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Abstract

Background: Early detection of outdoor aerosol releases of anthrax is an important problem. The Bayesian
Aerosol Release Detector (BARD) is a system for detecting releases of aerosolized anthrax and characterizing
them in terms of location, time and quantity. Modelling a population's exposure to aerosolized anthrax poses a
number of challenges. A major difficulty is to accurately estimate the exposure level--the number of inhaled
anthrax spores--of each individual in the exposed region. Partly, this difficulty stems from the lack of fine-grained
data about the population under surveillance. To cope with this challenge, nearly all anthrax biosurveillance
systems, including BARD, ignore the mobility of the population and assume that exposure to anthrax would occur

at one's home administrative unit--an assumption that limits the fidelity of the model.

Methods: We employed commuting data provided by the U.S. Census Bureau to parameterize a commuting
model. Then, we developed methods for integrating commuting into BARD's simulation and detection algorithms
and conducted two studies to measure the effect. The first study (simulation study) was designed to assess how
BARD's detection and characterization performance are impacted by incorporation of commuting in BARD's
outbreak-simulation algorithm. The second study (detection study) was designed to measure the effect of

incorporating commuting in BARD's outbreak-detection algorithm.

Results: We found that failing to account for commuting in detection (when commuting is present in simulation)
leads to a deterioration in BARD's detection and characterization performance that is both statistically and
practically significant. We found that a simplified approach to accounting for commuting in detection--simplified
to maintain tractability of inference--nearly fully restored both detection and characterization performance of

BARD detector.

Conclusion: We conclude that it is important to account for commuting (and mobility in general) in BARD's
simulation algorithm. Further, the proposed method for incorporating commuting in BARD's detection algorithm
can successfully perform the necessary correction in the detection algorithm, while preserving BARD's
practicality. In our future work, we intend to further study the problem of the trade-off between running time
and accuracy of the computation in BARD's version that includes commuting and ultimately find the best such

trade-off.
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Introduction

Disease surveillance has a long history in Public Health.
However, recent years have witnessed a sharp increase in
the research devoted to the very early detection of disease
outbreaks [1,2]. The diseases that have received special
attention include those that occur naturally, especially the
emerging infectious diseases, and those that may be
caused by acts of bioterrorism. The detection of outbreaks
is typically achieved through the analysis of various types
of pre-diagnostic disease data, such as the counts of Emer-
gency Department (ED) visits or the sales of over-the-
counter healthcare products. To increase the utility of
these data for detecting outbreaks of specific diseases, sur-
veillance systems typically categorize the data according to
various medical criteria. For example, the category of ED
visits with influenza-like illness may be analyzed to detect
influenza outbreaks. Similarly, the category of ED visits
with respiratory chief complaints (RCC) may be analyzed
to detect outbreaks of a respiratory disease, such as the dis-
ease caused by the inhalation of B. Anthracis spores. The
use of such pre-diagnostic and categorized data for the
purpose of detecting disease outbreaks is sometimes
known as syndromic surveillance.

The early detection of outdoor aerosol releases of anthrax
is an important problem because a release could infect
hundreds of thousands of individuals and without early
detection mortality could be as high as 30,000 to 3 mil-
lion [3]. Further, the accurate characterization of an aero-
sol release in terms of time, location and quantity might
assist responders in mitigating the impact of an outbreak.
The Bayesian Aerosol Release Detector (BARD) is a system
for detecting and characterizing releases of aerosolized
anthrax. BARD integrates the analysis of biosurveillance
data (counts of ED visits with RCC), meteorological data
and geographical data. Through this analysis BARD
attempts to determine whether the current spatio-tempo-
ral pattern of respiratory disease incidence in a region is
more consistent with the historical patterns or with the
pattern that BARD would expect with an aerosol anthrax
release.

