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Abstract

Background: Digital mammography is one of the most promising options to diagnose breast
cancer which is the most common cancer in women. However, its effectiveness is enfeebled due
to the difficulty in distinguishing actual cancer lesions from benign abnormalities, which results in
unnecessary biopsy referrals. To overcome this issue, computer aided diagnosis (CADx) using
machine learning techniques have been studied worldwide. Since this is a classification problem and
the number of features obtainable from a mammogram image is infinite, a feature selection method
that is tailored for use in the CADx systems is needed.

Methods: We propose a feature selection method based on multiple support vector machine
recursive feature elimination (MSVM-RFE). We compared our method with four previously
proposed feature selection methods which use support vector machine as the base classifier.
Experiments were performed on lesions extracted from the Digital Database of Screening
Mammography, the largest public digital mammography database available. We measured average
accuracy over 5-fold cross validation on the 8 datasets we extracted.

Results: Selecting from 8 features, conventional algorithms like SVM-RFE and multiple SVM-RFE
showed slightly better performance than others. However, when selecting from 22 features, our
proposed modified multiple SVM-RFE using boosting outperformed or was at least competitive to
all others.

Conclusion: Our modified method may be a possible alternative to SYM-RFE or the original
MSVM-RFE in many cases of interest. In the future, we need a specific method to effectively
combine models trained during the feature selection process and a way to combine feature subsets
generated from individual SYM-RFE instances.
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Background

Applications of artificial intelligence and machine learn-
ing techniques in medicine are now common and compu-
ter aided diagnosis (CADx) systems are one of those
successful applications. Breast cancer, the most common
cancer in women and second largest cause of death [1], is
the disease which CADx systems are expected to be
employed most successfully. To apply CADx systems, var-
ious imaging methods are available to reflect the inside
tissue structure of breasts. Digital mammography using
low-dose x-ray is one of those methods and is the most
popular one worldwide. It has advantages over other
methods such as sonar or magnetic resonance imaging
(MRI) due to low cost and wide availability [2]. With dig-
ital mammography devices, doctors are able to find
abnormal lesions which cannot be recognized using clin-
ical palpation on breasts. CADx systems are applied on
those images to detect and diagnose abnormalities. Since
the early detection of breast cancer is important to ensure
successful treatment of the disease, recent advances in
research community have concentrated on improving the
performance of CADx systems. Improvements in CADx
systems can be obtained by solving two classification
tasks: (1) detect more abnormalities or (2) distinguish
actual malignant cancers from benign ones. Detecting
abnormalities from a digitized mammogram is a relatively
easy task and many improvements have been achieved
while the latter is still a major area of research [3]. To
achieve better performance, both classic and modern
machine learning approaches such as Bayesian networks
[4], artificial neural networks [5,6] and support vector
machines (SVMs) [5,7] have been applied. However, the
performance of CADx systems is still not as high as
required for practical usage. This problem can be partially
solved by using a better feature selection method that
optimally fits to the mammogram classification problem

[3].

We propose a new feature selection method for SVMs in
this paper. Our method is based on SVM-Recursive Fea-
ture Elimination (SVM-RFE) [8] and its ensemble variant
Multiple SVM-RFE [9]. We have conducted a comparison
of the classification performance with baseline methods
and two other SVM-RFE based feature selection methods,
JOIN and ENSEMBLE, proposed by other groups [10]. To
compare performances of methods, we prepared a dataset
consisting of mass and calcification lesions extracted from
Digital Database of Screening Mammography (DDSM)
[11], the largest publicly available mammogram database.

