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Abstract

Background: Public health surveillance is the monitoring of data to detect and quantify unusual health
events. Monitoring pre-diagnostic data, such as emergency department (ED) patient chief complaints,
enables rapid detection of disease outbreaks. There are many sources of variation in such data; statistical
methods need to accurately model them as a basis for timely and accurate disease outbreak methods.

Methods: Our new methods for modeling daily chief complaint counts are based on a seasonal-trend
decomposition procedure based on loess (STL) and were developed using data from the 76 EDs of the
Indiana surveillance program from 2004 to 2008. Square root counts are decomposed into inter-annual,
yearly-seasonal, day-of-the-week, and random-error components. Using this decomposition method, we
develop a new synoptic-scale (days to weeks) outbreak detection method and carry out a simulation
study to compare detection performance to four well-known methods for nine outbreak scenarios.

Result: The components of the STL decomposition reveal insights into the variability of the
Indiana ED data. Day-of-the-week components tend to peak Sunday or Monday, fall steadily to a
minimum Thursday or Friday, and then rise to the peak. Yearly-seasonal components show
seasonal influenza, some with bimodal peaks.

Some inter-annual components increase slightly due to increasing patient populations. A new
outbreak detection method based on the decomposition modeling performs well with 90 days or
more of data. Control limits were set empirically so that all methods had a specificity of 97%. STL
had the largest sensitivity in all nine outbreak scenarios. The STL method also exhibited a well-
behaved false positive rate when run on the data with no outbreaks injected.

Conclusion: The STL decomposition method for chief complaint counts leads to a rapid and
accurate detection method for disease outbreaks, and requires only 90 days of historical data to be
put into operation. The visualization tools that accompany the decomposition and outbreak
methods provide much insight into patterns in the data, which is useful for surveillance operations.
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Background
The development of statistical methods for accurately
modeling disease count time series for the early
detection of bioterrorism and pandemic events is a
very active area of research in syndromic surveillance
[1-15]. Early detection requires accurate modeling of the
data.

A challenge to modeling is systematic components of
time variation whose patterns have a level of predict-
ability – inter-annual (long-term trend), day-of-the-
week, and yearly-seasonal components [2,10]. The
variation can be ascribed to causal factors: for the
inter-annual component the factor can be an increase
or decrease in the population of people from which
patients come; for the yearly-seasonal component it is
changing weather and human activities over the course
of a year; and for the day-of-the-week component it is a
changing propensity of patients to seek medical atten-
tion according to the day of the week. In addition to
these components is a noise component: random errors
not assignable to causal factors that often can be
modeled as independent random variables.

The most effective approach to early outbreak detection
is to account for the systematic components of variation
and the noise component through a model, and then
base a detection method on values of the systematic
components and the statistical properties of the random
errors. Methods that do not accurately model the
components can suffer in performance. The model
predicts the systematic recurring behavior of the
systematic components so it can be discounted by the
detection method, and specifies the statistical properties
of the counts through the stochastic modeling of the
noise component. The two dangers are lack of fit –

patterns in the systematic components are missed – and
overfitting – the fitted values are unnecessarily noisy.
Both are harmful. Lack of fit results in increased
prediction squared bias, and overfitting results in
increased prediction variance. The prediction mean-
squared error is the sum of squared bias and variance.

Many modeling methods require large amounts of
historical data. Examples are the extended baseline
methods [11-15] of the Early Aberration Reporting
System (EARS) [4], which require at least 3 years of
data. Another popular example is a seasonal autoregres-
sive integrated moving average (ARIMA) model in [3]
that is fitted to 8 years of data. Such methods are not
useful for many surveillance systems that have recently
come online, so methods have been proposed that
require little historical data [16]. They typically employ

moving averages of recent data, such as C1-MILD (C1),
C2-MEDIUM (C2), and C3-ULTRA (C3), which are used
in EARS. But such methods do not provide optimal
performance because they do not exploit the full
information in the data; they smooth out some
component effects and operate locally to avoid others,
rather than accounting for the components.

Our research goal is accurate modeling of components of
variation, but without requiring a large amount of
historical data. The research was carried as part of our
analysis of the daily counts of chief complaints from
emergency departments (EDs) of the Indiana Public
Health Emergency Surveillance System (PHESS) [17].
The complaints are divided into eight classifications by
CoCo [18]. Data for the first EDs go back to November
2004, and new EDs have come online continually since
then. There are now 76 EDs in the system.