Modelling a population's exposure to aerosolized anthrax
poses a number of challenges. A major difficulty is to
accurately estimate the exposure level--the number of
inhaled anthrax spores--of each individual in the exposed
region. A key determinant of the exposure level of an indi-
vidual is his/her spatial location at the time of exposure.
Hence, to accurately estimate the exposure level it would
be desirable to perform a fine-grained spatial modelling at
the person-level. However, the data needed to parameter-
ize such models are difficult to obtain. In fact, the only
type of spatial information that is typically contained in
biosurveillance databases is the home administrative
unit--such as the home zip code--of each patient. To deal
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with this challenge posed by the lack of fine-grained spa-
tial data, nearly all anthrax biosurveillance systems,
including BARD, make two simplifying assumptions.
First, they assume that all individuals who live in the same
administrative unit would have the same exposure level--
typically taken to be the level at the unit's centroid. Sec-
ond, they assume that exposure to anthrax would occur at
one's home administrative unit. Whether it is possible to
relax the first assumption remains currently an open prob-
lem. On the other hand, in the last few years there has
been some progress toward relaxing the second assump-
tion. The key to this progress has been to integrate biosur-
veillance systems with mobility models that are
parameterized through data that describe the travel pat-
terns of the population. For one type of travel, namely the
work-related commuting, such datasets are publicly avail-
able from the U.S. Census Bureau. For other types of
travel, data are more difficult to obtain.

The first study that incorporated a mobility model in the
simulation of anthrax outbreaks was conducted by Buck-
eridge [4]. He developed methods for integrating mobility
in outbreak simulation and employed commuting data
provided by the U.S. Census Bureau as well as survey
based, non-commuting travel data. Then, he investigated
the impact that incorporation of mobility in outbreak
simulation had on two outbreak detection algorithms: a
cumulative-sum temporal algorithm [1,2] and the SMART
spatial algorithm [5]. A few other papers have investigated
incorporation of mobility in biosurveillance. Duczmal
and Buckeridge [6] proposed a method for integrating a
commuting model with Kulldorf's spatial scan algorithm
[7]. Garman et al. [8] developed a method for probabilis-
tically inferring the work zip code from the home zip code
and then integrated this method with the PANDA detec-
tion algorithm [9]. Cami et al. [10] developed a method
for integrating commuting with BARD detection algo-
rithm.

This paper describes a method for incorporating commut-
ing into BARD. First, we incorporate commuting into
BARD's outbreak-simulation algorithm. Then, we present
the results of an experimental study that assessed how
BARD's detection and characterization performance are
impacted as a result. Next, we present the results of a sec-
ond study designed to measure the effect of incorporating
commuting in outbreak detection. Finally, we compare the
results of the simulation and detection studies, discuss the
findings and limitations of this work and outline some
directions for future research.

Background
A brief description of BARD

Here we provide a brief description of BARD. A thorough
discussion of this system can be found in Hogan et al. [3].
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To simplify our exposition, we follow the terminology in
Lawson and Kleinman [1] and generically refer to the
basic administrative spatial units employed for aggregat-
ing the disease data (e.g., block groups or zip codes) as
tracts. The main symbols used in this paper and their
respective meanings are listed in Table 1.

BARD detector

BARD detector attempts to discriminate between two
hypotheses. The null hypothesis states that only "back-
ground" respiratory disease is present in the surveillance
region. The alternative hypothesis states that both back-
ground respiratory disease and a respiratory disease
caused by an aerosol release of anthrax are present. Using
Bayes' theorem, BARD computes the posterior probability
of the attack hypothesis H, given data, as follows:

P(b|H1,G,M)P(H1)
Y P(blH;,GM)P(H;) (1)
i=0,1

P(H, |b,G,M) =

In addition, BARD computes the likelihood ratio, or the
Bayes' factor

P(b|H1,G,M)

P(b|Hp,G,M) )

In equations (1)-(2), b is the biosurveillance vector consist-
ing of the tract-level counts of ED visits with RCC during
the last 24 hours; G is the geographical matrix containing
the tract populations and the x, y coordinates of the tract
centroids; M is the meteorological matrix containing the
wind speed, the wind direction and the atmospheric sta-
bility class--a measure of atmospheric turbulence--for var-
ious observation times during the most recent week. The
posterior probability of H, and the Bayes' factor are both

Table I: List of symbols
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measures of the evidence provided by the data in favour
of the alternative hypothesis.

The two key quantities in equations (1)-(2) are P(b|H,, G,
M), the likelihood of biosurveillance data under H,,, and
P(b|H,;, G, M), the likelihood of biosurveillance data
under H,. Assuming conditional independence among
the counts of different tracts given a hypothesis and the
meteorological conditions, BARD computes the two
region-wide likelihoods P(b|H,, G, M) and P(b|H,, G, M)
by first computing the corresponding tract-level likeli-
hoods and then using equations:

P(b|Hy, G M) = HP(cl- | Hy, G, M),
i

P(b| H,,G,M) =_[ TT PG 1 Hu G [P(e | Hy, G My

3)

In eq. (3), ¢;denotes the 24-hr count of tract i and r =(x, y,
h, g, t) denotes the release parameter vector, consisting of
the release location x, y, h, the release quantity ¢, and the
release time t. To compute the tract-level likelihoods P(c;
|Hy, G, M) and P(c; |H,, G, M, r), BARD employs the bino-
mial probability model (see [3,10] for more details).
Finally, BARD performs the integration over the release
scenarios r through a Monte Carlo integration technique
called likelihood weighting [3].

