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Abstract

Background: The biomedical community benefits from the increasing availability of genomic data to support
meaningful scientific research, e.g., Genome-Wide Association Studies (GWAS). However, high quality GWAS usually
requires a large amount of samples, which can grow beyond the capability of a single institution. Federated
genomic data analysis holds the promise of enabling cross-institution collaboration for effective GWAS, but it raises
concerns about patient privacy and medical information confidentiality (as data are being exchanged across
institutional boundaries), which becomes an inhibiting factor for the practical use.

Methods: We present a privacy-preserving GWAS framework on federated genomic datasets. Our method is to
layer the GWAS computations on top of secure multi-party computation (MPC) systems. This approach allows two
parties in a distributed system to mutually perform secure GWAS computations, but without exposing their private
data outside.

Results: We demonstrate our technique by implementing a framework for minor allele frequency counting and c2

statistics calculation, one of typical computations used in GWAS. For efficient prototyping, we use a state-of-the-art
MPC framework, i.e., Portable Circuit Format (PCF) [1]. Our experimental results show promise in realizing both
efficient and secure cross-institution GWAS computations.

Introduction
As improving technology lowers the cost of genome
sequencing, whole genome sequencing (WGS) data are
becoming more affordable and accessible, enabling var-
ious new medical applications for precise diagnostics,
personalized medicine, etc. Genome-wide association
studies (GWAS), in particular, aim at better understand-
ing the association between genetic variants and diseases
by examining genetic mutations, which differ in a statis-
tically significant way between individuals who have an
illness and individuals who do not. Such analysis can
benefit from using a large amount of sample data [2],
which are usually present at multiple locations (espe-
cially in the case of rare disease studies) with indepen-
dent administrative domains. For instance, these could

be geographically distributed hospitals and medical
institutions.
Due to the urgent needs of integrating and sharing

genomic and medical data, various kinds of information
networks emerged in different sectors and for various
applications. For instance, eMERGE [3], pSCANNER [4]
and PCORnet [5] have been established for accelerating
scientific discovery and promoting personalized medi-
cine. Health information exchange networks (e.g. NHIN
[6], CommonWell [7] and GaHIN [8]) are being devel-
oped or used in practice for improving public health.
However, an inhibiting factor in cross-domain federated

data analysis is increasing concern for individual privacy
during biomedical information exchange. Without proper
protection, individual-level information exchange can put
patient-specific information at risk, which might have ser-
ious implications for research participants, such as discri-
mination for employment, insurance, or education [9].
In the U.S., privacy laws, such as HIPAA [10], have been
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established to protect individuals’ medical data privacy.
For example, under the HIPAA Safe Harbor rule,one must
remove all the biometric identifiers to de-identify a dataset
before sharing it. As genomic data are recognized by most
researchers as a type of biometric identifiers, it is infeasible
to directly de-identify or share raw genomic data under
HIPAA regulation. In addition, NIH recently announced
the Genome Data Sharing policy [11]to govern the sharing
of genomic information based on the informed consent
from patients and data-use agreements between data
owner and users; sharing raw genomic data across institu-
tions while complying with this privacy policy presents a
challenge.
In this work, we focus on the privacy-preserving statis-

tical analysis on federated genome datasets. Our aim is to
enable genomic data possessing institutions to conduct
collaborative GWAS without breaching any privacy
agreements with their patients. Our primary approach is
to apply recent advances in secure multiparty computa-
tion (MPC) [12,13] to the application domain of distribu-
ted GWAS analysis. In particular, recently developed
MPC systems allow the expression of the secure compu-
tation in a high-level C-like programming language (with
certain constraints). Based on the Portable Circuit For-
mat (PCF) framework [1], a state-of-the-art MPC tool
chain, we implemented two representative GWAS com-
putations (i.e. minor allele frequency (MAF) counting
and c2 statistics computation. Our system works for the
two-party computation scenario, and its performance has
been evaluated to be efficient for practical use in the
presence of genome datasets with several hundreds of
genotypes and standard Internet connections. When
compared against noise-based protection [14-16], our
approach does not sacrifice utility and can produce the
computation accurate results under fixed-point approxi-
mation. Unlike distributed model learning frameworks
proposed in [17-20], which exchange the aggregated
intermediary statistics in plaintext, the proposed frame-
work provides strong security protection through the
extensive and intelligent use of cryptographic primitives
(in the MPC runtime systems).

