] describes a custom-task set for WWF created at
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Merrill Lynch that invokes multiprocessor parallel hard-
ware over a network to execute complex finance-related
tasks in a manner transparent to the non-programmer
workflow author.

Integration capability

Integration refers to the ability of the system to inter-
operate with external software packages. These systems
allow communication with external systems by a variety
of methods, including ODBC and Web services (which
may run on multiple hardware platforms). CGSs need to
inter-operate with Electronic Health Record (EHR) and
Computerized Provider Order Entry systems in order to
access (and optionally modify) patient-related data.
Scalability

This refers to the ability of the system to execute a large
number of instances (workflows, guidelines) concur-
rently without noticeable performance degradation.
Business workflow engines routinely execute thousands
of diverse workflows that are critical to business opera-
tions, and can invoke parallel hardware.

Error recovery

The systems are capable of recovery from hardware- or
network-related error conditions. Design of Web-ser-
vice-based workflow can allow for resource unavailabil-
ity, and synchronization/communications failures.

Data persistence

Persistence of Data is the ability to create and retrieve
data that outlives the software process that created it (i.
e., when the hardware is shut down for maintenance).
Workflow software uses DBMS technology to persist
workflow state: CGSs may also use their own data stores
(e.g., to store electronic guidelines), but should ideally
store patient-related data in an EHR where possible.
Human participation

The workflow systems allow devising algorithms that
rely on human input in a decision-making capacity. Cer-
tain tasks involve human actions (e.g., loan approval
sign-off by one or more geographically distributed per-
sons). Certain steps may allow for human override in
case of unforeseen circumstances, sometimes through a
consultative process. This capability is particularly
important in medicine: numerous papers, e.g., Hurwitz
[37], have highlighted the reluctance among clinicians to
use clinical guidelines because of the fear that they will
not be in charge.

Auditability

The ability to maintain an electronic audit trail includes
logging of context and human actions takes place at all
decision points, especially human overrides, much as
alert overrides in Computerized Physician Order Entry
(CPOE) systems are logged.

Productive development environment

Mature authoring, validation and testing tools are inte-
gral to sound workflow systems. The more complex a
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workflow, the more likely are errors of consistency (e.g.,
circular or conflicting logic) to be introduced in its
design. Many commercial and open-source tools, nota-
bly for WS-BPEL, support inconsistency diagnosis
through static analysis and logical-error taxonomies
[12], validation (e.g., ActiveVOS [38] and testing (e.g.,
Oracle BPEL Test Framework [39]).

While Greenes [40] notes the complexity of workflow
management, Fox et al. [41] emphasize that workflow-
management, decision-making and care-planning (all of
which are involved in complex guidelines) are aspects of
clinical work that clearly benefit from computer support.
Fox et al. in fact point out that BPMN is a good fit for
defining plans formally.

Finally, there is nothing intrinsically unique to the
“business” domain about many business-workflow
engines: WS-BPEL and BPMN are in fact general-pur-
pose, and their use for clinical applications deserves ser-
ious exploration. One way to do this is for CGSs to
“compile” guideline definitions into a general-purpose
workflow language, with medicine-specific functionality
being implemented as calls to custom tasks. This would
allow the numerous vendor/third-party tools to be lever-
aged without needing to re-invent the numerous wheels
necessary to make CGSs production-grade. It might also
simplify integration with administrative systems, many
of which utilize BPEL (or are BPEL-ready): The current
version of BPMN (version 2) is also accumulating open-
source support (e.g., Activiti [42] and jBPM [43],

Execution
Execution modes
CGSs need to operate in one of two modes:

1. Simulated (testing) mode. Most CGSs support some
form of testing, in the form of tracing through the
guideline’s different paths. Certain clinical consultation
systems (e.g., QMR [37]) implement this capability com-
prehensively, to serve as a teaching aid.

2. Online Mode. Here the guideline operates with
actual patients, either interactively in a dialog with the
user, in batch on a set (or population) of patients, or
unobtrusively as an event-driven agent activates on a
particular pattern of inputs. (Alerting mechanisms in
CPOEs operate in the last fashion: as stated earlier,
HeCaSe2 has an agent-based architecture.)

During interactive mode, the ability to provide expla-
nation of actions is important, as suggested by Tol-
chinsky et al. [44] and Fox et al. [45], with the text of
explanations customized to the user role. More
advanced capabilities would include the ability of the
inferencing mechanism to learn (through machine-learn-
ing algorithms) from the inferences and decisions that
the clinicians make in different situations.
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Support for multiple guideline versions

Unlike most decision-support systems, a patient going
through a guideline workflow may stay within that
workflow for long periods. For example, a workflow
related to management of infertility could last more
than a year, because pregnancy takes time to establish.
The clinical aspects of the workflow may no longer
apply (e.g., because of the availability of a new and bet-
ter treatment, recommendations may have changed),
and so a new clinical sub-workflow may supersede the
old one.