There are many ways to proceed in modeling chief-
complaint time series. One is to develop parametric
models. However, our new modeling methods are based
on a nonparametric method, seasonal-trend decomposi-
tion using loess (STL) [19], which is very flexible and can
account for a much wider range of component patterns
than any single parametric model. Just as importantly, it
can be used with as little as 90 days of data. We have also
developed a new synoptic-scale (days to weeks) outbreak
detection method based on the STL modeling.

Methods
Data
The STL decomposition was run on all Indiana EDs for
respiratory and gastro-intestinal counts. Both are funda-
mental markers for a number of naturally occurring
diseases, and research has shown that diseases from
bioweapons have early characterization of influenza-like
illness [20], which typically results in respiratory
complaints.

We present results for the respiratory time series for the
30 EDs that came online the earliest; these series end in
April 2008, and start at times ranging from November
2004 to September 2005. All analyses were performed
using the R statistical software environment [21], and an
R package is available as a supplemental download [see
additional file 1].

Modeling
STL decomposes a time series into components of
variation [19] using a local-regression modeling
approach, loess [22]. Our methods use STL to
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decompose the square root of ED daily counts into four
components:

Y T S D Nt t t t t= + + + , (1)

where t is time in units of years and increments daily, Yt
is the respiratory count on day t, Tt is an inter-annual
component that models long-term trend, St is a yearly-
seasonal component, Dt is a day-of-the-week compo-
nent, and Nt is a random-error noise component.

Figure 1 shows the STL decomposition of Yt for one
ED. Tt is nearly constant. St has peaks due to seasonal
influenza: single peaks in early 2005, 2007, and 2008,
and a double peak in late 2006 and early 2007. While
some of these yearly-seasonal effects are visible in the
raw data, the effects are much more effectively seen in St
because other effects including the noise are not present.
Variation in Dt is small compared with the total variation

of Yt , but it cannot be ignored in the modeling
because its variation is not small compared with the
initial growth of critical disease outbreaks. Nt is irregular
in behavior, and can be accurately modeled as indepen-
dent, identically distributed normal random variables
with mean 0. The square root transformation results in
much simpler statistical properties. For example, the
standard deviations of the Nt are nearly constant within
and between hospitals, and the marginal distribution is
nearly normal with mean 0 and variance s N

2 . Neither
are true for the untransformed counts. The behavior of
the Nt after transformation is not surprising because the
raw counts can be thought of as Poisson random
variables, and the square root of a Poisson random
variable whose mean is not too small is approximately
normal with a standard deviation of 0.5 [23].

STL components of variation arise from smoothing the
data using moving weighted-least-squares polynomial
fitting with a moving window bandwidth in days. The
degree of the polynomial is 0 (locally constant), 1
(locally linear), or 2 (locally quadratic).

The inter-annual component, Tt, arises from locally
linear fitting with a bandwidth of 1000 days, a very
low-frequency component. (Window bandwidths can be
formally larger than the number of available data
points.)

For the yearly-seasonal component, St, a critical idea of
our method is not pooling values across years with the
same time of year – values of January 1, values of January
2, etc. – as is often done. STL methodology can provide
pooling, but because our methods are designed to work
with limited data, St at a time t uses data in a
neighborhood of t, and not across years. St is a low-
frequency component with a bandwidth of 90 days and
with a blending of locally quadratic and locally constant
fitting. It is possible that this local method would be
better in many surveillance applications even with
substantially more data if the phase and shape are
sufficiently variable from one year to the next. For
example, for some Indiana EDs, seasonal influenza
peaks are unimodal in some years and bimodal in
others. Our modeling tracks this accurately, but aver-
aging across years could easily distort the patterns, for
example, making the bimodal peaks merge into unim-
odal ones. Other research has also found that the "one
season fits all" assumption, leading to pooling across
years, is not suitable for disease surveillance data [10].

The blending for the St results in nearly stationary noise,
Nt. Local smoothing methods tend to produce systematic
components that have higher standard deviation as the
time approaches the ends of the data, making the noise

Figure 1
STL decomposition for respiratory square root daily
counts. Respiratory square root daily counts and four
components of variation of the STL decomposition for an
Indiana emergency department (ED). The four components
sum to the square root counts. The solid vertical lines show
January 1 and the dashed vertical lines show April 1, July 1,
and October 1.

