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Abstract

Background: Active learning (AL) has shown the promising potential to minimize the annotation cost while
maximizing the performance in building statistical natural language processing (NLP) models. However, very few
studies have investigated AL in a real-life setting in medical domain.

Methods: In this study, we developed the first AL-enabled annotation system for clinical named entity recognition
(NER) with a novel AL algorithm. Besides the simulation study to evaluate the novel AL algorithm, we further
conducted user studies with two nurses using this system to assess the performance of AL in real world annotation
processes for building clinical NER models.

Results: The simulation results show that the novel AL algorithm outperformed traditional AL algorithm and
random sampling. However, the user study tells a different story that AL methods did not always perform better
than random sampling for different users.

Conclusions: We found that the increased information content of actively selected sentences is strongly offset by
the increased time required to annotate them. Moreover, the annotation time was not considered in the querying
algorithms. Our future work includes developing better AL algorithms with the estimation of annotation time and
evaluating the system with larger number of users.

Background
Named entity recognition (NER) is one of the most
fundamental tasks for many clinical natural language
processing (NLP) applications. Although machine learning
(ML) based NLP systems could achieve high performance,
they often require large numbers of labeled data, which is
expensive to obtain with the use of domain experts in
annotation. To minimize the cost while optimizing the
performance, many studies in general English NLP have
shown that pool-based AL framework [1] could be a cost-
effective solution to build the high-quality ML based NLP
models with smart sampling strategies. The NLP tasks

enhanced by AL include word sense disambiguation
(WSD) [2], text classification [3], and information extrac-
tion [4]. Recently, several studies have also presented the
effectiveness of AL to NLP tasks in the clinical domain.
Figueroa et al. [5] validated AL algorithms in five medical
text classification tasks to reduce the size of training sets
without losing the expected performance. Chen et al.
applied AL on multiple biomedical NLP tasks, such as as-
sertion classification for clinical concepts [6], supervised
WSD in MEDLINE [7], high-throughput phenotype iden-
tification tasks using EHR data [8], and clinical NER [9].
All the above draws a conclusion that AL, compared to
passive learning based on random sampling, could induce
annotation cost reduction while optimizing the quality of
the classification model.
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Most of these AL studies were conducted in a simu-
lated setting, which assumes that annotation cost for
each sample is identical. In reality, however, annotation
cost (i.e. the time required to annotate one sample by an
annotator) can be very different from one sample to an-
other, or from one annotator to another. The estimated
cost savings by AL in simulated studies may not be
applicable in reality. Settles et al. [10] conducted a
detailed empirical study to assess the benefit of AL in
terms of real-world annotation costs and their analysis
concludes that a reduction in the number of annotated
sentences required does not guarantee a real reduction
in cost. Therefore, to better understand how AL works
within the real time annotation process and to demon-
strate the utility of AL in real-world tasks in the clinical
domain, we should integrate AL technologies with anno-
tation systems and validate its effectiveness by recruiting
users to conduct real-world annotation tasks.
In the user study, we built an active learning enabled

annotation system for clinical NER. Using this system,
we compared the performance of AL against random
sampling in the user study. Our results show that AL
did not guarantee less annotation time than random
sampling across different users, at a given performance
point of the model. We then discuss other findings in
our experiments and the limitations of the proposed
CAUSE (Clustering And Uncertainty Sampling Engine)
method, with suggestions to future improvements.

Methods
The clinical NER task in this study was to extract
problem, treatment, and lab test concepts from clinical
notes. We first developed an AL-enabled annotation
system, which iteratively builds the NER model based on
already annotated sentences and selects the next sen-
tence for annotation. Multiple new querying algorithms
were developed and evaluated using the simulated
studies. For the user study, the best querying algorithm
from the simulation was implemented in the system.
Two nurses were then recruited and participated in the
real-time annotation experiments using the system for
both CAUSE and Random modes.