However, workflows also have administrative aspects
(inventory adjustment, service itemization, reimburse-
ment from the insurer/payer), whose management can
be more complex: for different patients, multiple ver-
sions of the same administrative sub-workflow may run
simultaneously. For example, even if a reimbursement
agreement has changed since the patient has begun
treatment, the contract with the payer may require the
old agreement to stay in force.

Therefore, depending on the nature of the guideline/
workflow, the execution engine may need to enforce
one of two strategies:

« Replace the old version with the current version for
all instances/patients (This is technically challenging
because many patients are in the middle of a flow, and
there must be rules that specify what is to be done if,
for example, a patient is in a guideline branch that is
now obsolete.)

+ Allow multiple versions of the same broad workflow
to coexist and run at the same time, the choice of ver-
sion depending on the patient.

The knowledge representation employed by advanced
business-workflow engines supports hierarchical version-
ing, with an individual version represented as a “child”
of a base version, and differences between the base and
child modeled as atomic change units analogous to the
“deltas” used in software version control [46], along with
the metadata at the base level that specifies which of the
above strategies is to be followed if changes occur.
Every active instance is associated with its current ver-
sion, and its current position/branch within the version,
and the path taken to get to this position. The runtime
execution engine will implement the desired strategy for
a given instance if changes occur to the guideline. While
most engines use proprietary approaches, there are
attempts, e.g., Juric et al. [47], to apply such techniques
to standard representation languages such as WS-BPEL.

Editability

Isern and Moreno point out that most CGSs incorporate
visual (graphical) editors for guideline authoring. However,
these editors are not available freely, as open-source or
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otherwise, making their usability and robustness difficult to
evaluate. User interfaces that are optimal for novices may
be less productive for advanced users, who might prefer
rapid typing to manipulating graphical icons [19], so usable
interfaces could allow switching between text and graphical
mode, with round-trip engineering [20]: modification of
code leads to changes in the graphic, and vice versa.

In text mode, high-productivity Integrated Develop-
ment Environments (IDEs) such as Eclipse™ and Micro-
soft Visual Studio™ offer aids such as auto-completion,
auto-indent, outlining with collapsing/expansion of code
segments, color-based syntax highlighting macros to
improve typing productivity, and browsing of class/code
libraries. Given that these tools have a large user base,
and that they are highly customizable by developers (e.
g., by incorporation of plug-ins), CGS developers would
be well advised to leverage such tools as the basis for
authoring environments.

Adequate documentation to teach and promote best
practices for guideline authoring and maintenance are
also desirable.

Collaborative authoring

The Isern and Moreno review suggests the possibility of
supporting Web-based editing and collaborative author-
ing by diverse subject-matter experts: CGSs currently
lack these features. While software that supports Web
conferencing (e.g., Citrix GotoMeeting [48], Mikogo [49]
is widely used, collaborative authoring that supports an
orderly change process with conflict resolution and
change trail maintenance is challenging to implement
well; early versions of Google Wave [50], for example,
suffered from poor user acceptance.

Another practical problem is that many IDE productivity
features for both textual and graphical editing are difficult
to achieve in the presence of a network communication
delay. In the more than seven years of their existence, both
the Eclipse and Visual Studio IDEs have remained desktop-
based. (Google Docs, which supports collaborative editing
of the same document, has 30-second refresh latency
before another person’s edits can be seen.) One approach
is to augment Web-based editing with instant messaging
and voice chat, e.g.,, Ajax.org’s Cloud9 project [51], and to
permit only one writer per file (e.g., Borland CodeWTright),
thereby minimizing the risk of conflicting edits.

One aspect of collaborative authoring is achievement
of consensus. Deshpande et al. [52] have described Web
support of Delphi rating, a well-known consensus-devel-
opment methodology, which was deployed prior to the
Conference for Guidelines Standardization.

Requirements traceability

Sutton et al., in their evaluation of PROforma [53],
emphasized the future need for structure preservation:
the models used in knowledge acquisition should be
identical or highly similar to those used for design and
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implementation. This is similar to requirements trace-
ability [9], a software-engineering process to ensure that
a software product’s implemented features remain syn-
chronized with previously defined requirements.
Integration with existing systems: use of standards

The need for CGSs to communicate bi-directionally (i.e.,
read/write) with EMR and administrative systems well
established. Several lessons have been learned regarding
integration for Decision Support Systems (DSS) deploy-
ment in clinical and business contexts (e.g., Enterprise
Resource Planning (ERP).

Incomplete integration is worse than no integration at
all: by increasing the user’s cognitive burden as to which
steps are electronic and which remain manual, perceived
workload is increased rather than reduced.