BMC Medical Informatics and Decision Making 2009, 9:21 http://www.biomedcentral.com/1472-6947/9/21

Page 3 of 11
(page number not for citation purposes)



component have a lower standard deviation at the ends.
We countered this with a new smoothing method,
blending. St results from blending locally quadratic
smoothing and locally constant smoothing, a weighted
average of the two for the 50 days at each end of the data.
The weight for the quadratic smoother is 0.7 at the first
or last observation, and increases linearly moving away
from each end, becoming 1 at the 50th observation from
each end. This means the weight for the constant
smoother goes from 0.3 to 0.

The fitting algorithm begins with computation of a day-
of-the-week component, Dt, directly employing the
method described in [19]. STL can allow Dt to slowly
evolve though time but we found that Dt is a strictly
periodic component. Dt results from an iterative process.
First, a low-middle-frequency component is fitted using
locally linear fitting with a bandwidth of 39 days. Then
Dt is the result of means for each day-of-the-week of the
Yt minus the low-middle-frequency component. Then

the current Dt is subtracted from the Yt and the
low-middle-frequency component is re-computed. This
iterative process is continued to convergence. We
subtract the final day-of-the-week component from the
Yt , and then use loess smoothing on the result to

obtain the inter-annual component Tt as described
above. Finally, we subtract the day-of-the-week and
inter-annual components from the Yt and smooth the
result to obtain St as described above.

We selected the stable Dt assumption and the band-
widths of Tt and St through extensive use of visualization
and numerical methods of model checking in order to
prevent overfitting or a lack of fit of the components of
variation, and to keep two components from competing
for the same variation in the data.

Outbreak Detection
STL modeling provides public health officials with a
clear view of yearly-seasonal variation for visual mon-
itoring of the onset and magnitude of seasonal peaks.
This is facilitated by the smoothness of St as opposed to
the raw data.

Another critical task is the detection of outbreaks that
rise up on the order of several days to several weeks and
are not part of the systematic patterns in disease counts;
the causes are bioterrorism and uncommon highly
pernicious diseases. Following the terminology of
meteorology, we will refer to this as a "synoptic time-
scale outbreak".

Our synoptic-scale detection method uses a simple
control chart based on the assumption that the daily

counts are independently distributed Poisson random
variables with a changing mean lt. These assumptions
are validated in the results section. The variability in the
systematic components Tt, St, and Dt is taken to be
negligible which is reasonable since they are relatively
low-frequency components. We take all variability to be
in Nt. From Equation 1,

l st t t t t NE Y T S D= = + + +( ) ( ) .2 2 (2)

s N
2 is estimated by the sample standard deviation of

the Nt.

With Yt as a Poisson random variable with with mean lt,
our method declares an outbreak alarm when Yt results
in a value yt for which P (Yt ≥ yt; lt) is less than a
threshold r. We evaluate this synoptic-scale outbreak
method using the historical data for baselines and
adding artificial outbreaks, as has been done in other
research [24,25]. We use three baselines: respiratory daily
counts from three EDs with low, medium, and high daily
means – 9.25, 17.33, and 23.86.

The outbreak model is a lognormal epicurve of Sartwell
[26]. A starting day is selected and becomes day 1. A total
number of cases, O, is selected; the bigger the value of O,
the more readily the outbreak can be detected. The day of
each case is a random draw, rounded to the nearest
positive integer, from a lognormal distribution whose
minimum is 0.5. For our evaluation, with the lognormal
density as

f x
x
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x
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we use ζ = 2.401 and s = 0.4626 to approximate
temporal behavior of an anthrax outbreak [27]. The
lognormal density times a constant is shown in Figure 2,
which will be fully explained later.

Detectability at a point in time depends on the the
number of outbreak cases per day compared with the
variability of the baseline counts over the outbreak
period. As we have emphasized earlier, the variability of
an ED count time series is larger when the level of the
series is larger than when the level is smaller. Because O
is fixed, detectability changes through time.