In addition to computing the two detection statistics dis-
cussed above--the posterior probability of H, and the
Bayes' factor--BARD attempts to characterize a release by
computing an estimate for each element of the release vec-
tor r. The estimation of r is carried out in Bayesian fash-

Symbol Meaning

t release date and time

release coordinates

release quantity

n, population of tract i

¢, number of cases who live in tract i

d; dose of spores in the centroid of tract i
[

ED-visit probability of each individual who lives in tract i, given that a release has occurred and assuming that commuting has not taken

place

G commuting graph: nodes denote tracts, arcs denote commuting flows

or work in tract i

work in tract i

n; fori#j, number of people who live in tract i and work in tract j; for i = j, number of people who live in tract i and who either don't work
¢; fori#j, number of cases who live in tract i and work in tract j; for i = j, number of cases who live in tract i and who either don't work or

union of set {i} with the set of all tracts where people who live in tract i work
ED-visit probability of each individual who lives in tract i, given that a release has occurred and assuming that commuting has taken place
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ion. BARD assumes that the release parameters are
conditionally independent given Hy, i.e.,

P(r|Hy,G,M)=P(x,y | H))P(h| H,)P(q | H,)P(t | H;).
(4)

BARD employs a uniform prior for each element of r,
except h, for which a prior that favours smaller release
heights relative to the higher ones is employed (see [3], p.
5248). Finally, BARD computes the posterior expectation
of each element of r inside the likelihood-weighting inte-
gration procedure. The posterior expectation of r consti-
tutes the release characterization produced by BARD.

BARD simulator

BARD can also simulate outbreaks of the respiratory dis-
ease caused by an aerosol release of anthrax. Algorithm 1
gives a high-level description of BARD's outbreak simula-
tion algorithm.

Algorithm 1: BARD outbreak simulation

input: surveillance region, release date/time, location,
and quantity

output: list of simulated cases for each tract of surveillance
region

foreach tract i of surveillance region do

1. compute the dose of spores d; in the centroid of tract i
using the Gaussian plume model (see [3])

2. compute the probability €, that an individual who lives
in tract i will visit an ED, given the dose of spores d, (see

[31)

3. generate the number of cases ¢, for tract i by drawing a
random variate from Bin(n;, 6;), where n;is the population
of tract i

4. foreach case of tract i do

a. draw a random time interval from a lognormal distri-
bution corresponding to the dose d; (see [3])

b. add this interval to the release date/time to obtain
the time of ED visit for this case

end

end
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For brevity, in Algorithm 1 we have left out a number of
details that are not necessary for understanding the flow
of the computation. These details can be found in [3].

Methods

Biosurveillance data

Our disease data--counts of ED visits with RCC--corre-
spond to a region surrounding the city of Pittsburgh. This
region consists of seven counties: Allegheny, Armstrong,
Beaver, Butler, Lawrence, Washington, and Westmore-
land. The historical ED data for our experiments were pro-
vided by 10 EDs operated by one health system. These
data represented nearly 30% of all ED visits in the surveil-
lance region. We divided the total period spanned by the
available ED data into a training period (1 January 1999
to 31 December 2004), which was used to train BARD's
detection algorithm, and a test period (1 January 2005 to
31 December 2005), used in our evaluation experiments.
Finally, the weather data were provided from the National
Weather Service, while the populations and central zip
codes came from the ESRI ArcGIS Desktop product.

Data and model for commuting flows

The data that describe the commuting patterns were pro-
vided by the U.S. Census Bureau. These data were col-
lected during the 2000 Census, have national coverage
and are provided at the census tract level: each commuting
flow denotes the average daily number of commuters
between a home census tract and a work census tract. The
commuting flows can be naturally modelled by a
weighted, directed graph in which nodes denote tracts,
arcs represent commuting flows, and the weight of an arc
denotes the number of commuters in the corresponding
flow. We extracted from the nationwide commuting data-
set the commuting flows for which both the residence
tract and the work tract belong to our surveillance region.
The total number of commuters in this intra-region subset
of flows was 1,005,566.