Development of the active learning-enabled annotation
system
Practical AL systems such as DUALIST [11] have been
developed to allow user and computer to iteratively
interact for building supervised ML models for different
NLP tasks, such as text classification and word sense
disambiguation. For sequence labeling tasks such as
NER, however, there is no existing interactive system
available. In this study, we designed and built a system
named Active LEARNER (also called A-LEARNER),
which stands for Active Leaning Enabled AnnotatoR for

Named Entity Recognition. To the best of our know-
ledge, it is the first AL enabled annotation system
serving clinical NER tasks.
The front end of Active LEARNER is a graphic user

inference that allows users to mark clinical entities in a
sentence supplied by the system using a particular
querying engine. In the back end, the system iteratively
trains CRF models based on users’ annotations and
selects the most useful sentences based on the querying
engine. The system implements a multi-thread process-
ing scheme to allow a no-waiting annotation experience
for users.
Active LEARNER uses the unlabeled corpus as the

input and generates NER models on the fly, while
iteratively interacting with the user who annotates sen-
tences queried from the corpus. The Active LEARNER
system consists of three components: 1) the annotation
interface, 2) the ML-based NER module, and 3) the AL
component for querying samples. For the annotation
interface, we adopted the existing BRAT system, a rapid
annotation tool developed by Stenetorp P et al. [12]. We
modified the original BRAT interface to allow users to
mark entities more efficiently. The ML-based NER module
was based on the CRF algorithm implemented by CRF++
https://taku910.github.io/crfpp/, as described in [13]. The
AL component implemented some existing and novel
querying algorithms (described in later sections) using a
multi-thread framework. More details of the Active
LEARNER system are described below.

System design
Figure 1 shows the workflow of the Active LEARNER
system. Once the system starts, the pool of unlabeled
data is loaded into the memory. At the initial iteration
or before the CRF model is generated, all sentences are
randomly ranked. The top sentence in the ranked un-
labeled set is queried and displayed on the interface. The
user then can highlight clinical entities in the sentence
via the labeling function on the interface (annotation
process). When the user submits the annotated sentence,
the labeled set and the unlabeled set are updated and
the learning process is activated based on activation cri-
teria. When the learning process is complete, the ranked
unlabeled set is updated while the next sentence is avail-
able for annotation.
What annotator could do after one annotation is

submitted and before the learning process is complete?
To avoid such delay in the workflow, we parallelize the
annotation process and learning process. In the annota-
tion process, the black circle in Fig. 1 splits the flow into
two that run simultaneously. One sub-flow runs back to
the ranked unlabeled set and interface. Therefore, the
user can immediately read the next sentence on the
interface right after the annotation for one sentence is
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submitted. The other sub-flow adds the newly annotated
sentence to the labeled set, which is then pushed to the
learning process. A new learning process will be activated
if the encoding or querying process is not busy and the
number of newly annotated sentences is greater or equal
to a threshold (five in our study), which is for the update
frequency control. When the learning process is acti-
vated, it runs in parallel with the annotation process and
it updates the ranked unlabeled set whenever the new
rankings are generated. This design allows a user to
continuously annotate the top unlabeled sentence from
the ranked list, which is generated in either the current
or previous learning process. The program is stopped
when the user either clicks the quit button or a pre-set
cutoff time runs out.
Specifically, the learning process includes CRF model

encoding based on the current labeled set and sentence
ranking by the querying engine. The CRF model encod-
ing is straightforward; however, it could take time to
rebuild the CRF model when the labeled data set gets
bigger. Sentence ranking consists of two steps: 1) CRF
model decoding, which is to make predictions for each
unlabeled sentence based on the current model; and 2)
ranking sentences by the querying algorithm, which con-
siders both the probabilistic prediction of each sentence
from the first step, and other information about the
unlabeled sentences (i.e. sentence clusters).