We used three values of O for each baseline, selected
based on a method in [1]. There are many ways to make
the selection, but we chose this one to remain consistent
with past work. The maximum of our lognormal
epicurve is 0.087 and occurs at ez s− 2 = 8.9 days. If we
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suppose the density is this value for 8.9 ± 0.5 days, then the
expected number of cases in this peak interval is 0.087O.
Detectability can be controlled by making the expected
peak-interval cases equal to a magnitude factor f times the
sample standard deviation of the residual counts Yt - (Tt + St
+ Dt)

2. The parameter f controls the detectability.

The three values of O in our evaluation for each baseline
were chosen by this method with f = 1, 1.5, and 2. For
example, for the baseline with the smallest mean daily
counts, the standard deviation of the residual counts is
3.324. For f = 2, we have 2 × 3.324/0.087 = 76.414, and
rounding to the nearest integer,O = 76. This case is shown
in Figure 2. The curve is the lognormal density times 76,
and the histogram shows 76 draws from the lognormal.

We compared this synoptic-scale method to other
methods. Because some of our surveillance EDs have a
rather small number of observations, we compared to
the EARS C1, C2, and C3 methods [4]. These methods
are based on a simple control chart approach with the
daily test statistic calculated as

S Yt t t t t= − +max( , ( ) / ),0 m s s (4)

where μt and st are a 7-day baseline mean and standard
deviation. For the C1 method, the baseline window for μt
and st is days t - 7,..., t - 1 and for the C2 method, the
baseline window is days t - 9,..., t - 3. The test statistic for
the C3 method is St + St-1 + St-2, where St-1 and St-2 are
added if they do not exceed the threshold.

Since some EDs have more than 3 years of data, we also
considered some of the EARS longer historical baseline

methods. However, we chose not to implement any of
them since it has been shown that these do not offer
much of an advantage over the limited baseline methods
[16]. Instead, we compared with a Poisson generalized
linear model (GLM) method [24], which has terms for
day-of-the-week, month, linear trend, and holidays. We
did not include holidays since we were not able to find
the details of its implementation. We also compared
with a seasonal ARIMA model [3] but found its results
unsatisfactory, so we do not include it here. This could
be due to insufficient data for pooling across years, or
that such pooling through the seasonal terms of the
model cannot accommodate the substantial change from
one year to the next in the seasonal patterns.

Outbreak detection was tested using 1004 days of each
baseline. The first 365 days acted as historical data for
the GLM method to have sufficient data to estimate
coefficients. For each of the 9 combinations of outbreak
detectability and baseline, we simulated 625 different
outbreaks; the first started on day 366, the second on day
367, and so forth to the final on day 990.

Each outbreak was a different random sample from the
lognormal epicurve. One sample is shown in Figure 2.
The counts of each outbreak were added to the baseline
counts to form Yt. We ran each method through each day
of an outbreak as would be done in real practice, and
tracked whether the outbreak was detected and, if so,
how long it took to detect. Time until detection is
measured by the number of days after first exposure until
the day of detection. Any evaluation that did not result
in detection on or before day 14 of the outbreak was
classified as not-detected.

We also investigated the minimum amount of data
needed by the STL method to achieve good performance.
Because Tt is very stable, and the window for St is 90
days, we would expect STL to do well for 90 days or
more. To test this, we ran our methods at each time point
from 366 to 990 using just the most recent 90 days of
baseline data for each outbreak scenario.

We ran all methods at a false positive rate of 0.03,
achieved empirically by choosing a cutoff, r, for each
method from the historical data with no outbreaks
injected. For the C1, C2, and C3 methods, this means
choosing r to be the 97th percentile of the daily test
statistic values. Since the STL and GLM methods update
past fitted values as they progress, choosing r for these
methods cannot be done by simply fitting the entire time
series and retrospectively choosing r. Instead, we use the
fitted values obtained at the last day of each fit over time
to chose r.

Figure 2
Outbreak sample. Randomly generated outbreak of 76
cases injected according to the Sartwell model [26] is shown
by the histogram. The lognormal density of the model
multiplied by 76 is shown by the curve. The parameters of
the lognormal are the mean, ζ = 2.401, and the standard
deviation, s = 0.4626, both on the natural log scale.
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In practice, limits for the STL and GLM methods would
be set by using the theoretical false positive rate. If a
model fits the data, the observed rates should be
consistent with the theoretical rate. We compared the
GLM and STL methods by studying their observed rates
for the 30 EDs using r = 0.03.