As a pre-processing step, we needed to transform the com-
muting flows from the census tract level provided by the
U. S. Census Bureau to one of the two levels supported by
the BARD simulator: zip code, or block group. In this
paper we performed the latter transformation mainly
because the block-group level is finer-grained than the
zip-code level and thus has the potential to lead to a more
accurate estimation of the release location by BARD. Note
that block group is a sub-unit of census tract (i.e., each
census tract is partitioned into two or more block groups).
To perform the desired transformation, we split each com-
muting flow between a pair of census tracts T;, T, into sev-
eral smaller-sized flows according to the following two
intuitive rules: (i) the number of workers coming from
each constituent block group of T, was assumed to be pro-
portional to the block group population; (ii) the number
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of workers going to T, was assumed to be evenly divided
among its constituent block groups. The final commuting
graph for our region consisted of 1991 nodes (block
groups) and 324,402 arcs (commuting flows).

Integration of commuting with BARD simulator

We refer to the version of BARD simulator that takes com-
muting into account as the BARD-C simulator. BARD-C
simulator takes as input a representation of the commut-
ing graph G, in addition to the surveillance region and the
anthrax release parameters. The key observation
employed in the incorporation of commuting in simula-
tion is that if a release occurs during working hours, a
worker would be exposed at the dosage level correspond-
ing to his/her work tract rather than the dosage level of
his/her home tract. This idea is implemented in BARD-C
by modifying the Step 3 of Algorithm 1, namely the com-
putation of the ED-visit count for each tract. To realize this
modification BARD-C first computes the ED-visit count
corresponding to each commuting flow separately and
then re-aggregates the workflow-level counts according to
the home tract. More precisely, the number of cases for
each tract i is computed as

= D, c (5)

jeOut(i)

where

In egs. (5)-(6), ¢; denotes the total number of cases who
live in tract i, Out(i) ={i} U {j|(i, j) is an arc of G} denotes
the union of set {i} with the set of out-neighbours of tract
i in the commuting graph G (i.e., the tracts where people
living in tract i go to work), n;;, i # j, denotes the weight of
the arc (i, j) in the graph G, i.e., the number of people liv-
ingin tract i and working in tract j, and n;; denotes number
of people who either don't work, or who both live and
work in tract i. Finally, ¢; i # j, denotes the number of
cases who live in tract i and work in tract j, ¢; denotes
number of cases who either don't work, or who both live
and work in tract i and ¢, denotes the probability that a
person who is exposed in tract j will visit an ED, given that
a release has occurred.

This refined computation of the tract-level ED counts in
BARD-C could alternatively be implemented by modify-
ing the ED-visit probability of each individual who lives
in tract i (i.e., modifying the Step 2 of Algorithm 1) prior
to generating the number of cases for tract i as a binomial

random variate. Indeed, let us denote by ;" the probabil-

ity that an individual who lives in tract i will visit an ED,
given that a release has occurred and assuming that com-
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muting has taken place. Let the parameter 6 denote, as

before, the probability that an individual who is exposed to
anthrax in tract i will visit an ED. By approximating the
binomial distribution with a Poisson distribution and
recalling that the sum of independent Poisson random
variables is also a Poisson random variable, it is straight-
forward to show that the method for generating the count
¢; specified by egs. (5)-(6) is essentially the same as gener-

ating the count ¢; from a binomial distribution Bin(n,,

0."), where

_
;=Y Yo, )
jeom(i)
The above two methods for incorporating commuting in
simulation differ slightly from the method employed by
Buckeridge [4]. In [4], other non-commuting types of
mobility were also taken into account and therefore the
exposure tract could be different from both the residential
and the work tract. Hence, in [4] the incorporation of
mobility was based on the computation of conditional
probabilities P(exposed in tract i|t, live in tract j) for all
pairs i, j.

After generating the number of cases for each tract, BARD-
C computes the ED-visit time of each simulated case by,
again, taking into account the fact that a worker would be
exposed at the dosage level of his/her work tract. This idea
is implemented in BARD-C by ensuring that in the Step
4(a) of Algorithm 1 the time of ED visit for a worker case
is computed as a random deviate from the lognormal dis-
tribution that corresponds to the dosage level at his/her
work tract.

