Lyell et al. BMC Medical Informatics and Decision Making (2017) 17:28
DOI 10.1186/5s12911-017-0425-5

Automation bias in electronic prescribing

BMC Medical Informatics and
Decision Making

@ CrossMark

David Lyell" ®, Farah Magrabi', Magdalena Z. Raban? LG. Pont?, Melissa T. Baysari>*, Richard O. Day*

and Enrico Coiera’

Abstract

Background: Clinical decision support (CDS) in e-prescribing can improve safety by alerting potential errors, but
introduces new sources of risk. Automation bias (AB) occurs when users over-rely on CDS, reducing vigilance in
information seeking and processing. Evidence of AB has been found in other clinical tasks, but has not yet been
tested with e-prescribing. This study tests for the presence of AB in e-prescribing and the impact of task complexity

and interruptions on AB.

Methods: One hundred and twenty students in the final two years of a medical degree prescribed medicines for
nine clinical scenarios using a simulated e-prescribing system. Quality of CDS (correct, incorrect and no CDS)
and task complexity (low, low + interruption and high) were varied between conditions. Omission errors (failure
to detect prescribing errors) and commission errors (acceptance of false positive alerts) were measured.

Results: Compared to scenarios with no CDS, correct CDS reduced omission errors by 38.3% (p <.0001, n=120),
46.6% (p <.0001, n=70), and 39.2% (p <.0001, n = 120) for low, low + interrupt and high complexity scenarios
respectively. Incorrect CDS increased omission errors by 33.3% (p <.0001, n=120), 24.5% (p < .009, n=82), and 26.
7% (p < .0001, n=120). Participants made commission errors, 65.8% (p <.0001, n=120), 53.5% (p <.0001, n=82),
and 51.7% (p < .0001, n=120). Task complexity and interruptions had no impact on AB.

Conclusions: This study found evidence of AB omission and commission errors in e-prescribing. Verification of
CDS alerts is key to avoiding AB errors. However, interventions focused on this have had limited success to date.
Clinicians should remain vigilant to the risks of CDS failures and verify CDS.

Keywords: Decision support systems, Clinical, Cognitive biases, Complexity, Electronic prescribing, Medication
errors, Automation bias, Human-computer interaction, Human-automation interaction

Background

The electronic prescription of medicines (e-prescribing)
is now routine, [1] making the clinical decision support
(CDS) systems they include [2] amongst the most
common encountered by clinicians. CDS can help reduce
adverse events by displaying alerts for potential errors
such as drug-drug interactions [3-5].

However, CDS is not perfectly accurate and will at
times provide inaccurate advice [6]. Over-reliance on
alerts may cause clinicians to avoid prescribing particular
medicines due to inappropriate alerts or clinicians may fail
to detect prescribing errors with the potential for harm
because they were not alerted to them.
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This over-reliance on CDS is referred to as automa-
tion bias (AB), and is defined as “the tendency to use
automated cues (such as CDS alerts) as a heuristic
replacement for vigilant information seeking and pro-
cessing [7].” With AB omission errors, users fail to
notice problems because they were not alerted to the
problem by CDS, and with commission errors, users
comply with incorrect recommendations [7]. There
are multiple possible causes of AB, [8, 9] and the
literature is currently unclear regarding which, or all,
of these are genuinely causal, and under which
circumstances. For example, commission errors have
been associated with reduced sampling of information
which can verify decision support [10, 11]. However,
human factors studies have found that some individ-
uals make commission errors despite sampling all
required information [12, 13]. This has been
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described as a ‘looking but not seeing’ effect, suggest-
ing that human information processing is also a factor
affecting AB.

The majority of AB research comes from the human
factors and ergonomics literature, mostly focused on
aviation and process control [14]. There have been a
small number of studies conducted in healthcare, find-
ing evidence of AB omission errors in computer-aided
detection of cancers in mammograms, [15, 16] and
commission errors in the computerized interpretation
of EKGs, [17] and answering questions about clinical
scenarios [18]. Goddard, et al. [19] found evidence of
commission errors, where general practitioners an-
swered questions about which drugs they would pre-
scribe for different clinical scenarios. They found a
significant effect for participants changing from correct
to incorrect responses after being provided with incor-
rect CDS advice.