Querying methods
In our previous study [9], we have described multiple
AL querying algorithms and shown that uncertainty
based sampling methods are more promising than other
methods to reduce the annotation cost (in terms of the

number of sentences or words) in the simulated studies.
In this study, we further developed a novel AL algorithm
that considers not only the uncertainty but also the
representativeness of sentences. The AL methods were
compared to a passive learning method based on
random sampling (Random) in both the simulation and
the user studies.
Uncertainty based sampling methods are promising

for selecting the most informative sentences from the
pool for the clinical NER modeling. However, these
methods could not distinguish the most representative
sentences with respect to their similarity. As similar
sentences could share very close uncertainty scores, the
batch of the top ranked sentences could possibly contain
multiple similar sentences with repeated clinical con-
cepts. Before the learning process is completed, these
concepts may be annotated more than once in these
similar sentences during the annotation process. Obvi-
ously, annotating such similar sentences is not the most
efficient for building NER models although these
sentences are most informative.
Here, we propose the Clustering And Uncertainty

Sampling Engine (CAUSE) that combines clustering
technique and uncertainty sampling to query both
informative and representative sentences. This method
guarantees that the top ranked sentences in a batch are
from different clusters and thus dissimilar with each
other.
The algorithm of CAUSE is described as the following:

Input
(1) Clustering results of sentences; (2) Uncertainty
scores of sentences; (3) Batch size (x);

Fig. 1 Workflow of Active LEARNER
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Steps
(1) Cluster ranking: score each cluster based on the
uncertainty scores of sentences and select the top x
cluster(s) based on the cluster scores, where x is the
batch size; (e.g. the score of a cluster could be the
average uncertainty score of sentences in this cluster.)
(2) Representative sampling: in each selected cluster, find
a sentence with the highest uncertainty score as the
cluster representative.

Output
x cluster representative sentences in the order of their
cluster ranking.

Initial sampling
When the NER model and uncertainty scores of
sentences are not available, we used random sampling to
select a cluster and the representative within the selected
cluster.
The following sections describe how exactly the

CAUSE algorithm was implemented in this study.

Sentence clustering with topic modeling
Clustering is a required pre-processing step in CAUSE
for the pool of data to be queried. The clustering process
consists of Latent Dirichlet Allocation (LDA) [14], a
topic modeling technique, for feature generation, and af-
finity propagation (AP) [15] for clustering. In this clinical
concept extraction task, we need to group semantically
similar sentences together. We applied a C implementa-
tion of LDA (LDA-C) [16] to extract the hidden seman-
tic topics in the corpus of clinical notes. Since using
document-level samples for topic modeling could gener-
ate more meaningful topics than sentences, we ran LDA
topic estimation on the entire dataset from the 2010
i2b2/VA NLP challenge (826 clinical documents). Given
the K estimated topics, the LDA inference process was
performed to assign probabilistic values of topics for
every sentence. Eventually, each sentence was coded in a
K dimensional vector with a probability at each of the K
topics as value. Cosine similarity was used to calculate
the similarity between every sentence pair. Next, we
applied a python package of AP http://scikit-learn.org/
stable/modules/generated/sklearn.cluster.AffinityPropa-
gation.html that takes the M x M pair-wise similarity
matrix as the input and outputs the clustering result for
the M sentences.

Cluster ranking
Each cluster is assigned a score based on one of the
following schemas: (a) Maximum uncertainty cluster
sampling (MUCS): assign the cluster the highest uncer-
tainty score among all the sentences in the cluster; (b)
Average uncertainty cluster sampling (AUCS): assign the

cluster the average uncertainty score from all the sen-
tences in the cluster; (c) Random cluster sampling
(RCS): assign the cluster a random score (assuming that
each cluster is equally important). According to our
experiments, AUCS performed the best in terms of
learning curve performance. The cluster with a higher
score will be ranked higher among all clusters, thought
to contribute most to the NER modeling.