The incorporation of commuting in simulation leads to
an increase in the running time of the Step 3 of BARD's
simulation algorithm by a constant factor. It is straightfor-
ward to see that this factor equals the average out-degree
of the commuting graph. For the block group-level com-
muting graph of the Pittsburgh region that we created, the
average out-degree is nearly 150. However, the factor by
which the total running time of BARD simulator is
increased due to the incorporation of commuting is
smaller. The reason for this is that Step 3 accounts for only
a fraction of the running time of BARD. In a computer
with a 3 GHz processor and 2 GB of main memory, a sim-
ulation for the Pittsburgh region took nearly 2 minutes
with BARD and nearly 20 minutes with BARD-C.

Verification of the correctness of simulation with
commuting

To verify that BARD-C simulator works as intended, we
generated a random release parameter vector, consisting
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of the release time, location, and quantity. Then, using
this fixed release parameter vector we produced 10 syn-
thetic outbreaks with BARD-C simulator. Next, for each
tract i of the surveillance region, we fit a binomial model

Bin(n, 6;") to the sample of simulated counts c},...,c;°.

As before, n; denotes the known population of tract i, and

0. denotes the probability that an individual who lives in

tract i will visit an ED, given that a release has occurred
and assuming that commuting has taken place. We denote

by éf the estimate of the binomial probability parameter

0 learned from the count data generated with BARD-C
simulator. Finally, we computed an analytical prediction
for each parameter 6. We achieved this by first using the

BARD simulator to compute the binomial probability
parameters 6 for all j € Out(i) and then computing the

analytical prediction of the parameter 6; through eq. (7).

Integration of commuting model with BARD detector

We have also developed a method for integrating com-
muting with BARD detector. A thorough discussion of this
method is given [10]. We refer to the version of BARD
detector that takes commuting into account as the BARD-
C detector.

Measuring the impact of commuting in BARD's
performance: simulation study

We conducted an experiment to measure whether BARD's
detection and characterization performance is signifi-
cantly affected by the incorporation of commuting in out-
break simulation. In the remainder of the paper, we refer
to this experiment as the "simulation study" because the
emphasis of this study was on the integration of commut-
ing with BARD simulator. In the next section we discuss a
second study, where the emphasis is on the integration of
commuting with BARD detector. We refer to this second
study as the "detection study". Figure 1 illustrates the dif-
ference between the objectives of the simulation and
detection studies.

The simulation study followed a matched-pairs design.
First, a set of 185 release parameter vectors r = (¢, x, y, h, q)
was generated. For all parameter vectors, the quantity ¢
was fixed at 0.5 kg. The release time t was chosen uni-
formly at random from the test period, i.e., the year 2005.
The parameters x and y where chosen uniformly at ran-
dom from a circular sub-region of the surveillance region
centred in the city of Pittsburgh and having a radius of 40
km; this sub-region was found to have better ED-data cov-
erage than the whole region. Finally, the height h was cho-
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(a)

(b)

Figure |

Schematic representation of the simulation and
detection studies. Part (2): simulation study; part (b): detec-
tion study

sen from a non-uniform distribution that favours lower
release heights relative to the higher ones.

We supplied each release vectorr;, i = 1,...,185, as input to
the BARD and BARD-C simulators. By doing so, we
obtained one group of 185 simulations that did not take
commuting into account and another group of 185 simu-
lations that took commuting into account. We refer to
these two simulation groups as non-commuting and com-
muting, respectively. The synthetic cases generated in each
simulation were injected into the real ED data from 2005.
Next, each of the 370 semi-synthetic outbreaks was sup-
plied as input to the BARD detector and its average per-
formance over the non-commuting outbreak group was
compared with its average performance over the commut-
ing outbreak group.

BARD's detection performance was measured through the
time-to-detection--or timeliness--and its characterization
performance was measured through the ¢, x, y, h, and ¢
(absolute) errors. Each of the above six metrics is a function
of the alarm threshold, i.e., the threshold of the alarm sta-
tistic employed by BARD detector to discriminate between
the non-outbreak and outbreak situations. For a given
threshold, an alarm is considered to be false if the alarm
statistic exceeds the threshold prior to the outbreak onset.
The false alarm rate (for a given alarm threshold) is the
number of false alarms that occur per unit of time. We
measured it as the number of false alarms per year.