For e-prescribing systems, decision support is com-
monly provided in the form of alerts that warn clini-
cians about potential prescribing errors [2]. Despite
such alerts being one of the most common forms of
decision support, the high volume of prescriptions
ordered, and risk of harm to patients from prescribing
errors, no studies have yet assessed the risk of AB in
e-prescribing.

The prevailing view in the human factors literature
is that AB only occurs in a multi-task environment
[14, 20, 21]. However AB has been reported in some,
but not all, tasks in a single task environment [14].
The discrepancy between single tasks which do and
do not produce AB suggests that properties of the
task itself may be risk factors for AB. The occur-
rence of AB may be related to how complex it is to
verify that automation is working correctly, and that
complexity across multiple simultaneous tasks appears
to be cumulative [14]. In addition to multitasking,
clinical settings are very prone to interruptions, re-
quiring the clinician to switch between their primary
task and the interruption, introducing increased
cognitive workload and task complexity [22]. However,
to date, no studies have tested the impact of interrup-
tions on AB.

This study seeks to test for the presence of AB in e-
prescribing assisted by CDS, which provides decision
support in the form of alerts for prescribing errors.
Additionally, it seeks to test the impact of interruptions
and task complexity on AB. In doing so we seek to
understand: (1) The baseline impact of correct CDS
alerts on prescribing errors; (2) The impact of CDS
false negatives on omission errors; (3) The impact of
CDS false positive alerts on commission errors; (4) The
impact of interruptions on AB; (5) The impact of task
complexity on AB.
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Methods

Participants

One hundred and twenty students enrolled in the final
two years of a medical degree at Australian universities
participated in the study. Australian medical education
uses an integrative approach where students learn patient
and clinical content throughout their degree. By the final
two years of their education, participants would have typ-
ically received training in rational and safe prescribing.
They also complete the National Prescribing Curriculum,
a series of online modules based on the prescribing princi-
ples outlined in the World Health Organisation’s Guide to
Good Prescribing [23]. Upon completion of these final
two years, graduates would begin practice as junior
medical officers.

Participants responded to advertisements emailed by
medical schools or posted on social media via medical
students’ societies. Ethical approval was granted by the
ethics committees of Macquarie University and the
University of New South Wales. Participants were of-
fered two movie vouchers and a certificate for their
participation.

Experiment design

The study had two within-subject factors: quality of CDS
(correct, incorrect and no CDS) and task complexity (low,
low with interruption and high) providing nine conditions
(Fig. 1). Each participant received all nine conditions,
completing one scenario in each condition. The experi-
mental control were scenarios presented to participants
with no CDS.

The allocation of the nine prescribing scenarios to the
nine experimental conditions, the order of presentation,
and whether participants received control scenarios first
or last were randomized. The position of prescribing
and false positive errors in the list of medicines to be
prescribed was randomised, allocated at the time of
scenario design. The position of alerts was varied depend-
ing on the CDS condition that was randomly allocated to
the scenario for each participant at the time of enrolment.

Experimental task

Figure 2 provides an example of the participants’ task in
this experiment. Participants were presented with nine
prescribing scenarios for which they were asked to pre-
scribe medicines using an e-prescribing system. Each sce-
nario presented a brief patient history together with a list of
medications to prescribe.

The prescribing scenarios were developed with advice
from an expert panel, including four hospital doctors, a
medical pharmacology registrar and two pharmacists
(including MZR). They were independently reviewed by
a consultant physician specialising in pharmacology (RD),
to ensure clinical relevance. The scenarios presented
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support
n=120

Low complexity
Incorrect decision
support
n=120

Fig. 1 Experimental design with the number of participants in each condition. All participants completed all conditions. However, some were
excluded from the analysis of interruption conditions as they did not trigger the interruption task

hypothetical patient scenarios and involved prescribing
tasks that were typical of those undertaken by junior med-
ical officers, based on observations of e-prescribing in a
medical ward of a major teaching hospital. A common
task performed by junior medical officers is the prescrib-
ing of medications using an e-prescribing system upon
admission of a patient to hospital, including medicines
taken prior to, and those initiated on admission.