Methods

Notations

Let us suppose that a data set consists of N examples x;,...,
Xy each of which has P features {1,..., P}.

http://www.biomedcentral.com/1472-6947/9/S1/S1

Letx, = (X1, ..., Xp ) be the n-th example wheren € {1,...,
N}, and the i-th feature value, i € {1,..., P}, of the n-th
example is denoted by x; ,,. Class labels of the N examples
will be denoted by y = (y1,..., ¥n)-

In this paper, we only consider a binary classification
problem because we are interested in distinguishing
benign and malignant examples. Overall, the labeled data
set is expressed as {(x, ¥;),-... (Xnv ¥n) }-

SYM

SVM is one of the most popular modern classification
methods. Based on the structural risk minimization prin-
cipal, SVM defines an optimal hyperplane between sam-
ples of different class labels. The position of the
hyperplane is adjusted so that the distance from the
hyperplane to a nearest sample, or margin, is maximized.

Moreover, if the SVM cannot define any hyperplane that
separates examples in linear space, it can use kernel func-
tions to send examples to any kernel space where the
hyperplane can separate examples. Although we can use
any kernel function meeting Mercer's Theorem for SVM,
we consider widely-used the linear and Gaussian radial
basis function (RBF) kernels only in this research.

SYM-RFE

SVM is a powerful classification method but it has no fea-
ture selection method. Therefore, a wrapper-type feature
selection method, SVM-RFE, was introduced [8]. SVM-RFE
generates ranking of features by computing information
gain during iterative backward feature elimination. The
idea of information gain computation is based on Opti-
mal Brain Damage (OBD) [12]. In every iterative step,
SVM-REFE sorts the features in working set in the order of
difference of the obejective functions and removes a fea-
ture with the minimum difference. Defining IG(k) as
information gain when k-th feature is removed, overall
iterative algorithm of SVM-RFE is shown in Algorithm 1.

ENSEMBLE and JOIN

SVM-REE [8] has two parameters that need to be deter-
mined. The first parameter decides how many features
should be used to obtain best performance. The second
parameter specifies what portion of features should be
eliminated in each iteration. To resolve this issue, a simple
approach can be easily

Algorithm 1 SVM-RFE

Require: Feature lists R = [] and S = [1,..., P]
1: while S #[] do

2:  Train a SVM with features in S
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3:  for all k-th feature in S do
4: Compute IG(k)
5:  end for

6:  e=arg min,(IG(k))

7:  R=]e R]
8 S=S-]€
9: end while
10: return R

implemented. First, we separate given training set into a
partial training set and a hold-out set. Then, we apply
Algorithm 2 with some parameter 'threshold'.

Score of each feature subset R, is computed as

score(R,) =err(R)+||R, ||/ P
where err(R,) is the error of SVM trained using R, and
tested with hold-out set. Using this method, we can
obtain a feature subset R which yields reasonably small
amount of error on trained dataset. Utilizing this algo-
rithm as base, Jong et al. [10] proposed two methods,
ENSEMBLE and JOIN to combine multiple rankings gen-
erated by SVM-RFE as in Algorithm 3 and 4.
In this paper, we used 25% of training set as hold-out set
and used same sets of thresholds and cutoffs as in [10],
ie,{0.2,03,04,05,60.6 0.7} and {1,2,3, 4, 5}.
Algorithm 2 SVM-RFE(threshold)

Require: Ranked feature lists R = [|, R; =[] wherei=1,...,
Pand S'=[1,..., P]

1: i=1
2: while S§'#[] do

3:  Train an SVMs using a partial trainset with features
inS'

4:  for all features in S' do

5: Compute ranking of features as in SVM-RFE
6: end for
7: R=S§

1
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8:  Eliminate threshold percent of lesser-important fea-
tures from S'

9: i=i+1
10: end while

11: R = R, where R, yields minimum score on hold-out
set.