Results
STL Modeling
The four components of variation – Dt, Tt, St, and Nt – of
the STL modeling of the square root respiratory counts,
Yt , for the 30 EDs are presented in Figures 3, 4, 5, and

6. To maintain anonymity of the hospitals, names have
been replaced by three letter words, and each Tt has been
altered by subtracting its mean.

The day-of-the-week components, Dt, in Figure 3 tend to
peak on Sunday or Monday, fall to a minimum Thursday
or Friday, and then rise. For some EDs, Dt is very high
over the weekend but for others is considerably lower.

Figure 4 shows the yearly-seasonal component, St. The
flu season peaks for 2004–2005 and 2007–2008 tend to
be larger than those for 2005–2006 and 2006–2007.
Many EDs show a double peak for 2006–2007.

Some Tt in Figure 5 show an increase and others are
nearly constant. We attribute the increase to a growing
population using an ED, and no growth to a stable
population. Our conclusion is in part based on obser-
ving a similar pattern for gastro-intestinal counts.

Diagnostic plots validated the STL modeling. One
example, Figure 6, shows normal quantile plots of the
Nt. The lines on the plots are drawn through the lower
and upper quartile points. Because the data of the panels
are close to the lines, the normal is a good

Figure 3
Day-of-the-week component. Day-of-the-week
component, Dt, for square root respiratory counts for 30
Indiana EDs. The general pattern is U-shaped with a Monday
or Sunday maximum and a Thursday or Friday minimum.

Figure 4
Yearly-seasonal component. Yearly-seasonal
component, St, for square root respiratory daily counts for
30 Indiana EDs. Overall, patterns are similar, but detailed
behavior varies with unimodal and bimodal peaks, different
times of onset of yearly-seasonal disease, and different times
of disease peaks.
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approximation of the distribution. Plots of the auto-
correlation functions of the Nt showed the noise
component can be modeled as independent random
variables. Loess smoothing of the Nt against t verified
that no variation that should have been in Tt or St leaked
into the Nt. Separate loess plots of the Nt for each day-of-
the-week verified that all significant day-of-the-week
effects were captured by Dt.

Modeling on the Counts Scale
The three systematic components – Tt, St, and Dt – are
each weighted averages of a large number of observa-
tions, so the values are are comparatively stable. The
statistical variability in Yt is chiefly the result of Nt,
modeled as independent, identically distributed normal
random variables with variance s N

2 . Thus the sample
mean of Yt is lt from Equation 2.

The square root of a Poisson variable whose mean is not
too small is approximately normal with a standard

deviation of 0.5 [23]. The sample standard deviations
ŝ N of the 30 noise components are all greater than 0.5,
indicating a systematic departure, but are not far from
0.5. The upper quartile of the estimates is 0.58 and the
median is 0.54; two estimates reach as high as 0.63 but
this is due to a few outliers. The consistency of the values
can be seen in Figure 6; the slopes of the lines on the
display are nearly the same.

The near normality of Nt and the closeness of the ŝ N to
0.5 are consistent with the Yt having a distribution that is
well approximated by the Poisson with mean lt.
However, in carrying out the detection method, we use
ŝ N in place of the theoretical value 0.5 to provide a
measure of robustness to the Poisson model.

Outbreak Detection
Table 1 reports the observed sensitivity and average
number of days until detection for each baseline,
outbreak magnitude, and method. Figure 7 graphs the
sensitivity versus magnitude. The days until detection are
recorded including the incubation period, and referring
to Figure 2, outbreak cases usually do not begin until day
3 or 4. Detection before day 6 or day 7 is before the
expected outbreak peak. The C1 method typically has the
earliest detection, but the sensitivity is poor. The GLM
and STL methods have the best sensitivity, with the STL
method clearly ahead in all cases. The STL method

Figure 5
Inter-annual component. Inter-annual component, Tt, for
respiratory square root counts for 30 Indiana EDs. Each
component has been centered around zero to protect
anonymity. The long-term trend for each ED is either nearly
constant or has a small increase due to a growing patient
population.

Figure 6
Normal probability plots for Nt. Normal quantile plots
for the noise component, Nt, of the square root respiratory
counts for 30 EDs. The sample distribution of the noise is
well approximated by the normal distribution. This is a result
of the square root transformation of the counts.