We employed two methods to compare BARD's perform-
ance over the non-commuting group with its performance
over the commuting group. The first method was Activity
Monitoring Operating Characteristic (AMOC) analysis
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[11]. The AMOC curve of a performance metric (e.g., time-
liness) plots the false alarm rate against that metric. The
initial step in constructing an AMOC curve is to compute
the alarm thresholds corresponding to various false alarm
rates (in our case, 1 per year to 36 per year). We computed
the alarm thresholds by running BARD detector on the
baseline ED data for 2005. Next, these thresholds were
employed to identify the pairs of values of the form <false
alarm rate, performance metric> that constitute an AMOC
curve. For each simulation group, we constructed a single
AMOC curve per metric by plotting the false alarm rate
against the mean value of the given metric over the whole
simulation group.

The second method we employed to compare BARD's per-
formance over the non-commuting group with its per-
formance over the commuting group was statistical
testing. Our null hypothesis asserted that for a given false
alarm rate and performance metric, the mean of the given
metric over the non-commuting group was equal to its
mean over the commuting group. Testing was carried out
through the paired t test.

Comparing the performance of BARD and BARD-C
detectors: detection study

We performed a second experiment designed to compare
the performance of BARD and BARD-C detectors over a set
of simulations generated with BARD-C simulator. As
mentioned earlier, we refer to this experiment as the
"detection study". Here, we briefly outline the design of
this study; a full discussion is given in [10]. A total of 100
semi-synthetic outbreaks were generated using the BARD-
C simulator. For all simulations, the quantity g was fixed
at 0.5 kg. The release time t was chosen uniformly at ran-
dom from the test period, i.e., the year 2005. The param-
eters x, y, and h were drawn from their prior distributions.
Each semi-synthetic outbreak was supplied as input to the
BARD and BARD-C detectors. The detectors were executed
42 times on each simulation in increments of 4 hours: the
first execution began 4 hours after the release, the second
execution 8 hours after the release, and so on.

The detection performance of both detectors was measured
through timeliness. AMOC analysis and statistical testing
were employed to compare the performance of the two
detectors. The characterization performance of both detec-
tors was measured through ¢, x, y, h, and q (absolute) errors.
Each characterization metric was plotted against the time
interval from the release of anthrax to the beginning of the
detector's execution, which we call the time-to-execution.
Finally, a Wilcoxon signed ranked test was performed
with respect to each characterization error.

http://www.biomedcentral.com/1472-6947/9/S1/S7
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Verification of the correctness of simulation with
commuting. Plot of the analytically predicted values of ED-
visit probability against the values estimated from data gener-
ated with the BARD-C simulator

Results

Correctness of simulation with commuting

Figure 2 shows the results of our experimental verification
of the correctness of simulation with commuting. This fig-

ure plots the estimated parameter values é,-* and the ana-

lytically predicted values 6, for the 1991 tracts of our

surveillance region. The solid line corresponds to the pre-
dicted values, while the points correspond to the values
estimated from the simulated data. As shown, the pre-
dicted values are in good agreement with the values esti-
mated from the simulated data, indicating that BARD-C
simulator works as specified.

Results of the simulation study

Figure 3 shows the daily mean number of cases (i.e., the
epidemic curves) for the non-commuting and commuting
simulation groups. In this figure, the horizontal axis
shows the outbreak day, while the vertical axis shows the
daily mean number of cases in the surveillance region. It
can be observed that the shapes of these two curves are
very similar. In particular, the two curves are seemingly
identical at least up to the third outbreak day--the day
when BARD typically detects a semi-synthetic outbreak.
These two curves differ mainly around the peak of the out-
break, where the commuting curve is slightly more ele-
vated than the non-commuting curve. These observations
imply that any differences between BARD detector's per-
formance over one simulation group and its performance
over the second group could be attributed only to the
change in the spatial distribution of cases caused by com-
muting and not to a consistent discrepancy between the
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Figure 3

ED visit counts generated with BARD and BARD-C
simulators. Daily mean number of ED visits in the surveil-
lance region for the non-commuting (nc) and commuting
(com) simulation groups
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sizes of outbreaks simulated with and without commut-
ing.

With respect to g and h errors, we found that BARD's per-
formance over the non-commuting group was almost
indistinguishable from its performance over the commut-
ing group. Unexpectedly, the posterior mean of the release
parameters g and h did not appear to converge. We leave
the investigation of this unexpected outcome as a topic for
future research and in the remainder of this section we
focus only on the remaining four metrics.