12: return R

Algorithm 3 ENSEMBLE(v,, v,,.., 1)
1: for threshold v € {v,, v,,..., v,} do
2:  R,=SVM-RFE(v)

3: end for

4: return a majority vote classifier using SVMs trained by
R,,....R

ul / l/k :

Algorithm 4 JOIN(cutoff, v, v,,..., 1},)
1: for threshold v € {v,, v,,..., v,} do
2:  R,=SVM-RFE(v)

3: end for

4: R = features selected at least cutoff times in

{ va""’th }
5: return a SVM trained with R

Multiple SYM-RFE with bootstrap

Multiple SVM-RFE (MSVM-RFE) [9] is a recently intro-
duced SVM-RFE-based feature selection algorithm. It
exploits an ensemble of SVM classifiers and cross valida-
tion schemes to rank features. First, we make T subsam-
ples from the original training set. Then, supposing that
we have T SVMs trained using different subsamples, we
calculate the corresponding discriminant information
gain associated with each feature of each SVM. To com-
pute this information gain, we use the same method as in
SVM-RFE [8]. Exploiting the objective function of SVM,
and its Lagrangian solution 4, we can derive a cost func-
tion

J=@0/2)A"HA=21"1

where H is a matrix with elements yy,K(x, x,) and 1 is a
N dimensional vector of ones while K( - ) is a kernel func-
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tion and 1 < ¢q, r < N. Since we are looking for the subset
of features that has the best discriminating power between
classes, we compute the difference in cost function for
each elimination of i-th input feature, leaving Lagrangian
multipliers unchanged. Therefore, the ranking for the i-th
feature of j-th SVM can be defined as

DJj; = (1/2)ATHA, —(1/ 2)AH(=i)A,.

where H(-i) denotes that i-th feature was removed from all
elements in H. Then, considering DJ; as a weight vector of
features for j-th SVM, we normalize all T weight vectors
such as DJ;= DJj/||DJj||. This gives us T weight vectors each
with P elements. Here, each element in the vector stands
for a information gain achieved by eliminating the corre-
sponding feature. After normalizing weight vectors for
each SVM, we can compute each feature's ranking score

¢;=H;/o;

with g and o; defined as:

T
i =(1/T)Y DI
j=1

T

i= |01 = ) (T =)

O: =

j=1
The algorithm then applies this method to the training set
with k-fold cross validation scheme. If we perform 5-fold
cross validation and generate 20 subsamples in each fold,
we will eventually have T = 100 SVMs to combine. The
overall MSVM-RFE algorithm is described in Algorithm 5.
Algorithm 5 MSVM-RFE
Require: Ranked feature lists R = [| and S' = [1,..., P]
1: while S'#[] do

2:  Train T SVMs using T subsamples with features in S'

3: forall j-thSVM 1<j<Tdo

4: for all i-th feature 1 <i <P do
5: Compute DJj;
6: end for

7 Compute DJ; = DJ/||DJj||

8: end for

http://www.biomedcentral.com/1472-6947/9/S1/S1

9: for all feature ! € S' do

10: Compute ¢; using Equation (1)
11:  end for

12: e =arg min)(c(l)) where!l € S'
13:  R=[e R]

14:  S'=8'-]e]

15: end while

16: return R

One should note that original MSVM-RFE proposed in [9]
uses cross-validation scheme when generating subsam-
ples. However, we omitted this step because combining
boosting into the original MSVM-RFE algorithm with
cross-validation scheme is very complex and may confuse
the purpose of this study.

Multiple SYM-RFE with boosting

When making subsamples, original MSVM-RFE uses the
bootstrap approach [13]. This ensemble approach builds
replicates of the original data set S by random re-sampling
from S, but with replacement N times, where N is the
number of examples. Therefore, each example (x,, y,) may
appear more than once or not at all in a particular repli-
cate subsample. Statistically, it is desirable to make every
replicate differ as much as possible to gain higher
improvement of the ensemble. The concept is both intui-
tively reasonable and theoretically correct. However, as
the architecture of MSVM-RFE uses simple bootstrapping,
it naturally follows that utilizing another popular ensem-
ble method, boosting [14], instead of bootstrapping for
two reasons. First, boosting outperforms bootstrapping
on average [15,16], and secondly, boosting of SVMs gen-
erally yields better classification accuracy than bootstrap
counterpart [17]. Therefore, to make use of ensemble of
SVMs effectively, it may be worthwhile to use boosting
instead of bootstrapping. For this reason, we applied Ada-
Boost [14], a classic boosting algorithm, to MSVM-RFE
algorithm instead of bootstrapping in this work.