Each scenario included one genuine prescribing error,
where one of the medicines was clinically contraindi-
cated in that scenario (Additional file 1: Appendix A).
These were designed to be unambiguously errors and of
sufficient severity in the risk posed to the patient that
the medicine should be avoided under all circumstances.
To ensure this, the severity of the errors included in
the scenarios were independently assessed by a clinical

pharmacist (LGP). The error in one scenario was assessed
as potentially lethal, five were serious, and three were
significant [24]. All other medicines listed in scenarios
where carefully chosen so as to be unambiguously free
from error.

Scenario complexity was manipulated by varying the
amount of information contained in the prescribing
scenarios [25]. The nine scenarios were divided into six
low-complexity scenarios (each containing six information
elements) and three high complexity scenarios (each
containing seventeen elements). An information element
was classified as either a condition, symptom, test result,
prior treatment, allergy, observation, or requested pre-
scription. Each element could potentially interact with
other elements in a way that could result in a prescribing
error, for example, drug-drug interactions and conditions

Medication Chart: MR Jasper LARNACH

Gender: Male
Adverse Drug Reactions: Opioids
Prescribe

| View Instructions | | Finish Scenario

Summary Scheduled PRN Stat

/Admini

MR Jasper LARNACH (546541973) DOB: 18/09/1949, 65 years Weight: 68 kg Height 167 cm

Decision Support is Switched ON for this scenario

Scenario
MR Jasper LARNACH
DOB: 18/09/1949, 65 years Weight: 68 kg Height 167 cm Gender:
Male

Allergies: Opioids

Mr Jasper Larnach is a 65 year old male who was admitted to hospital
this morning with severe vomiting and diarrhoea resulting in

Record dehydration and disorientation

paracetamol 500 mg tablet
IDOSE: 2 Tablet(s), Oral
IFour times a day, Scheduled

Drug info

He has a history of Parkinson’s disease, osteoarthritis and an allergy
to opioids. He also had a myocardial infarction 10 years ago and has
been treated for heart failure since.

IMETOPROLOL SUCCINATE Tablet 47.5 mg
((controlled release)

IDOSE: 1 Tablet(s), Oral

Once a day, Scheduled

Drug nfo |

Please prescribe the following medications:

« Paracetamol 500 mg tablets, 2 tablets, PO, four times daily.

levodopa 100 mg + carbidopa anhydrous 25 mg
tablet

IDOSE: 1 Tablet(s), Oral

[Three times a day, Scheduled

Drug Info )

Metoprolol Succinate tablet 47.5 mg (controlled release), 1
tablet, PO, once daily.

Levodopa 100 mg + Carbidopa Anhydrous 25 mg tablet, 1
tablet, PO, three times daily.

fentacapone 200 mg tablet
IDOSE: 1 Tablet(s), Oral
[Three times a day, Scheduled

Drug nfo |

Entacapone 200 mg tablet, 1 tablet, PO, three times daily.
Ramipril 5 mg tablet, 1 tablet, PO, once daily.
Thiamine Hydrochloride 100 mg tablet, 1 tablet, PO, once daily.

A metoclopramide hydrochioride 10 mg tablet Drag Info)
DOSE: 1 Tablet(s), Oral Cease
[Three times a day, PRN
IMAX DOSE: 3

Fig. 2 The e-prescribing system interface and scenario

Rosuvastatin 20 mg tablet, 1 tablet, PO, once daily.
Metoclopramide Hydrochloride 10 mg tablet, 1 tablet, PO, PRN,
three times daily, maximum 3 tablets per day.

When you have finished click ‘Finish Scenario’.
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which may contraindicate the use of a particular medicine.
The more elements, the more potential interactions the
participant needs to assess. Low-complexity scenarios
contained a list of three requested medicines, while high-
complexity ones contained eight. The number of elements
in each scenario was coded by DL and reviewed by MZR;
disagreements were resolved by consensus.

In interruption conditions, participants were inter-
rupted, once per scenario, whilst viewing drug information
and presented with a task requiring a response before they
could continue. The task required them to seek out and
retain in memory three information elements to calculate
a dose (Additional file 1: Appendix B).