Related work
Recently, practical MPC programming platforms have been
developed for distributed computations involving two or
three parties (e.g. PCF [1], Sharemind [21], Fair-play [12])
or more (e.g. GMW [22], FairplayMP [23]). Certain pro-
gramming frameworks support high-level programming
languages and compilers (e.g. Fair-play(MP) [12,23], SecreC
[24], PCF [1]), while others expose a quite low-level circuit
based interface (e.g. GMW [22]). Underneath, various tech-
niques are used to ensure security, such as secret sharing
[21], cryptography based garbled circuit, and oblivious
transfer [1]. Other recent advances have focused on MPC

techniques built upon the Fully Homomorphic Encryption
(FHE) scheme proposed by Gentry [25]. However, pure
FHE is known not to scale well enough to support practical
MPC deployments; hence alternative protocols dubbed
“Somewhat Homomorphic Encryption” (SHE) have been
proposed [26-28]. Under certain assumptions, SHE can
be much faster than FHE and without sacrificing privacy
guarantees [29].
Several domain-specific MPC protocols have been

proposed for federated statistical analysis in economic
applications [30,31], public health applications [32-35],
and medical applications [36-38]. In particular, Kamm
et al. [37] proposed to protect privacy in GWAS by
requiring a data collection system to secretly share sen-
sitive data among all parties using distributed storage.
Similarly, Bogdanov et al. [36] proposed a secret-sharing
based framework for privacy-preserving statistical data
analysis. Xie et al. [38] developed another MPC protocol
for privacy-preserving genetic association meta-analysis,
which allows each site to fully control its local data.
For statistical analysis, a practical alternative (to use

cryptographic primitives) is to operate on per-site aggre-
gated statistics; such models do not exchange patient-
level data and have produced as accurate results as if
data were centralized. With this weaker level of security
protection, various statistics and learning computations
can be enabled on federated data [39,18,19]. Our
approach built on MPC provides stronger security pro-
tection regarding per-site statistics.
Data de-identification methods (e.g. suppression or

generalization) have been proposed in the database
security community to protect the confidentiality of
released data on a single site. Such securely released
data can be used as input for statistical analysis which
automatically preserves privacy. However, utility will be
sacrificed due to the noise injected in the released data.
In particular, various privacy definitions have been pro-
posed, ranging from k-anonymity [40], l-diversity [14],
to the most recent differential privacy [15]. On the
other hand, current privacy policies for data de-identifi-
cation are inadequate to provide enough protection to
genomic data privacy, as reported by the Presidential
Commission for the Study of Bioethical Issues [41].
Sweeney et al. demonstrated the vulnerability in a recent
study that successfully identified the participants of the
Personal Genome Project (PGP) [42]. Vaidya et al.
re-identified a Native American woman from the public
query system of the Healthcare Cost and Utilization
Project (HCUP) [43]. Like other technologies, the attack
models are improving in accuracy and the risk of harm
from data disclosure is increasing. Many recent research
results show that with some background information
about an individual, an adversary can identify or learn
sensitive information about the victims from their
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genomic data [44-47]. NIH has removed most aggregate
research results from the public domain due to the
potential privacy risks elaborated in [46]. Gymrek et al.
[45] showed that genomic information can be used to
infer an individual’s surname. A recent study [48] even
demonstrated the possibility of directly inferring a face
from an individual’s genomic data.

Methods
Preliminaries
GWAS computation
GWAS are frequently used to map genotypes (the genes
within an organism) onto phenotypes (the traits of an
organism) [49]. The predominant application for GWAS
today is in the study of genetic diseases. GWAS are con-
ducted by examining genetic mutations which differ sig-
nificantly between individuals who have an illness and
those who do not. These individuals are partitioned into
the case and control groups, respectively. What follows
are brief descriptions of some of the relevant terms in
genetics, as well as the statistics we would like to com-
pute over the input data.
SNPs In genetics, a DNA sequence consists of multiple