Unlike the simple bootstrap approach, AdaBoost main-
tains weights of each example in S. Initially, we assign
same value of weight to n-th example D,(n) = 1/N where
1 < n < N. Each iterative process consists of four steps. At
first, the algorithm generates a bootstrap subsample
according to weight distribution at ¢-th iteration D,. Next,
it trains an SVM using the subsample. Third, it calculate
the error using the original example set S. Finally it
updates the weight value so that the probability of cor-
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rectly classified examples is decreased while that of incor-
rect ones is increased. This update procedure makes next
bootstrap pick more incorrectly classified examples, i.e.
difficult-to-classify examples than easy-to-classify ones.
The iterative re-sampling procedure
MAKE_SUBSAMPLES() using AdaBoost algorithm is
described in Algorithm 6.

Algorithm 6 MAKE_SUBSAMPLE
Require: S = {(x,, y,)}, D;(n) =1/N,n=1,.., N;
1: forj=1toTdo

2:  Build a bootstrap B; = {(x,, y,)|n = 1,..., N} based on
weight distribution D;

3:  Train a SVM hypothesis h; using B;

4 1= X Dy # hy(x,)]
5: if 2 0.5 then

6: Goto line 2

7:  endif

8  a=(1/2)In((1-;)/;), ;e R

9: Dj,4(n) = (Dj(n)/2Z;) x exp(-ay,hi(x,)) where Z; is a
normalization factor chosen so that D;, also be a proba-
bility distribution

10: end for
11: return Bj, ajwhere 1<j<T

In addition to modifying re-sampling method, we made a
change in ranking criterion of original MSVM-REFE. In this
MSVM-RFE with Boosting method, the weight vector DJ;
of j-th SVM undergoes one more process between normal-
ization and feature ranking score calculation. Since the
contribution of each SVM in ensemble to the overall clas-
sification accuracy is unique, we multiply another weight
factor to the normalized feature weight vector D]j. The
new weight factor is obtained from the weight of hypoth-
esis classifier calculated during the re-sampling process of
AdaBoost. By multiplying this weight ¢; to DJ;, we can
grade the overall feature weight more coherently. The
overall iterative algorithm of MSVM-RFE with AdaBoost is
described in Algorithm 7.

Algorithm 7 MSVM-RFE with AdaBoost

http://www.biomedcentral.com/1472-6947/9/S1/S1

Require: Ranked feature lists R = [| and S'= [1,..., P]
1: MAKE_SUBSAMPLES(B, @); t=1,.., T

2: while S'#[] do

3:  Train T SVMs using B,, with features in set S'

4.  Compute and normalize T weight vectors DJ; as in
MSVM-RFE where 1 <j<T

5. forj=1toTdo

6: D]j = D]j x ln(aj)

7:  end for

8: for all featurel € S' do

9: Compute the ranking score ¢; using Eq. (1)

10:  end for

11: e =argminyc;) wherel € §'

12: R=]e R]

13: S'=S8"-¢]

14: end while

15: return R

Note that we took logarithm of hypothesis weights
instead of raw values in order to avoid radical changes in
ranking criterion. Since boosting algorithm overfits by
nature and SVM, the base classifier, is relatively strong

classifier, the error rate of hypothesis increases drastically
as iteration in MAKE_SUBSAMPLES() progresses. We have

Table |I: Dataset Information

institution mass calcification
benign malignant  benign malignant
MGH 482 365 381 323
Wu 154 15 41 98
WFUSM 163 255 188 159
SHH 324 380 207 140
total 1123 115 817 720