E-prescribing system

A simulated e-prescribing system was developed which
allowed for the manipulation of the triggering and con-
tent of CDS alerts. This web-based system was presented
to participants as being in development. A medication
administration record was not implemented, nor were
participants required to specify times of administration.

CDS was provided in the form of alerts (Fig. 3) which
were triggered once a prescription was entered. The alert
provided a generic warning about the nature of the error,
followed by specific details.

Participants could resolve the alert by choosing either
to remove (i.e., not prescribe) the medicine or to over-
ride the alert with a reason and prescribe that medicine
anyway. The alert also provided direct access to drug in-
formation for the relevant medicine from the Australian
Medicines Handbook [26]. The Australian Medicines
Handbook references the Australian formulary and is a
gold standard medicines reference. It is evidence-based,
reflects Australian best practice and is widely utilised in
Australian clinical practice [27]. This reference was also
readily accessible from the medication chart and in
prescription order entry screens and could be used to
identify prescribing errors and verify the information
provided by CDS alerts.

The quality of CDS provided to participants was ma-
nipulated across conditions:

c WARNING: Medicine Contraindicated

This medication is contraindicated for a condition (Parkinson’s Disease)
contained in the patient record.

Action Reason for Override
Remove prescription |

® Override alert ‘ y

Continue Drug Information

Fig. 3 CDS Alert
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e Correct CDS alerts triggered only by genuine
prescribing errors (true positives). Due to the
severity of the prescribing errors, all correct alerts
were highly relevant. The absence of alerts always
indicated true negatives.

o Incorrect CDS failed to alert the genuine prescribing
error (false negative) and provided one false positive
alert, per scenario, for a medicine that was safe to
prescribe.

e No CDS served as the control condition in which
there was no CDS checking for errors. Participants
were informed of this and advised to use the drug
reference to identify errors.

Procedure

After having given informed consent, participants com-
pleted a pre-experiment questionnaire and watched a
brief instructional video on how to use the e-prescribing
system. The video included a demonstration of the cor-
rect functioning of CDS alerts and how to view drug
information.

Participants were instructed as follows: (1) Approach
tasks as if they were treating a real patient, exercising all
due care; (2) Should they detect any prescribing errors,
these should be addressed by not prescribing that medi-
cine; (3) If the error involved an adverse drug interaction
between two medicines, only one should be omitted; (4)
If there was a discrepancy between CDS and the drug
information they should rely on the drug information.

The task was presented as an evaluation of an e-
prescribing system under development and participants
were told that “Initial testing has shown that alerts are
highly accurate, but occasionally have been incorrect.
Therefore, you should always double check with the
inbuilt drug information reference.” No information was
provided on what types of errors the system would
check and alert. Once all scenarios were completed, par-
ticipants completed a post-experiment questionnaire and
were then debriefed.

Outcome measures
The present study was designed to test and analyze the
following decision errors:

1. Omission errors: Where the participant failed to
detect a genuine prescribing error. If the error was
corrected by the participant, for example, by
reducing a harmful dose to a safe level, it was not
scored as an omission error.

2. Commission errors: Where the participant did
not prescribe a safe medicine because of a false
positive alert.
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Prescribing errors were classified according to the
definitions of prescribing error categories provided by
Westbrook et al. [28]. The potential severity of pre-
scribing errors was assessed by a clinical pharmacist
(LGP) using the severity error classification scheme
described in Dornan et al. [24].

Statistical analyses

The presence of AB was tested using McNemar’s test
[29] comparing errors between scenarios with incorrect
CDS and scenarios with no CDS (control). It was esti-
mated that 120 participants would be required to detect
a 25% or greater difference (two-tailed) in errors between
the control and incorrect CDS scenarios with 80% power
and p < 0.05 [30]. With five hypotheses tested, a Bonferroni
correction was applied to control for the increased risk of
making a Type I error when testing multiple hypotheses
[31]. With the desired alpha of 0.05, the corrected alpha
against which all significance probabilities were evaluated
became 0.01. Significance probabilities are only reported for
comparisons between individual conditions, but not for
aggregate figures by quality of CDS, which include multiple
observations from each participant. Scenarios in which par-
ticipants did not experience an interruption were excluded
from the interruption analysis (z = 36 with no CDS, n =22
with correct CDS, and # = 4 with incorrect CDS).