Representative sampling
From the top ranked cluster, we select the sentence that
has the highest uncertainty score as the representative of
the cluster. We also find the representative sentences
from the second ranked cluster, third ranked cluster, and
so on. We keep sampling until the batch is filled up with
representatives. The ranking of the representatives
follows the ranking of their clusters. We assume that the
number of clusters is greater than or equal to the batch
size so that the batch cannot contain more than one
sentence from a cluster.
The assumption here is that cluster representative sen-

tences can improve the NER model by helping identify
entities from other sentences in the same cluster. Table 1
shows an example of a cluster that contains multiple
sentences about medications. The cluster representative
is the first sentence, where “Dulcolax” is tagged as the
medication treatment. When the NER model is trained
on this annotated cluster representative, the model could
identify other medications (e.g. “Amaryl”, “Nortripty-
line”, “Metformin”, etc.) from additional sentences in the
same cluster based on their similar context (e.g. “mg”,
“p.o.”, and “q.”) as the cluster representative.

The user study
The user study is to evaluate the performance of AL
versus passive learning in the real-world annotation
processes for building NER models. The annotation cost
in the user study is the actual annotation time by an
annotator; the annotations (i.e. clinical entities) are done
by users on-the-fly, instead of from a pre-annotated gold
standard. Two nurses are recruited to use Active
LEARNER to annotate sentences to evaluate both
CAUSE and Random modes.

Table 1 An example of a cluster that contains multiple
sentences about prescription

Cluster representative Sentences in a cluster

X 14. Dulcolax 10 mg p.o. or p.r. q. day p.r.n.

9. Amaryl 4 mg p.o. q. day .

3. Nortriptyline 25 mg p.o. q. h.s.

2) Metformin 500 mg p.o. q. 8 h .

…
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We understand that there are many human factors
influencing the user study, such as annotation speed and
annotation quality, in addition to querying methods. To
make the results of two methods comparable, we rigor-
ously trained two users in the annotation process, to en-
sure they will perform consistently in both experiments.
The user-training phase included the following steps:

Guided training
The first step of training is to study the annotation
guidelines, which were generated by the 2010 i2b2/VA
NLP challenge organizer https://www.i2b2.org/NLP/Re-
lations/assets/Concept%20Annotation%20Guideline.pdf.
Both nurses had some experience on similar chart
review tasks. At the very first training session, the NLP
expert discussed the annotation guidelines with two
nurses for 15–30 min, particularly focusing on the anno-
tation boundaries of the clinical concepts. The next step
was to review annotations sentence-by-sentence. The
objective of this training session was to train users to be
more familiar with both the annotation guidelines of the
task and the Active LEARNER interface. Users were
shown two interfaces on the left and right half of the
screen. A user annotates a sentence on the left-side

interface. When the annotation is finished, the user
could review the i2b2 gold standard of the annotation
for the same sentence on the right-side interface. If there
was discrepancy between the user’s annotation and the
gold standard, we discussed the possible reasons that
support either gold standard or user annotation. A
user could either stick to the original decision or
change the annotation based on the discussion.

Practice
The practice process consists of two parts: 1) a shorter
session with two to three 15-min of annotation; and 2) a
longer session with four half-hour annotation, which
was the same as the main user study discussed in the
later section. The users conducted this part of training
independently without breaks. We collected user’s anno-
tation speed and annotation quality at each session so
that we could track if the user achieved consistent anno-
tation performance.

Warm up training section
In the second and third week of the user study, we
conducted a shorter version of the training called warm
up training. This served to refresh users on both

Table 2 Schedule of the user study

Time Event Task Duration

Week 0 Guided Training 1. Annotation guideline review 30 min

2. Sentence-by-sentence annotation and review using the interface 45 min

Practice 1. Three quarter-hour sessions of annotation practice 45 min

2. Four half-hour sections of annotation using Random, with
15-min break between sessions

3 h

Week 1 Annotation warm up training 1. Sentence-by-sentence annotation and review using the interface 15 - 30 min

2. Two 15 min sessions of annotation practice 30 min

Main study for method Random Four 30 min sessions of annotation using Method 2 3 h

15-min break between sessions

Week 2 Annotation warm up training 1. Sentence-by-sentence annotation and review using the interface 15 - 30 min