nucleotides, where a single nucleotide can take one of four
values ‘A’, ‘G’, ‘T’ and ‘C’. A Single Nucleotide Polymorph-
ism (SNP) is a DNA sequence variation in which a single
nucleotide varies between individuals in a population.
Given that nearly 99% human DNA are identical, the
study of identifying genetic mutations such as SNPs is
essential in determining which genotypes correspond to
which human traits. During the past decade, the associa-
tions between a number of common diseases (e.g., heart
disease, diabetes etc.) and common SNPs have been widely
studied [49].
Minor allele frequency (MAF) An allele is a variant of
the same gene or the same genetic locus. A minor allele
frequency (MAF) is the frequency at which the least fre-
quent allele occurs [49] within a given population. For
example, the genotypes of five individuals at the same
loci are as follows, AA, AG, AA, AG, and GG. Since G
is less frequent than A, and its frequency is 4

10 , The
MAF can be calculated as 0.4 in this case.
c2 statistic The c2 statistic is the statistic used by a c2

hypothesis test. Given a set of categories and the fre-
quencies with which observed and expected values fall
into those categories, a c2 test can be used to test
whether the observed and expected populations differ in
a statistically significant way. The c2 statistic is com-
puted as

χ2 =
∑

i,j

(obsi,j − expi,j)
2

expi,j
(1)

where obsi,j and expi,j denote the observed and
expected allele counts from allele type j (e.g., j ∈{A,G}
in above example) in group i(i∈ {case and control
groups}).
PCF based MPC framework
A garbled circuit-based MPC programming framework
usually consists of two components: a compiler that
compiles a high-level human-readable program into a
low-level circuit representation, and a runtime system
that executes the circuit distributedly across multiple
participant parties. The MPC programming language is
designed to be similar to C, though its security guaran-
tees make it more restrictive than C. These include lim-
itations on data input size, lack of support for negative
numbers, and inflexible control flow. One particularly
salient example is that every loop must run a fixed
number of iterations, determined at compile time. This
presents challenges in implementing GWAS computa-
tions and we will present our solutions to work within
those restrictions without sacrificing security protection.
In our work, we choose the PCF programming frame-
work [1], which supports garbled circuit-based MPC for
two participants. A garbled circuit [50] is a specially
designed circuit, which enables two (or more) parties to
securely compute a function f (xA, xB) without exposing
their private secrets (e.g., xA and xB are inputs from
party A and party B, respectively). The framework
includes a compiler called LCCYao, and an execution
runtime called BetterYao. Given a C program compiled
into bytecode by the LCCYao compiler, the BetterYao
runtime executes the circuit representation like any
other garbled circuit based protocol [50]: If two parties,
say Alice and Bob, want to collaborate in computation,
Alice takes the role of the circuit builder. She constructs
a circuit (Boolean or arithmetic) to implement the com-
putation algorithm, then generates keys for and encrypts
each wire by producing a garbled truth table. Next she
sends both the garbled circuit and its inputs to Bob.
Bob uses a 1-out-of-2 oblivious transfer [50] to receive
this information from Alice. Finally Bob inserts his
input values, and runs the circuit on both sets of values.
He returns the output to Alice, who can decrypt it since
she was the one who generated the keys.

Design overview
In our system model, we consider two participant institu-
tions which want to conduct GWAS computations in a
secure fashion. Each institution holds genomic data of its
clients or patients which are deemed sensitive and pri-
vate. Unlike other personal information which can be
changed once disclosed (e.g. credit card numbers), perso-
nal genomic data is immutable, which makes it more sen-
sitive and the protection mission-critical. The institutions
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must comply with various privacy laws and registrations
HIPAA [10] which restrict the exchange and sharing of
personal identifiable data across institutional boundaries.
It is clear that once the personal genome data are dis-
closed, undesirable consequences may arise. If an insur-
ance company finds out that one of its clients has a
mutation making him highly susceptible to a certain
disease, then the company might increase the client’s pre-
mium or even drop the client.
Our proposed privacy-preserving GWAS computations

on federated datasets have the following three design
goals:

• Correctness: The distributed multi-party computa-
tion must be able to produce the same result (with
allowable round-off error) as a centralized computa-
tion performed on a merged version of the federated
datasets.
• Privacy: The distributed computation must be able
to protect the private data of any institution from
every other institution.
• Performance: The computation must be fast and
efficient, making it practical for scalable genomic
datasets.