DSS is successful to the extent that it is non-obtrusive
and reduces caregiver workload, so that the default
action is the desired one, and takes little or no human
effort to perform. Miller et al. [54] point out in the con-
text of consultation systems that the failure to embed
them as integral components of normal clinician work-
flow impaired their acceptability. Effective embedding
relies on adequate integration.

Thus, a system smart enough to recognize what tasks
need execution should be smart enough to perform
those tasks if possible, relying on users only for confir-
mation/override; e.g., a useful reminder system goes
beyond telling the physician to schedule a vaccination
or order a glycated hemoglobin, and volunteers to sche-
dule or order it, unless the physician says no, through
communication with the scheduling system.

A practical problem is that, because integration stan-
dards are immature (HL7 vMR or virtual Medical
Record [55]), not widely accepted by all vendors (HL7
v3) or non-existent (links to administrative systems),
CGS implementers must work with proprietary vendor
APIs, and extensive mapping of guideline elements to
elements in the local electronic systems must be per-
formed manually, as described by Peleg et al. [56] and
Isern et al. [57]: the latter used the ontology editor Pro-
tégé [58] for mapping. Both efforts utilize standard bio-
medical vocabularies (UMLS in the latter case.) The
SEBASTIAN decision-support framework of Kawamoto
and Lobach [59] uses Web services to partially insulate
the guideline framework from the specifics of individual
APIs [60]. Ongenae et al. [61] describe a system that uti-
lizes a rule-based engine (built with Drools [62]) com-
bined with standard medical controlled vocabularies and
representation languages.

Knowledge maintenance

Knowledge life cycle management (KLCM)

In the context of decision support, a knowledge artifact
is a discrete entity created by author(s) that contributes
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toward behavior changes in the software based on its
knowledge. The artifacts may evolve from a hazy con-
cept, expressed in plain text, to an actionable form, and
finally into something that can be encoded into the soft-
ware application to realize its purpose, moving progres-
sively from one state to another. The knowledge
artifacts and their associated metadata are the main con-
stituents of knowledge repositories. KLCM is the ability
to maintain knowledge artifacts current and accurate
from inception to retirement.

In the clinical guideline area, several papers have dealt
with different aspects of KLCM, such as creation and
evaluation (Cecamore et al. [63]), content refinement
(Haynes and Wilczynski [64]), analysis of barriers to
implementation (Goud et al. [65]), sharing (Paterno et
al. [66]), and repository design (the Morningside initia-
tive [67]).

Agile methods are a group of software engineering
approaches which emphasize short iterations (2-6
weeks) of development with simultaneous ongoing auto-
mated and user-testing so that the software’s evolution
remains closely aligned to the user expectations [68].
The agile methodologies potentially bear on KLCM,
because a guideline can be verified and tested even as it
is being fleshed out, allowing rapid iterations of
refinement.

Guideline repositories

We have addressed some of the sub-requirements of
guideline repositories in the Introduction: security and
management of user privileges, version control and
audit trail of changes, and searchable content (possibly
assisted by controlled vocabularies). High-end version-
control systems possess all of the above capabilities built
in (including text-word search, but not vocabulary-
assisted search). However, many commercial systems (e.
g., Visual Studio Team Foundation Server) and open-
source systems (Apache Subversion) have programmable
APIs that can be utilized to provide extensibility: several
third-party authoring environments (e.g., Adobe Robo-
Help [69], a tool for creation of online documentation)
“plug in” into these systems.

It is possible that repository indexing of the searchable
content may be augmented by user-specified terms. The
system should also allow leveraging the user community
as a resource for feedback about quality and errors:
most version systems are closely coupled with feature/
defect tracking subsystems (e.g., Bugzilla [70] for open-
source projects).

Conclusion
The contribution of this paper is two-fold:

« It discusses in detail the sub-requirements that
become critical during implementation of production
clinical guideline systems, in accordance with the
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framework outlined in Table 1. These have not been
previously discussed in the literature to the requisite
depth needed by production-CGS implementers.

« It cites practical issues from a closely related, but far
more mature domain, that of business-workflow engines,
whose implementers have encountered, and often
solved, many of the problems that CGS implementers
have yet to encounter because the latter have not
attempted to create industrial-strength systems that are
used in daily patient care. Production-capable CGSs
must demonstrate the same robustness as the CPOE
and EHR software with which they are required to
inter-operate.

We believe that a study of successes in the broader
software-development world can help point the way.
Noting the occasional failures is also important: to
quote George Santayana’s dictum, those who refuse to
learn the lessons of history are condemned to repeat it.
Therefore, rather than simply stating that a sub-require-
ment is desirable, we have drawn attention to specific
examples, which we hope, will be useful to future CGS
developers.
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