2. Two 15 min sessions of annotation practice 30 min

Main study for method CAUSE Four 30 min sessions of annotation using Method 2 3 h

15-min break between sessions

Table 3 Characteristics (counts of sentences, words, and entities, words per sentence, entities per sentence, and entity density) in
five folds of the dataset and the pool of querying data

Sentence count Word count Entity Count Words per sentence Entities per sentence Entity densitya

Fold 1 4,085 44,403 5,395 10.87 1.32 0.25

Fold 2 4,085 45,588 5,183 11.16 1.27 0.24

Fold 3 4,084 45,355 5,201 11.11 1.27 0.24

Fold 4 4,085 45,141 5,263 11.05 1.29 0.25

Fold 5 4,084 44,834 5,177 10.98 1.27 0.24

Pool (Fold 2 + 3 + 4 + 5) 16,338 180,918 20,824 11.07 1.27 0.24
aEntity density is the number of words of the entities divided by the total number of words
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annotation guidelines and interface usage. The warm up
training also consisted of two parts. The first part was
sentence-by-sentence annotation review. It took at least
15 min and up to 45 min. This part could be stopped
when user was making annotations consistent with
the i2b2 gold standard. The second part was two 15-
min sessions of annotation. We used this opportunity
to measure the user’s current speed and quality of
annotation.
Table 2 shows the actual schedule we used in user

study. Both users tested Random in week 1 and then
CAUSE method in week 2. The reason to separate the
user studies for two methods by a one-week gap is to
allow users to forget the previous annotation. In each
week, a user was required to go through a warm up
training first, and then to complete the annotations of
four half-hour sessions. The annotation time for each
session was set to 30 min. A break of at least 10 min
and up to 15 min was required between two sessions.
During one session, each user was asked to continuously
work without break in an isolated conference room with
minimum interruption.

Datasets
We used the annotated training corpus from the 2010
i2b2/VA NLP challenge [17]. The clinical named entity
recognition task is to identify the medical concepts of
problem, treatment, and lab test from the corpus. The
dataset with 20,423 unique sentences was randomly split

into five folds, each of which has either 4,084 or 4,085
unique sentences. In the simulation, we performed 5-
fold cross validation so that four out of five folds were
used as the pool of data to be queried and the remaining
fold was the independent test set for evaluation. In the
user study, we used fold 1 with 4,085 unique sentences
as the independent test set and the remaining 16,338
unique sentences as the pool for data querying. In the
annotation warm up training, the reviewed sentences are
from the independent test set. Table 3 shows the charac-
teristics (counts of sentences, words, and entities, words
per sentence, entities per sentence, and entity density) in
five folds of the dataset and the pool of querying data.

Evaluation
In the simulation study, we used number of words in the
annotated sentences as the estimated annotation cost.
The learning curves that plot F-measures vs. number of
words in the training set were generated to visualize the

Fig. 2 Simulated learning curves by 5-fold cross validation that plot F-measure vs. number of words in the training set for random sampling
(Random), least confidence (Uncertainty), and CAUSE that used least confidence to measure uncertainty

Table 4 User annotation counts, speed, and quality comparison
in the 120-min main study

Users Methods Annotated
entity count

Annotation speed
(Entities per min)

Annotation quality
(F-measure)

User 1 Random 945 7.88 0.82

CAUSE 926 7.72 0.83

User 2 Random 882 7.35 0.81

CAUSE 948 7.90 0.82
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performance of different methods. For each method, the
five learning curves from the 5-fold cross validation were
averaged to general a final learning curve.
In the user study, actual annotation time was used as