In this work, we focus on the computation of MAF
and c2 statistic using the PCF framework. The chal-
lenges arise from 1) working within the restrictions
inherent in PCF programming model and 2) automating
the workflow for optimized performance and ease of
management. For the second challenge, the usual work-
flow of deploying an MPC program (or any computer
program in general) is to deploy the executable binary
code, configure the runtime system, and then execute
the computation. In the BetterYao framework, the maxi-
mum input size is very small size (i.e. 8, 000 bits). This
requires us to partition the input data properly. The
extended workflow is shown in Figure 1, the details of
which will be elaborated in the next section.

Automated work flow
We have implemented the proposed design using PCF
from end to end, including input data analysis (using
Python), automatic code generation (using Bourne
Again SHell or Bash), compilation (using the PCF/
LCCYao compiler) and execution (with PCF simulator
and BetterYao runtime system). We glue different soft-
ware components using Bash. The general flow of our
secure MPC is enumerated below, and is also illustrated
in Figure 1. Note that steps 1-3 and 5 are performed
locally within each institution, and step 4 is the mutual
MPC performed synchronously by both institutions.
1 Preprocess the data Institutions 1 and 2 each have

two text files containing the SNPs of n individuals over

m genotypes. One text file corresponds to the case
group, the other to the control group. An genotype
entry in the data might look like
rs11686243
AG AG AA AG GG AA AG AA GG AG AA AA AA AA ...
where each pair of nucleotides (i.e. “AG”) is an SNP of

that genotype for one individual.
It is worth noting that not every part of the computa-

tion needs to be done by the PCF/BetterYao framework.
Only the computational steps which require data from
both participants needs to be protected by secure MPC.
The very first step of the computation, counting the total
number of nucleotides of each value (‘A’, ‘G’, ‘T’ or ‘C’),
can be done locally by each participant. We use a Python
script to scan the data files and count the nucleotides for
each genotype. The preprocessing tool also captures
some important metadata, including the number of indi-
viduals whose SNPs are represented, and the total num-
ber of genotypes. This metadata is required in step 2.
From this point onward, we must rely on secure MPC,
since the remainder of the computation simultaneously
requires secret data from both parties.
The PCF/BetterYao framework requires that all input

data be encoded as hexadecimal text input, no greater
than 8000 bits in length. For the sake of efficiency, we
assume that typical GWAS will not involve more than
215 = 32768 participants, so that each nucleotide count
input will span more than 16 bits (though this assumption
could easily be lifted if necessary). Since each participant
has a case and control group for each genotype, each

Figure 1 The system workflow.

Constable et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S2
http://www.biomedcentral.com/1472-6947/15/S5/S2

Page 4 of 9



genotype will consume 32 bits of input (16 for the case
group, and 16 for the control). Hence each hexadecimal
file can contain nucleotide counts for up to

⌊8000
32

⌋
= 250

genotypes.
2 Generate subset-C code The PCF/BetterYao system

has an interesting restriction. Suppose an eavesdropper
listens in on the MPC communication between Institu-
tions 1 and 2. From the amount of time it takes for a
mutual computation to complete, the eavesdropper may
be able to garner some information about the data
being operated on. For this reason, the PCF/BetterYao
framework requires that all loops run at a fixed number
of iterations, determined at compile time. For purposes
of efficiency, we break this assumption by dynamically
generating the subset-C code based on the metadata
produced in step 1. For instance, we have a line in the
code generator
#define TOTAL $total
where $total corresponds to the total number of

nucleotides per genotype. The value for $total is pro-
vided by the data preprocessor, and is filled in by the
code generator. Though this technique may appear to
break the security requirement, it will only reveal to the
eavesdropper the amount of data that is shared between
the participating institutions. We consider this to be a
reasonable trade-off for much better performance. This
point is further discussed in the “Security” section.
3 Compile the PCF file The PCF tool uses the Little