Results

The participants’ average age was 24 years, and 46.7%
were female. The majority rated their knowledge of
medicines as fair (55.8%, n=67) and only 5.8% (n=7)
reported previous training in e-prescribing systems. One
participant completed the experiment twice (on two sep-
arate occasions), and the data from their second attempt
was excluded.

In total, participants prescribed 4,065 medicines and
made 1,049 prescribing errors (Table 1). This included
440 necessary medicines that were not prescribed. Of
the total errors, 735 (70%) errors stemmed from opportun-
ities the experiment provided for participants to make
omission or commission errors. The remaining 314 (30%)
where user-originated errors, independent of the experi-
ment design and the majority of these were transcription
errors. All participants made one or more prescribing
errors. Compared to the control, correct CDS decreased
prescribing errors by 58.8%, while incorrect CDS increased
errors by 86.6%.

Although participants were instructed to omit medi-
cines they believed to contain prescribing errors, there
were 43 instances where it appeared participants had
substituted medicines not included in the scenario in an
attempt to correct errors. Of these, 36 substitutions were
replacing medicines associated with genuine prescribing
errors, six were in response to false positive alerts, and
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one substitution was for a medicine not associated with
any experimental manipulation.

Correct CDS decreased prescribing errors

There were 40.8% fewer omission errors in scenarios
with correct CDS compared to scenarios with no CDS
(Table 2). This was significant across all levels of task
complexity, with 38.3% fewer errors in low complexity
(p <.0001, n = 120), 46.6% fewer errors in low + interrupt
(p <.0001, n ="70), and 39.2% fewer errors in high com-
plexity scenarios (p <.0001, n = 120).

However, correct CDS did not significantly alter com-
mission errors (Table 2). This was the case for low
complexity (p=1.0, n=120), low + interrupt (p =.219,
n=65) and high complexity scenarios (p=.678, n=
120). Participants also made omission errors by overrid-
ing correct CDS alerts in 8.3% of scenarios and com-
mission errors by not prescribing the safe, comparator,
medicines in 5.3% of scenarios.

Incorrect CDS increased prescribing errors

Participants missed 28.7% more genuine prescribing er-
rors (omission errors) when assisted by incorrect CDS
compared to no CDS (Table 2). These differences were
statistically significant across all levels of complexity,
with 33.3% more errors in low complexity (p <.0001,
n =120), 24.5% more errors in low + interrupt (p =.009,
n =82) and 26.7% more errors in high complexity scenar-
ios (p <.0001, # = 120).

Overall participants made 56.9% more commission
errors (did not prescribe safe medicines) when they
received false positive alerts from incorrect CDS com-
pared to when they received no CDS (Table 2). These
differences were statistically significant across all levels
of complexity, with participants in scenarios receiving
false positive alerts making 65.8% more errors in low
complexity (p <.0001, n=120), 53.5% more errors in
low + interrupt (p <.0001, n =82) and 51.7% more er-
rors in high complexity scenarios (p <.0001, n = 120).

Interruptions to prescribing and scenario complexity did
not impact automation bias

Interruptions did not affect omission or commission errors,
or errors in the control scenarios. In interrupted scenarios
with incorrect CDS there were 0.1% more omission errors
(p=1.0 n=116) and 9.7% fewer commission errors
(p=.08, n=116). In interrupted control scenarios there
were 8.9% more omission errors (p =.2, n=84) and 2.6%
more commission errors (p =.22, n = 84). All of these were
non-significant.