the annotation cost. We also generated the learning
curves that plot F-measure vs. actual annotation time to
compare both AL and passive learning. Moreover, there
are many human factors that would affect the learning
curve as well, such as user annotation speed and annota-
tion quality. The most intuitive annotation evaluation
metric to determine the annotation speed is the entity
tagging speed (e.g. number of entities or entity annota-
tions per minute). Obviously, if a user can contribute
significantly more annotations in a given time, the
learning curve of NER models could more likely be
better regardless of querying methods. In addition, the
annotation quality, which is measured by F-measure
based on gold standard, is another important factor for
training a clinical NER model. If we fix the annotation
speed, higher annotation quality would more likely help
build better NER models.
To globally assess different learning curves, we

computed the area under the learning curve (ALC) as a
global score for each method, which is calculated as the
area under the given learning curve (actual area) di-
vided by a maximum area that represents the maximum
performance. The maximum area is equal to the ultim-
ate cost spent in training (e.g. number of words in the
final training set or the actual annotation time) times
the best possible F-measure. Ideally, the best F-measure
is 1.0. However, the NER models could never achieve
perfect under only 120-min annotation. At this study,
we used an F-measure of 0.75 as the best possible F-
measure in 120-min annotation.

Results
In the simulation, we evaluated methods of Random,
Uncertainty, and CAUSE assuming same cost per word.
Both Uncertainty and CAUSE utilized LC as the uncer-
tainty measurement. The training process of Uncertainty
and CAUSE started from 5 initially selected sentences
based on random sampling. CAUSE used random cluster
and representative sampling to select the initial 5
sentences. The batch size is 5 so that the model was up-
dated with every additional 5 newly queried sentences.
The AL process stopped at the point where there are as
close as 7,200 words in the training set. This stopping
criterion is to mimic the 120-min (7,200 s) long user
study per method, assuming the user would annotate
approximately one word per second from the user study
results.
Figure 2 shows the learning curves of Random, Uncer-

tainty, and CAUSE in the same graph. Obviously,
CAUSE outperformed Random and Uncertainty most of
the time at all stages during the AL process. In terms of
ALC score, CAUSE achieved 0.839, Uncertainty did
0.782, and Random did 0.812. At the point where there
are ~7,200 words in the training set, CAUSE generated
NER models with 0.713 in F-measure on average, while

Fig. 3 Learning curves of F-measure vs. annotation time in minutes by Random and CAUSE from user 1 and 2

Table 5 Comparison between Random and CAUSE in ALC score
and F-measure of the last model in the 120-min main study

User Index Evaluated method ALC scores F-measure of
models at 120 min

User 1 Random 0.812 0.680

CAUSE 0.783 0.666

User 2 Random 0.820 0.682

CAUSE 0.831 0.691
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Random and Uncertainty achieved 0.696 and 0.697 in F-
measure, respectively.

User study results
For the user study, there are 16,338 unique sentences in
the pool for querying and 4,085 unique sentences in the
test set for evaluating NER models. Based on the simu-
lated results, CAUSE performed better than Uncertainty.
Therefore, we used CAUSE to represent AL in the user
study and compared it with Random in the user study.
The initial sentence selection schemas used in the user
study were the same as the simulation. The batch size
was set at 5, meaning the new learning process would be
activated when there were at least 5 newly labeled sen-
tences added to the labeled set.
Table 4 reports the assessment of annotation informa-

tion from the main studies. Two users performed similarly
with respect to annotation speed and annotation quality
in the user studies of two methods (Random and CAUSE).
It indicates that both users’ performances are stable and
two methods could be comparable.
Figure 3 show the learning curves of F-measure versus

annotation time in minutes by Random (in week 1) and
CAUSE (in week 2) from two users. The experimental
results for the two users were different. Random
performed better than CAUSE for user 1, while CAUSE
was superior to Random for user 2.
Table 5 shows the ALC scores and F-measure of the

final NER model at the end of 120 min annotation for
Random and CAUSE from both users.
Table 6 and 7 summarize the characteristics of

Random and CAUSE in each 120-min main study from
both users. Both users annotated more sentences in the
Random mode than that in the CAUSE mode, very likely
due to shorter length of sentences selected by Random.
Moreover, users seemed to read the words queried by
Random faster than CAUSE. The entity number per
sentence by CAUSE is about 3 times higher than that in

Random. Entity density by CAUSE is also higher than
that by Random.