MGH = Massachussetts General Hospital; WU = Washington
University at Saint Louis; WFUSM = Wake Forest University School
of Medicine; SHH = Sacred Heart Hospital
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Table 2: BI-RADS mammographic features

http://www.biomedcentral.com/1472-6947/9/S1/S1

feature type

description or numeric value

mass shape
mass margin
calcification type

no mass(0), round(1), oval(2), lobulated(3), irregular(4)
no mass(0), well circumscribed(l), microlobulated(2), obscured(3), ill-defined(4), spiculated(5)
no calc.(0), milk of calcium-like(l), eggshell(2), skin(3), vascular(4), spherical(5), suture(6), coarse(7), large rod-

like(8), round(9), dystrophic(10), punctate(l I), indistinct(12), pleomorphic(13), fine branching(14)

calcification distribution
density
assessment

no calc.(0), diffuse(l), regional(2), segmental(3), linear(4), clustered(5)

1,2,3,4
1,2,3,4,5

density: | = sparser, 4 = denser;

witnessed this overfitting problem by preliminary experi-
ment and solved the problem by taking logarithm to the
hypothesis weight. Computation time of MSVM-RFE with
boosting can also be explained here. From our experi-
ments, we found that there is no significant difference
between the original MSVM-RFE and MSVM-RFE with
boosting as the number of subsamples generated by
MAKE_SUBSAMPLES() decreases.

Lastly, unlike the conventional boosting algorithm appli-
cation, we only exploit bootstrap subsamples generated
by the algorithm and dismiss trained SVMs for the follow-
ing reasons:

® We are primarily interested in feature ranking and
not the aggregation of weak hypotheses.

e Since we are using SVM-RFE for eventual classifica-
tion method, this require a certain criterion to pick
appropriate number of features from different boosted
models.

In preliminary experiments using same number of fea-
tures and simple majority-voting aggregation, SVM-RFE
using boosted models did not show significance in accu-
racy improvement. However, we could find some evi-
dences that ensemble of SVMs can be useful in
mammogram classification.

Results

In this section, we first describe dataset, features and
experimental framework we used. Then we draw results of
the experiments including analysis on them.

Dataset

The DDSM database provides about 2500 mammogram
cases that were gathered from 1988 to 1999. Four U.S.
medical institutions offered the data to construct DDSM.
This includes Massachusetts General Hospital (MGH),
Wake Forest University School of Medicine (WFUSM),
Sacred Heart Hospital (SHH) and Washington University
in St. Louis (WU). All mammogram cases we used in this
paper contain one or more abnormalities which can be
classified into benign or malignant group following their
biopsy results. Table 1 summarizes the statistics of abnor-
malities from each digitizer type and institution.

Mammogram data from DDSM were gathered and pre-
processed through the following steps. First, we extracted
meta information from text file in the database. These fea-
tures are based on Breast Imaging Reporting and Data Sys-
tem (BI-RADS) introduced by the American College of
Radiology [18]. Table 2 summarizes these encoded fea-
tures. We employed a rank ordering system proposed by
other group when encoding these features [19]. Next, we
computed statistical features that are popular in image
processing community. The statistical features are com-
puted using intensity level of pixels in the region of inter-
est in each case. We used same features which are used in

Table 3: Comparison of kernels in terms of maximum Az value of mass dataset

kernel type MGH wu WUFSM SHH

8 22 8 22 8 22 8 22
linear 0.90391 0.90364 0.94571 0.92159 0.85718 0.87159 0.97150 0.97036
RBF 0.96664 0.88597 0.95955 0.92540 0.91906 0.91671 0.97404 0.95716
c 10 5 10 10 10 10 10 10
¥ 0.25 0.06 0.5 0.075 0.15 0.1 0.5 0.05
Same tradeoff parameter value C is used for both linear and RBF kernels.
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Table 4: Comparison of kernels in terms of maximum Az value of calcification dataset

kernel type MGH wu WUFSM SHH

8 22 8 22 8 22 8 22
linear 0.72686 0.72625 0.89981 0.90870 0.74046 0.77509 0.89603 0.92705
RBF 0.91042 0.76826 0.99192 0.88155 0.93625 0.89079 0.96280 0.94826
C | 10 | 5 10 20 10 10
¥ 1.5 0.1 | 0.05 0.4 0.05 0.15 0.05