Scenario complexity did not affect omission or com-
mission errors, or errors in the control scenarios. In high
complexity scenarios with incorrect CDS there were
4.2% fewer omission errors (p =.46, n=120) and 5.0%
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Table 1 Prescribing errors
Control Quality of Decision Support
No CDS Correct CDS Incorrect CDS Total
n % n % n % n %
Omission errors
Wrong drug 57 358 7 250 116 419 180 388
Wrong dose 55 346 9 321 72 26.0 136 293
Wrong frequency 0 00 0 0.0 0 0.0 0 0.0
Drug-drug interaction 28 176 7 250 60 21.7 95 20.5
Wrong route 0 0.0 0 00 0 0.0 0 00
Wrong formulation 0 0.0 0 0.0 0 0.0 0 0.0
Duplicated drug therapy 19 119 5 179 29 10.5 53 114
Not indicated 0 0.0 0 0.0 0 0.0 0 0.0
Not Prescribed 0 0.0 0 0.0 0 0.0 0 0.0
Total omission errors 159 28 277 464
Commission errors
Not prescribed 24 100.0 18 100.0 229 100.0 271 100.0
Total commission errors 24 18 229 271
User originated errors
Wrong drug 8 58 10 11.6 9 9.9 27 86
Wrong dose 43 314 29 337 22 242 94 299
Wrong frequency 10 7.3 6 70 4 44 20 6.4
Drug-drug interaction 0 0.0 0 0.0 0 0.0 0 0.0
Wrong route 0 0.0 0 0.0 1 1.1 1 03
Wrong formulation 1 0.7 0 0.0 0 0.0 1 03
Duplicated drug therapy 0 0.0 0 0.0 1 1.1 1 0.3
Not indicated 0 0.0 1 1.2 0 0.0 1 03
Not prescribed 75 54.7 40 46.5 54 59.3 169 538
Total user originated errors 137 86 91 314
Total errors
Wrong drug 65 203 17 129 125 209 207 19.7
Wrong dose 98 306 38 288 94 15.7 230 219
Wrong frequency 10 3.1 6 4.5 4 0.7 20 19
Drug-drug interaction 28 8.8 7 53 60 10.1 95 9.1
Wrong route 0 0.0 0 00 1 0.2 1 0.1
Wrong formulation 1 03 0 0.0 0 0.0 1 0.1
Duplicated drug therapy 19 59 5 38 30 50 54 5.1
Not indicated 0 0.0 1 0.8 0 0.0 1 0.1
Not Prescribed 99 309 58 439 283 474 440 419
Total errors 320 132 597 1049

fewer commission errors (p =.35, n =120). In high com-
plexity control scenarios there were 2.5% more omission
errors (p =.75, n=120) and 9.2% more commission er-
rors (p =.007, n=120). The only significant difference
was between low and high complexity control scenarios.

More omission than commission errors

Overall participants made 13.5% more omission than
commission errors when provided with incorrect CDS,
however, this was only significant in the low complexity +
interrupt condition, all others were non-significant. There
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Table 2 Number of participants making omission and commission errors
Scenario Quality of Decision Support
complexity Control (No CDS) Correct CDS Incorrect CDS

Omission Commission Omission Commission Omission Commission

No alert No alert True positive alert True negative alert False negative alert False positive alert

(n=120) (n=120) (n=120) (n=120) (n=120) (n=120)

n % n % n % n % n % n %
Low 55 458 4 33 9 7.5 5 4.2 95 79.2 83 69.2
Low + Interrupt® 46 548 5 6 8 8.2 1 1 92 793 69 59.5
High 58 483 15 125 11 9.2 12 10 90 75 77 64.2
Total 159 49.1 24 74 28 83 18 53 277 77.8 229 64.3

“Number of participants in low + interrupt conditions: Control (n = 84), Correct DS (n = 98), and Incorrect DS (n =116)

were 10% more omission errors in low complexity
(p=.065, n=120), 19.8% more in low + interrupt (p = .001,
n=116) and 10.8% more in high complexity scenarios
(p =.079, n = 120).

Discussion

Main findings

This is the first study to find evidence of automation
bias in the presence of e-prescribing CDS alerts. We
found that when CDS was correct it reduced overall
prescribing errors by 58.8%. This is consistent with prior
literature showing that e-prescribing CDS can reduce
prescribing errors [3—5]. However, when CDS was incor-
rect it increased errors by 86.6%. This increase was due
to AB, that is, the ability of incorrect CDS to adversely
influence participant prescribing decisions.