Discussion
This is the first study that integrates AL with annotation
processes to build clinical NER systems and evaluates it
in a real-world task by engaging users. Although many
previous AL studies showed substantial savings of anno-
tation in terms of number of samples in simulation, our
real world experiments showed that current AL methods
did not guarantee savings of annotation time for all users
in practice.
This finding could be due to multiple reasons. First,

although AL selected more informative sentences and
required fewer sentences for building NER models, it
often selects longer sentences with more entities, which
take a longer time to annotate. According to Table 6 and
Table 7, users annotated ~240 sentences queried by
CAUSE in 120 min (~2.0 sentences per minute) versus
~660 sentences by Random in the same time (~5.5
sentences per minute). Our results suggest that the
increased information content of actively selected sen-
tences is strongly offset by the increased time required
to annotate them. Moreover, it seems that users may
have different behaviors for sentences selected by differ-
ent methods. For example, it seemed that users read
randomly sampled sentences faster (62–68 words per
minute) than AL selected sentences (53–54 words per
minute). All these results demonstrate that AL in
practice could be very different from simulation studies
and it is critical to benchmark AL algorithms using real-
world practical measurements (such as annotation time),
instead of theoretical measurements (such as the
number of training sentences and the number of words
in training sentences).
Active LEARNER system provides gap-free annotation

experience so that annotation and model training are
running in parallel. However, the active learning

Table 6 Characteristics of Random and CAUSE in each 120-min main study from user 1 and 2 (part 1)

User Method Annotated Sentences Words in annotated sentences Entities in annotated sentences Words in entities

User 1 Random 655 8,023 945 1,915

CAUSE 232 6,333 926 2,145

User 2 Random 651 7,325 882 1,952

CAUSE 240 6,455 948 2,404

Table 7 Characteristics of Random and CAUSE in each 120-min main study from user 1 and 2 (part 2)

User Method Sentences per min Words per sentence Words per min Entities Per Sentence Entity Density

User 1 Random 5.53 12.24 67.70 1.44 0.24

CAUSE 1.97 27.00 53.30 3.99 0.34

User 2 Random 5.55 11.25 62.44 1.35 0.27

CAUSE 2.01 26.98 54.33 3.95 0.37
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performance may be discounted when the model train-
ing process is long, especially for CAUSE model when
longer sentences are queried. One way to improve the
system is that, instead of using the current CRF package
that needs to retrain entire dataset each time, we could
adapt online learning CRF labeling module with incre-
mental model update to save training time while increas-
ing the update frequency during user annotation. In
addition, the performance of the CAUSE model also relied
on the quality of clustering results. We did not apply a
systematic parameter tuning strategy to find an optimal
parameter setting (e.g. optimal number of semantic topics
and clusters). The clustering results were not quantita-
tively evaluated and optimized in our study.
Although the results in this user study showed that

the current AL methods could not be guaranteed to save
annotation time, compared to passive learning, we
gained valuable information about why it happened. If
the querying algorithm accounts for the actual annota-
tion time in the model, we believe AL could perform
better. Therefore, the next phase of our work will in-
clude improving our AL algorithms against the practical
measures (i.e., annotation time). One of our plans is to
use annotation data collected in this study to develop re-
gression models, which can more accurately estimate an-
notation time of unlabeled sentences, thus optimizing
the AL algorithms for actual annotation time instead of
number of samples.

Conclusions
In this study, we developed the first AL-enabled annota-
tion system for building clinical NER models, which sup-
ports the user study to evaluate the actual performance of
AL in practice. The user study results indicate that the
best effective AL algorithm in the simulation study could
not be guaranteed to save actual annotation cost in prac-
tice. This could be due to that we did not consider the
cost in the model. In the future, we will continue to de-
velop better AL algorithms with the accurate estimation
of annotation time and conduct larger scale of user study.
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