BMC Medical Informatics and Decision Making 2009, 9:21 http://www.biomedcentral.com/1472-6947/9/21

Page 7 of 11
(page number not for citation purposes)



detects outbreaks somewhat faster than the GLM
method.

At the lowest outbreak magnitude, the STL method
outperforms all other methods by a difference of 10%
sensitivity. At higher magnitudes, the gap closes, but this
is not surprising because all reasonable methods should
eventually converge to 100% detection as magnitude
increases. Comparisons of sensitivity across baselines
within each method and magnitude show quite a bit of
variability. This may be due to unique characteristics of
each ED, the random outbreak generation, or the fact

that the cutoff values were set empirically within each
baseline.

The results of running the STL method on the same date
range, but using only 90 days of baseline data for each
scenario, are shown in final column of Table 1. These
numbers are very comparable to the results using all
available data. This indicates that the STL detection
method is effective when 90 days of data are available.

Figure 8 shows quantile plots of the observed false
positive rates from the GLM and STL methods for the
historical data with no outbreaks and a theoretical false
positive rate of 0.03 for all 30 EDs. The observed rates for
the GLM methods deviate from 0.03 by far more than for
STL.

To better understand the difference in performance
across outbreak methods, we investigated the model
fitted values (predicted systematic values) and residuals
(data minus the fits) from each method. As we have
emphasized, the methods of statistical modeling upon
which each detection method is based have a large
impact on performance. For the EARS methods, the fitted
value for day t is the seven-day baseline raw data mean μt
from Equation 4. For the GLM and the STL methods, the
fitted value for day t is the evaluation of the systematic
components at time t for a fit through time t, just as it
would be used in practice for outbreak detection. GLM
bases this on data for a number of years; STL bases it on
90 days to a good approximation unless there is
substantial long-term trend, which there is not in our
Indiana surveillance data.

Figures 9 and 10 are two residual diagnostic plots to
check for lack of fit in the EARS, GLM, and STL methods

Table 1: Outbreak detection simulation results

Sensitivity

Baseline Magnitude C1 C2 C3 GLM STL STL(90)

1 1.0 0.57 (5.44) 0.50 (5.50) 0.46 (5.48) 0.60 (6.58) 0.71 (6.44) 0.66 (6.65)
1 1.5 0.57 (5.42) 0.55 (5.65) 0.55 (6.05) 0.70 (6.80) 0.73 (6.54) 0.83 (6.57)
1 2.0 0.69 (5.39) 0.70 (5.64) 0.72 (6.13) 0.88 (6.24) 0.89 (6.22) 0.93 (6.07)

2 1.0 0.48 (5.43) 0.56 (5.90) 0.56 (5.89) 0.65 (6.01) 0.80 (6.31) 0.82 (6.90)
2 1.5 0.57 (6.03) 0.72 (6.68) 0.75 (6.81) 0.81 (6.72) 0.90 (6.63) 0.89 (5.96)
2 2.0 0.68 (5.11) 0.81 (5.39) 0.84 (5.53) 0.91 (5.36) 0.95 (5.19) 0.91 (5.93)

3 1.0 0.59 (5.51) 0.60 (5.74) 0.62 (5.80) 0.58 (6.20) 0.73 (6.62) 0.70 (6.74)
3 1.5 0.68 (6.01) 0.71 (6.37) 0.74 (6.49) 0.76 (7.00) 0.83 (6.82) 0.81 (5.93)
3 2.0 0.71 (5.47) 0.76 (5.82) 0.80 (5.87) 0.84 (6.21) 0.87 (6.00) 0.87 (5.70)

Outbreak detection simulation results for three baselines and three outbreak magnitudes.
Sensitivity is reported with mean days until detection in parentheses. The false positive rate was set empirically for each method and baseline to be
0.03. The superiority of the sensitivity of the STL method for these scenarios is evident, especially at the smallest outbreak magnitude. The results in
the final column, STL(90), are from allowing only a 90 day historical baseline for each outbreak scenario.

