Skip to main content

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Figure 4 | BMC Medical Informatics and Decision Making

Figure 4

From: A regret theory approach to decision curve analysis: A novel method for eliciting decision makers' preferences and decision-making

Figure 4

Regret DCA regarding biopsy to detect prostate cancer. Thin line: biopsy all patients; solid line: biopsy no patients; dashed line: prediction model. The optimal strategy is derived by the comparison of each pair of strategies from all NERDs as per equations 12-14. The statistical model is the optimal strategy for threshold probabilities between 8% and 42%. For threshold probabilities between 43% and 95%, the optimal strategy is to biopsy no patients, while for 0% to 8% both "model" and "biopsy all" strategies are optimal. The lines of acceptable regret denote the regret area in which different strategies are equivalent.For example, at threshold probability equal to 20%, the optimal strategy is acting based on the prognostic model. However, NERD(biopsy none, model) is below the acceptable regret line which indicates that the strategies "biopsy none" and "model" are equivalent in regret. Therefore the optimal strategy is to biopsy no patients as the use of model is deemed to be superfluous. Similarly,at threshold probability equal to 15%, the optimal strategy is to act based on the model and the strategies "biopsy all" and "biopsy none" are equivalent in regret. Finally, at threshold probability equal to 9%, the optimal strategies are both "model" and "biopsy all". However, since NERD(biopsy all, model) is below the acceptable regret, the strategies "biopsy all" and "model" are equivalent in regret. Therefore the optimal strategy is to biopsy all patients.

Back to article page