Same tradeoff parameter value C is used for both linear and RBF kernels.

another study [6] and the exact formulas are described in
[20]. We also normalized these statistical features after
extracting because their raw values were too big compared
to BI-RADS features and to facilitate SVM to train effi-
ciently with respect to time.

Performance comparison

In sum, we prepared a total of 16 datasets each with 8 and
22 features, from each mass and calcification lesion of
each institution. All SVM-RFE based methods are tested
using 5-fold cross validation on each dataset. We com-
puted area under Receiver Operating Characteristic (ROC)
curves (A,) using the output of SVMs and feature ranking
produced by each method.

Before comparing the methods explained in the previous
section, we did some preliminary experiments comparing
different kernels and parameters to find optimal kernel
and parameters. The result of this experiment is summa-
rized in Table 3 and Table 4. We used the best-performing

parameter and kernel (radial basis function, or RBF) from
this experiment of this study.

The overall performance comparison result is summa-
rized from Table 5 through Table 8. Note that numbers in
parenthesis of JOIN methods are cutoff values used. Ana-
lyzing the result, it is clear that the MSVM-RFE based
methods outperforms baseline classifiers, SVM and other
SVM-RFE feature selection methods, ENSEMBLE and
JOIN in the majority of cases although SVM-RFE domi-
nated in 4 out of 16 datasets. Comparing the two MSVM-
RFE based algorithms, we could find that MSVM-RFE with
boosting can achieve better or at least competitive per-
formance especially in datasets with 22 features. In 3 out
of 4 mass datasets, MSVM-RFE with boosting outper-
formed any other methods under consideration.
Although the original MSVM-RFE method yielded the best
performance in 3 out of 4 calcification datasets, we think
the MSVM-RFE with boosting has yet more margin to be

Table 5: Comparison of methods by maximum Az value using 8 features (Mass)

T MGH wu WFUSM SHH
SVM 0.95821 0.97247 0.92252 0.97401
SVM-RFE 0.96218 0.97734 0.92252 0.97401
ENSEMBLE 0.72102 0.74859 0.67307 0.94292
JOIN (1) 0.77944 0.88187 0.79655 0.92650
JOIN (2) 0.72102 0.77365 0.79200 0.90262
JOIN (3) 0.72102 0.75484 0.79200 0.86857
JOIN (4) 0.72102 0.75484 0.75765 0.86861
JOIN (5) 0.72102 0.71136 0.67307 0.73745
MSVM-RFE (bootstrap) 5 0.95821 0.97247 0.92423 0.97401
10 0.95821 0.97851 0.92288 0.97525
15 0.95947 0.97457 0.92288 0.97401
20 0.95947 0.97705 0.92315 0.97401
MSVM-RFE (boost) 5 0.95821 0.97247 0.92314 0.97401
10 0.95821 0.97616 0.92426 0.97401
15 0.95947 0.97247 0.92314 0.97401
20 0.95947 0.97387 0.92314 0.97401

Numbers in parenthesis stands for cutoff value for JOIN method.
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Table 6: Comparison of methods by maximum Az value using 8 features (Calcification)