We found evidence of participants making omission
errors, by failing to detect 28.7% more prescribing errors
when CDS failed to provide alerts, compared to a con-
trol condition with no CDS. This finding was significant
across all levels of task complexity and is potentially
serious as the missed prescribing errors were classified
as being of significant to potentially lethal severity, with
most classified as serious severity.

Likewise, participants made commission errors, acting
on clinically incorrect, false positive alerts, by not pre-
scribing 56.9% more necessary medicines compared to
the control condition. This was significant across all
levels of task complexity.

These findings are consistent with and add to the re-
search on automation bias in healthcare. Finding evidence
of omission errors in the computer-aided detection of can-
cers in screening mammography [15, 16] and commission
errors in the computerized interpretation of EKGs, [17]
answering clinical questions assisted by CDS, [18] and
deciding what to prescribe for clinical scenarios [19].

Interestingly, while participants were found to over-
rely on automation, there was evidence of disagreement
with the CDS provided to them. Participants’ overrode
correct alerts and in doing so made prescribing errors

which CDS was warning them to avoid. They also did
not prescribe medicines which did not contain errors
and for which there were no alerts. Reasons provided for
overriding correct CDS alerts commonly referred to the
condition for which the medicine was intended to treat
(e.g. “VTE risk and pain management”, “vomiting”) or
indicated that the medicine was regularly taken by the
patient (e.g. “patient usual dose”). Participants com-
monly cited the lack of a true contraindication as the
reason for overriding incorrect CDS alerts with many re-
ferring to the drug information. For example, “There is
not any interaction listed on the drug information”.
However, regular patient medicines and the condition
treated were also mentioned as reasons for overriding
incorrect CDS alerts. This suggests that not only did
participants have trouble determining when CDS was
wrong, but some also had trouble recognizing when it
was right and that the alerts, or lack thereof, were bene-
ficial and should be heeded.

Interruptions and task complexity did not impact
automation bias

Interruptions did not affect the rate of AB errors nor did
it affect errors rates in the control condition. However,
interruptions are a complex phenomenon where mul-
tiple variables, including the characteristics of primary
tasks, an individual’s cognitive state, the interruptions
themselves, and the environment, may influence impact
on clinical tasks and errors [22]. Despite clear evidence
that interruptions can disrupt clinical tasks, their effects
are complex, and may not always be detected [32].

Any impact of interruptions on prescribing errors was
not detected in our experiment, replicating earlier results
[33]. In our experiment, upon task resumption partici-
pants had ample time to recall their next action and the
task environment provided cues to aid task resumption,
for example, partly completed orders were visible on
screen. One possible reason for not detecting an effect of
interruptions was thus that disruption were minimized by
these cues within the user interface [34]. This is consistent
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with observations from other studies of interruptions to
computer-based tasks where participants were aided by
the screen environment and were able to resume an inter-
rupted task [35, 36]. Performance under cognitive load
from more demanding competing tasks in a clinical envir-
onment may have resulted in a different outcome.

Contrary to expectations, the task complexity manipu-
lation also had no effect on AB errors. This is in stark
contrast to the findings of Bailey and Scerbo [25] who
found performance on a system monitoring task deterio-
rated with increased task complexity, which they defined
in terms of the cognitive demands placed on the partici-
pant. Monitoring tasks required the identification of crit-
ical deviations outside the normal operating range. Less
complex tasks had participants monitor analogue gauges
with marked critical regions. More complex tasks involved
monitoring a display showing raw numbers where the
subject had to remember the critical values for four differ-
ent types of parameters.

Had the complexity manipulation altered the difficulty
of prescribing task we would have expected to see a higher
error rate in the high complexity control conditions. How-
ever, the observed difference was small and non-significant.
This is in contrast to findings of Goddard et al. [19]. who
found a significant effect for task difficulty, as classified by a
panel of practitioners, on decision accuracy without CDS
between medium and difficult scenarios. However, they
found that task difficulty had no effect on commission
errors.

The high error rate for both high and low levels of
complexity in control conditions, with participants missing
nearly half of all prescribing errors, seems to indicate that
the difference in complexity between the two conditions
may not have been large enough for differences in error
rates to emerge.