C Compiler (LCC) to compile the subset-C code to tar-
geted bytecode, which is then mapped onto a garbled
circuit.
4 Evaluate the circuit This step is the only one

which is performed mutually between institutions. One
institution, say Institution 1, is deemed the circuit gen-
erator. In our case, the generator will build a Boolean
circuit to compute either the MAF or c2. Once the cir-
cuit has been constructed, all of its wires are then
“garbled” according to the Yao protocol [50]. Institu-
tion 1 additionally garbles its own input data. Then
both the garbled circuit and input are sent to Institu-
tion 2, the circuit evaluator. Using a 1-out-of-2 obliv-
ious transfer (OT) protocol [50], Institution 2 similarly
garbles its own inputs. With both sets of garbled
inputs and the garbled circuit, Institution 2 then pro-
ceeds to evaluate the circuit. If the circuit output itself
is not garbled, then Institution 2 may report it. Other-
wise Institution 1 must report the output.
5 Report the results The evaluator is the only party

with the cryptographic means to decode the circuit out-
put. In our example, this is Institution1.PCF/BetterYao
reports the computation results as hexadecimal output.
We provide a script to decode the output into human-
readable decimal point form.

Algorithmic implementation
This section details our algorithms on PCF/BetterYao to
compute the MAF and c2 statistics from genotype data.
Minor allele frequency
Our algorithm for computing the MAF proceeds by first
reading in the count of each nucleotide per case/control
group (the output of Step 1 in the previous section),
and then determining which is the least frequent and
computing its relative frequency.
MAFs are computed and reported separately for the

case and control groups. Once all of the nucleotides
have been counted, we determine which allele is minor
(i.e. with smaller frequency). We then compute the fre-
quency of the minor allele, and emit it to Alice’s term-
inal. Note that the PCF tool has no native support for
primitive types other than unsigned 32-bit integers,
which forces us to simulate floating point computation
in order to divide. This is accomplished by shifting the
dividend to the left by FPP bits before dividing, where
FPP is the desired Floating Point Precision. For our pur-
poses, we let FPP = 16. A sample of the algorithm
implementation is given in Figure 2.
c2 statistic
The process for computing the c2 statistic proceeds by
first reading in the number of alleles per group, and
then computing c2 as in Equation 1. The computation
of c2 is illustrated in Figure 3. One implementation
note is that since PCF does not support signed integer
computation, we must be very careful to avoid any
expression where a negative number may result. Indeed,
this could happen in the numerator of Equation 1 if
obs <exp. To avoid a signed overflow, we observe that
(obs−exp)2 = obs2 +exp2−2·obs·exp and use this substitu-
tion in our computation. This guarantees that at no
point will we compute a negative number.

Parallelism
Perhaps the most substantial optimization we were able
to make was to parallelize our MAF and c2 statistic
computations. PCF and BetterYao have no native sup-
port for parallelization. However, since computations
across genotypes are independent, we were able to
break up the input into many smaller files, and spawn a
child process for each file.
In fact, partitioning the input is mandated by BetterYao’s

restriction on input data containing greater than 8, 000
bits of information. For example, our sample dataset con-
tains 311 genotypes for 400 individuals. We were able to
compute the nucleotide counts for each case/control
group and genotype in a preprocessing step. We were
then able to compress the counts for up to 250 genotypes
into 8, 000 bits. Our largest dataset spanned 9, 330 geno-
types. Hence we had to partition the entire dataset into
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⌈ 9,330
250

⌉
= 38 input files. Our data preprocessor performs

the correct partitioning automatically.
Once n input files have been produced, n child processes

are created, one process per input file. When the dataset is
large enough, there may be hundreds of input files, and
thus hundreds of processes. On commodity hardware this
can be disastrous for the overall running time, due to high
memory overhead and poor cache performance. To
address this issue, we enqueue all of the processes, allow-
ing only a few to run at any given time. We found that for
a system with c CPU cores, executing 2c processes simul-
taneously would best optimize the overall running time.

Results: Performance and security analysis
Experiment setup
Our test setup includes two separate machines located
on the same network at Syracuse University. Both

machines have 6GB of RAM and Intel Core i5 750 Pro-
cessors with 4 physical cores, each clocked at 2.66 GHz.
Each machine is running Ubuntu 12.04 LTS. The
experimental data consist [51] of the SNPs for 311 gen-
otypes taken from 200 individuals in a case group and
another 200 individuals in a control group. The case
and control individuals were extracted from Personal
Genome Project (PGP) participants and HapMap CEU
individuals, respectively. In our experiment, both case
and control datasets were evenly partitioned between
two institutions. Table 1 illustrates the distribution of
case and control individuals.