T MGH WU WFUSM SHH
SVM 091182 0.98765 0.94690 0.96595
SVM-RFE 0.91196 1.00000 0.95100 0.96595
ENSEMBLE 053915 0.69512 0.56583 091392
JOIN (1) 0.67508 0.71655 0.83947 0.93422
JOIN (2) 0.57971 0.72941 0.76157 0.88733
JOIN (3) 0.57971 0.72941 0.62686 0.73542
JOIN (4) 0.54571 0.69512 0.62686 0.72464
JOIN (5) 0.54571 0.69512 0.54077 0.66210
MSVM-RFE (bootstrap) 5 091182 0.98765 0.95326 0.97868
10 091182 0.98765 0.95168 0.96595
5 091182 0.98765 0.94690 0.96757
20 091182 0.98765 0.94690 0.97348
MSVM-RFE (boost) 5 091182 0.98765 0.94690 0.96595
10 091182 0.99259 0.94690 0.96595
I5 091182 0.99429 0.94690 0.96595
20 091182 0.98765 0.94690 0.96595

Numbers in parenthesis stands for cutoff value for JOIN method.

improved as we already mentioned in the previous chap-
ter. Any method that can effectively exploit the trained
SVMs during feature selection progress may be the future
key improvement for MSVM-RFE with boosting.

Conclusion
In this paper, a new SVM-RFE based feature selection
method was proposed. We conducted experiments on real

world clinical data, and compared our method with base-
line and other feature selection methods using SVM-RFE.
Results show that our method outperforms in some cases
and is at least competitive to others in other cases. There-
fore, it can be a possible alternative to SVM-RFE or the
original MSVM-RFE. Future works include investigation of
specific methods to effectively combine models trained

Table 7: Comparison of methods by maximum Az value using 22 features (Mass)

T MGH wu WFUSM SHH
SVM 0.88805 0.93642 0.92474 0.94998
SVM-RFE 0.88849 0.94173 0.93037 0.94998
ENSEMBLE 0.81490 0.90299 0.80317 0.86155
JOIN (1) 0.86728 0.92278 0.87638 0.90789
JOIN (2) 0.83034 0.93886 0.89597 0.85132
JOIN (3) 0.75098 0.87312 0.82694 0.83834
JOIN (4) 0.74270 0.74262 0.66948 0.83834
JOIN (5) 0.68776 0.71316 0.66948 0.80802
MSVM-RFE (bootstrap) 5 0.89720 0.93729 0.92664 0.95087
10 0.88833 0.93666 0.92972 0.95016
15 0.89920 0.93746 0.93000 0.95076
20 0.89014 0.94290 0.92986 0.95066
MSVM-RFE (boost) 5 0.88993 0.93987 0.93581 0.94998
10 0.88805 0.94315 0.92812 0.94998
15 0.89092 0.94204 0.92789 0.94998
20 0.88805 0.94197 0.92758 0.95245

Numbers in parenthesis stands for cutoff value for JOIN method.
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Table 8: Comparison of methods by maximum Az value using 22 features (Calcification)

T MGH wu WFUSM SHH
SVM 0.77497 091710 0.89738 0.94945
SVM-RFE 0.77497 0.93436 0.89859 0.95332
ENSEMBLE 0.68951 0.76647 0.72650 0.85677
JOIN (1) 0.75259 0.92326 0.81433 0.91352
JOIN (2) 0.72296 0.82307 0.72987 0.80400
JOIN (3) 0.70815 0.76647 0.70059 0.67598
JOIN (4) 0.58656 0.69779 0.65667 0.55964
JOIN (5) 0.53520 0.63858 0.65667 0.51203
MSVM-RFE (bootstrap) 5 0.77497 091710 0.89988 0.95379
10 0.77826 091710 0.89786 0.95330
15 0.77497 0.92193 0.89738 0.95250
20 0.77497 0.93305 0.90507 0.95267
MSVM-RFE (boost) 5 0.77727 0.92097 0.89848 0.94945
10 0.77497 0.93063 0.90108 0.95292
15 0.77497 0.92352 0.90133 0.95136
20 0.77497 0.92105 0.89957 0.95256
Numbers in parenthesis stands for cutoff value for JOIN method.
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