Figure 7
Outbreak simulation results. Outbreak detection
simulation results. The false positive rate was set empirically
for each method and baseline to be 0.03. For each baseline,
the STL method detects more than 10% more outbreaks
than the other methods at the smallest magnitude.
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for the daily respiratory counts for one ED. Figure 9
graphs the residuals against t for each model; a loess
curve shows the local average fluctuations of the
residuals around 0. Figure 10 graphs the residuals
against week for each day-of-week, also with loess
curves. Figure 9 shows substantial lack of fit for GLM,
systematic fluctuations from 0. This is due to pooling
across years to estimate the yearly seasonal component,
which can be quite different from one year to the next.
Lack of fit revealed for EARS and STL is minor. Figure 10
shows systematic lack of fit by day of the week for EARS,
but not STL and GLM. The reason is simply that EARS
does not model day of the week variation.

Figure 11 checks the variability in the EARS, GLM, and
STL fitted values for the same ED of the previous two
figures. We want the fitted values to be as smooth as
possible without introducing lack of fit. For EARS, the
fitted values are graphed against t. To make comparisons

Figure 8
Observed false positive rates for STL and GLM.
Quantile plots of observed false positive rates for the STL
and GLM methods based on a theoretical false positive rate
of 0.03, from respiratory counts for each of the 30 EDs. The
dashed lines represent the median value for each method.

Figure 9
Residuals for model fits. Residuals for model fits to daily
respiratory counts for one ED. The EARS residuals are the
observed count minus the 7 day baseline mean with lag 2.
The GLM and STL residuals are obtained from the model
predicted values. The smooth curve is the local mean of the
residuals.

Figure 10
Residuals by day-of-the-week. Residuals for model fits to
daily respiratory counts for one ED, by day-of-the-week. The
smooth curve is the local mean of the residuals.
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of EARS with GLM and STL commensurate, we graph the
GLM and STL fitted values minus their day-of-week
components against t. The EARS fit is much noisier than
that of STL, the result of overfitting. In particular there is
a large amount of synoptic scale variation, making it
more difficult to detect synoptic-scale outbreaks. GLM is
locally quite smooth at most points in time, but has
large precipitous jumps at certain time points because
the yearly seasonal component is modeled as a step
function, constant within months, but changing dis-
continuously from one month to the next.

Discussion
For our data, the same smoothing parameters were
successfully used across all EDs. We advise those
interested in applying these methods to their syndromic
data to perform their own parameter selection and model
validation. For outbreak detection, our data behaved like
Poisson random variables, but this may not be the case in
other applications. We advise checking this assumption
and if it does not hold, investigating other possibilities
such as the over-dispersed Poisson. Another alternative is
validating distributional properties of the remainder term
and using this term for monitoring.

Although our detection performance results favor the
STL method, this does not necessarily mean that it is the
best method available. There are certainly other methods

with which we could have compared. We chose the EARS
methods since they are widely used and can be applied
to very short disease time series. Our detection study was
limited to one type of outbreak. Further use and study of
this method will determine its merit. The visualization
capabilities of STL modeling make it a useful tool for
visual analytics.

The STL method should not be used for small counts
close to and including zero. While they work well with
the large counts of the respiratory and gastro-intestinal
categories, many other categories such as botulinic have
counts that are too small for the square roots to be
approximately normally distributed. Future work can
investigate employing STL ideas for small counts by
replacing the square root normal distribution and local
least-squares fitting with the Poisson distribution and
local Poisson maximum likelihood fitting.

Conclusion
The STL decomposition methods presented here effec-
tively model chief complaint counts for syndromic
surveillance without significant lack of fit or undue
noise, and lead to a synoptic time-scale disease outbreak
detection method that in our testing scenarios performs
better than other methods to which is it compared –

EARS C1, C2, and C3 methods [4], as well as a Poisson
GLM modeling method [24]. The methods can be used
for disease time series as short as 90 days, which is
important because many surveillance systems have
started only recently and have a limited number of
observations. Visualization of the components of varia-
tion – inter-annual, yearly-seasonal, day-of-the-week,
and random-error – provides much insight into the
properties of disease time series. We recommend the
methods be considered by those who manage public
health surveillance systems.
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removed to make comparison with the variability of the
EARS fitted values commensurate.

BMC Medical Informatics and Decision Making 2009, 9:21 http://www.biomedcentral.com/1472-6947/9/21

Page 10 of 11
(page number not for citation purposes)



Additional material
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R code and documentation. contains R source code, examples, data,
and documentation for carrying out the STL procedure.
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[http://www.biomedcentral.com/content/supplementary/1472-
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