Implications

When clinical decision support is right, it can reduce
prescribing errors by providing an important opportunity
to detect and recover from prescribing errors. However,
the finding of automation bias suggests that this additional
layer of defence weakens or, at worst, becomes a re-
placement for the clinician’s own efforts in error detec-
tion with error detection delegated to CDS, without
adequate oversight.

An intuitive solution to the problem of AB is to pro-
duce CDS systems that are less prone to error. While
this may reduce the overall error rate, highly accurate
automation is known to increase the rate of AB [25]. In
other words, when automation does fail, the clinician
will be even less able to detect it.

A key problem is that users seem to have difficulty in
determining when CDS should and should not be relied
on. Indeed, human factors research reports an inverse
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relationship between measures of verification, such as
viewing drug references, and AB commission errors
[10, 11]. So far, interventions to counter AB have had
little success [37—39]. These include a number specific-
ally targeted at verification, such as exposure to auto-
mation failures; [10] training about AB; and providing
prompts to verify [40]. Compounding this problem fur-
ther are findings of a looking-but-not-seeing effect or
inattentional blindness where participants have made
AB errors despite accessing sufficient information to
assess that automation was incorrect [12, 13].

Verification, the means by which a user can determine
whether the CDS they receive is correct, is key to the
mitigation of AB. However, the lack of successful inter-
ventions indicates that more research is needed on how
to best assist users with this crucial task.

This study has established that there is a risk of auto-
mation bias in electronic prescribing with senior medical
students, who will soon be entering clinical practice as
junior doctors. In doing this, we have also demonstrated
a methodology for detecting AB in e-prescribing. The
true rates and effects of AB in working clinical settings
will require further studies and indeed is likely to vary
by clinicians’ experience and familiarity with medica-
tions, clinical setting, patient complexity, and the par-
ticular decision support system used. All this is future
work. Likewise, the lack of an effect of task complexity,
even in control conditions, was surprising and some-
thing future studies will need to address. This might be
achieved by varying clinician experience with prescribing
and e-prescribing systems. Complexity could also in-
corporate familiarity with medicines, varying between
simple, commonly-used to complex, rarely-prescribed
regimes.

Clinicians need to be mindful that CDS can and does
fail [6]. Ideally, clinicians should make every effort to
detect prescribing errors, allowing CDS to function as
an independent check for errors rather than relying on it
as a replacement of their own error detection efforts.

Limitations

Several limitations arise from the design of this study.
While participants were instructed to approach the task
as if they were treating a real patient, exercising all due
care, the prescribing task was simulated, and prescribing
errors were without consequence.

Also as an experiment, we cannot make any infer-
ences about the true effect size or rate of AB in clin-
ical settings as this will vary with, the user, the tasks
being performed and the accuracy of the decision sup-
port provided. Likewise, the nature and incidence of
the provided opportunities for prescribing errors may
not be representative of those encountered in clinical
practice.
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The lack of a difference in prescribing errors between
the low and high complexity control scenarios limited our
ability to assess the impact of task complexity on AB.

Finally, the use of medical students with little experience
in both prescribing medicines and using e-prescribing sys-
tems provides an indication of how CDS will impact new
clinicians entering practice but limits generalisability for
experienced prescribers or clinicians with e-prescribing
experience.

Conclusion

This study set out to test for the presence of automation
bias in e-prescribing, a clinical decision support system
commonly encountered by clinicians. We found evidence
of omission errors, where participants failed to detect pre-
scribing errors that were not alerted by CDS and commis-
sion errors, where participants acted on clinically incorrect
alerts. Contrary to expectations, task complexity and
interruptions had no impact on AB errors. However,
when prescribing errors were correctly alerted, there
was a dramatic reduction in the number of prescribing
errors, demonstrating the benefits of CDS.

The challenge is to maximize the benefits of CDS
while minimizing the risk of over-reliance. The key to
this is enabling clinicians to determine when the CDS
provided to them is correct, which is achieved through
verification. Unfortunately, interventions tested to date,
including those which focus on verification have produced
little success. More research is needed on how to best
assist clinicians with the task of verifying automation.
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