Figure 4 shows the results of the AMOC analysis for the
timeliness, ¢ error, x error, and y error. As shown, in Figure
4(a), BARD's mean timeliness over the commuting group
is nearly one hour greater than its mean timeliness over
the non-commuting group, at each false alarm rate. Like-
wise, BARD's mean ¢ error (Figure 4(b)) over the commut-
ing group is nearly one hour greater than its mean ¢ error
over the non-commuting group, at each false alarm rate.
BARD's mean x and y errors (Figure 4(c-d)) on the com-
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Figure 4
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(d)

AMOC analysis for the simulation study. AMOC curves for (a) mean timeliness, (b) mean t error, (c) mean x error, and
(d) mean y error. In each of the parts (a)-(d), the left panel shows the AMOC curves corresponding to the commuting (com)
and non-commuting (nc) simulation groups, respectively, while the right panel shows the difference between commuting and
non-commuting AMOC curves along with the error bars (plus/minus one standard error) for this difference
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Table 2: Results of the test for equality of BARD's errors over
the two simulation groups.

timeliness t error X error y error
far=1 0.00014 0.06698 0.00139 0.0055
far=2 0.00889 0.04066 0.00026 0.00106
far=3 0.00991 0.03827 0.00024 0.00107
far=4 0.00074 0.09732 0.00006 0.00061
far=5 0.0046 0.04967 0.00017 0.00086
far=6 0.00044 0.07566 0.0002 0.00068
far=17 0.0041 0.01017 0.00004 0.00008
far=8 0.03221 0.01087 0.00003 0.00003
far=9 0.01664 0.00879 0.00059 0.00006
far=10 0.01007 0.00689 0.00104 0.00006
far=11 0.00819 0.00762 0.00107 0.00007
far=12 0.00477 0.00775 0.00124 0.00013

The p-values of the test Hy: mean(metric) non-commuting equals
mean(metric) commuting--where metric can be timeliness, t error, x
error, ory error.

muting group are each nearly 2 km greater than the
respective mean errors on the non-commuting group.

Finally, Table 2 gives for all false alarm rates between 1 per
year and 12 per year the p-values of the test for equal
means of BARD's timeliness, x error, y error, and h error
over the two simulation groups. From the results shown
in Table 2 it can be concluded that, at each shown false
alarm rate, the mean timeliness, x error, and y error over
the non-commuting group are statistically different from
the respective means over the commuting group, at the
0.05 significance level. The same holds for the t error with
the exception of three false alarm rates: 1, 4, and 6.

Results of the detection study
Some of the results appearing in this section (Figs 5 and
6) have been previously reported in [10]. We have repro-

http://www.biomedcentral.com/1472-6947/9/S1/S7
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Figure 5

AMOC analysis for the detection study. AMOC curves
for the mean timeliness of BARD and BARD-C detectors
measured over a group of simulations generated with BARD-
C simulator

duced these results here to contrast the simulation study
with the detection study. This section also presents two
new plots (Figs 7, 8) that correspond to our detection
study but do not appear in [10]. Figure 5 shows the AMOC
analysis for the timeliness of BARD and BARD-C detec-
tors. As seen, BARD-C's timeliness is more than one hour
smaller than BARD's timeliness at every false alarm rate. A
paired t test showed that, for each false alarm rate, the
mean timeliness of BARD-C was statistically different
from the mean timeliness of BARD, at the 0.05 signifi-
cance level.

Next, we turn to the characterization performance of
BARD and BARD-C detectors. As in the simulation study,
we found that the posterior means of the release parame-

BARD detector BARD-C detector medians: BARD vs BARD-C
19 %o 8. o 8-
o
oo
o o° 31 &1
3 c > — BARD
B 00%0 S SQ1 — — BARD-C
< < @
£
So ° §%' =1
5@ H 2
o o o =g
x 80 00 g XN <=
o088
° 28:08388% | o o © AU
QEEEEQ%T it oIS
o o [ok T

0 24 48 72 96 128 160
hours from release

Figure 6
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Analysis of the characterization performance for the x error. Box plots and plot of the medians of the x error for

BARD and BARD-C detectors
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Analysis of the characterization performance for the
y error. Plot of the median of the y error for BARD and
BARD-C detectors

ters ¢ and h did not appear to converge as the time to exe-
cution increased.

