Skip to main content

Table 4 The details of 2D CNN structure

From: Automatic seizure detection using three-dimensional CNN based on multi-channel EEG

Layer Hidden Layer Related parameters (kernel, kernel size, stride, dropout)
1 Conv2D + LeakyReLU+BN 32 5*5 1
2 Max Pooling   3*3 2
3 Conv2D + LeakyReLU+BN 64 3*3 1
4 Max Pooling   2*2 2
5 Conv2D + LeakyReLU+BN 128 3*3 1
6 Max Pooling   2*2 2
7 Conv2D + LeakyReLU+BN 256 3*3 1
8 Max Pooling   2*2 2
9 Conv2D + LeakyReLU+BN 256 3*3 1
10 Max Pooling   2*2 2
11 Fully connected 2048
Dropout 0.5
12 Fully connected 1024
Dropout 0.5
Softmax