Hence, in the remainder of this section we focus on the x,
y, and t errors. Figure 6 shows box plots and plots of the
medians of the x error for BARD and BARD-C. In each plot
the horizontal axis shows the time-to-execution. The sam-
ples from which the box plots were constructed corre-
spond to the different simulations. Several conclusions
can be derived from Figure 6. First, the x error of both
BARD and BARD-C converges to relatively small values as

Medians: BARD vs BARD-C
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Analysis of characterization performance for the t
error. Plot of the median of the t error for BARD and
BARD-C detectors
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the time-to-execution increases. Second, the errors of
BARD and BARD-C appear to converge around the same
time and nearly 10-16 hours after the detection. Third, the
sampling distribution of the x error is right-skewed for
both detectors and in almost each execution of BARD and
BARD-C there is a small number of outliers. Fourth, after
the convergence, the median of the x error for BARD-C is
nearly 2 km smaller than the median of the x error for
BARD.

Figure 7 plots the median of the y error for BARD and
BARD-C. The post-convergence median of the y error for
BARD-C was nearly 0.5 km smaller than the median for
BARD. Finally, Figure 8 plots the median of the ¢ error for
BARD and BARD-C. The post-convergence difference of
the medians for the t error was nearly 20 minutes.

Finally, we performed a Wilcoxon signed rank test whose
null hypothesis asserted that BARD and BARD-C have
identical locations of the distributions of x error, y error,
and t error. The results of this test showed that after the
convergence of the x error, the p-values of the test remain
well below the 0.05 significance level (see [10]). Similar
comments can be made for the y error. For the t error the
convergence of the p values is not as clear as for the x and
Y erTors.

Conclusion

We incorporated commuting into BARD's simulation and
detection algorithms and conducted two experimental
studies to evaluate the effect. Incorporation of commuting
in simulation is important to improve the fidelity of semi-
synthetic outbreaks that BARD generates. Likewise, by
incorporating commuting in detection we expect that the
laboratory performance of the BARD detector would be
closer to a real-world performance.

The results of our simulation study showed that incorpo-
ration of commuting in outbreak simulation leads to a
statistically significant deterioration in BARD's detection
and characterization performance, when BARD's detec-
tion algorithm does not account for commuting. Intui-
tively, this result was expected since incorporation of
commuting in simulation causes the spatio-temporal pat-
tern of respiratory disease incidence to be different from
the pattern BARD would expect under the alternative
hypothesis. However, our precise quantification of the
deterioration in BARD's performance due to commuting
showed that this deterioration is practically significant.
Indeed, BARD's timeliness increased by nearly one hour
and based on previous estimates [12] that a delay of one
hour in detection results in as much as $250 million addi-
tional economic costs, this increase is quite significant.
Likewise, the t, x, y errors increased by nearly 30%, which
can also be considered a significant deterioration.
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Our detection study showed that incorporation of com-
muting in detection almost fully restores BARD's perform-
ance in the sense that the performance of BARD-C
detector on simulations produced with the BARD-C sim-
ulator is close to the performance of BARD detector on
simulations produced with BARD simulator.

Although others have measured the effect of population
mobility on outbreak-detection performance, to our
knowledge our work is the first to report the effect on out-
break-characterization performance. We found that fail-
ing to account for commuting in detection (when
commuting is present in simulation) worsens characteri-
zation performance. We found that our simplified
approach to accounting for commuting in detection--sim-
plified to maintain tractability of inference--significantly
improved characterization performance over characteriza-
tion without commuting.

Finally, we discuss the main limitations of our work. First,
in creating the commuting graph of the surveillance
region, we employed intuitive but arbitrary rules to trans-
form the commuting flows into a spatial resolution sup-
ported by BARD. The need for transforming the
commuting flows could be avoided in the future by
extending BARD so that it supports the census tract mode,
but at the expense of coarser spatial granularity. Second,
although we did not use the same commuting graph in
both simulation and detection (see [10] for the details of
how we truncated and sorted the commuting graph in
detection mode) our studies did not perform a full sensi-
tivity analysis with respect to the commuting graph. In our
future work we plan to create a number of commuting
graphs, each obtained by introducing random noise to the
commuting data provided by the Census Bureau. Then,
we will simulate several synthetic outbreaks with each of
these noisy graphs and will compare BARD and BARD-C
detectors over the whole range of simulations. Finally, as
elaborated in [10], to bound the running time of the
BARD-C detector, we made a number of simplifications at
the expense of the accuracy of the computation. In our
future work, we intend to further study the problem of the
trade-off between running time and the accuracy of the
computation in BARD-C detector and ultimately find the
best such trade-off.
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