Performance results
Figure 4 shows the performance results in terms of
execution time in minutes under different experimental
setups. Each subfigure illustrates the impact of different
experimental parameters on the system performance. In
Figure 4(a), we run the MAF and c2 statistic calculation
on the sample dataset by varying the number of usable
CPU cores. By increasing the number of cores from 1 to
4, we observed roughly 3.4 times speedup for both MAF
and c2statistic computations. With all four cores, we
were able to achieve an execution time of 20.49 seconds
for MAF, and 47.27 seconds for c2.
Figure 4(b) shows how our implementation scales with

respect to the number of genotypes in the dataset. Since
we only had access to the sample dataset with311 geno-
types, we replicated this data 10, 20, and 30 times to

Figure 2 PCF function to compute minor allele frequency. Here × and y are the inputs for one genotype read in from Alice and Bob’s data,
respectively. The low-order 16 bits of each input correspond to a control group, whereas the high-order 16 bits correspond to a case group. We
begin by computing the aggregated count of the lexicographically lower (e.g. ‘A’ < ‘G’) nucleotide for each group across both parties. lowCt
denotes this count for the aggregated control group, and likewise highCt for the control group. The lexicographically high counts are simply the
total counts minus the low ones. We then decide which count is lower, and thus must represent the minor allele. Finally we perform a floating
point adjustment, divide to obtain the frequency, and output the case and control MAFs to the terminal.

Figure 3 Computing c2 statistic. obs[0] and obs[1] are the case
group’s low and high allele counts, respectively, with obs[2] and obs
[3] as the respective counts for the control group. exp[0 ... 3] are the
respective expected counts for each allele in each group. The “for”
loop computes the c2 statistic according to Equation 1.

Table 1. Distribution across institutions for the sample
data

Institution 1 Institution 2

Case 100 100

Control 100 100
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simulate much larger datasets. With respect to the num-
ber of genotypes the observed running times scaled line-
arly. For MAF, increasing the number of genotypes
from 311 to 3110 (a 10x increase) increased the running
time from roughly 20 seconds to 193 seconds (a 9.4x
increase). On the largest dataset with 9330 genotypes,
we achieved a running time of 9 minutes, 40 seconds
for MAF, and 22 minutes, 22 seconds for c2. The c2

computation consistently consumes more execution
time because it requires more multiplication and divi-
sion, which are expensive operations in Boolean circuits.
When varying the number of individuals in the case

and control groups as in Figure 4(c), the results are
invariant. This is because in both MAF and c2, the
alleles are counted during the offline stage which does
not use garbled circuits, and hence performs substan-
tially better. In fact, increasing the number of individuals
by a factor of 15 only increased the offline computation
time by 0.24 seconds. The online computation time was
unaffected. As before, we replicated individual records
in the sample dataset to simulate several large datasets.
Figure 5 provides the communication costs associated

with each computation, relative to the number of geno-
types in the input data set. For each of MAF and c2, we
provide the total number of bytes transferred by each
party. Most notably, the circuit evaluator yields at least
an order of magnitude more data than the circuit genera-
tor. Varying the number of individuals had no measur-
able impact on the network toll, again since this factor
only impacts the offline computation. Data transfers
while computing the c2 statistic were consistently 3-4
times greater than they were during a MAF computation.
This is because the garbled boolean circuits that imple-
ment multiplication and division (as required by c2) are
more complex than those that implement addition and
subtraction (more often used when computing MAF).

Security analysis
We analyze the security property, specifically privacy
preservation, of our federated GWAS computation

framework. The security guarantees made by our system
are almost entirely dependent upon the underlying MPC
runtime protocol. The PCF/BetterYao protocol can sup-
port a variety of security models, ranging from the
semi-honest model [23] (which assumes all participant
parties will not do anything more than peeking into
the data flowing through themselves; they will behave
according to what is required by the protocol) to the
more hostile malicious model (which assumes partici-
pant parties can act at their own will without restriction
from the protocol).
Note that our design, as illustrated in Figure 1, leaks

aggregated information about per-party input data.
Specifically, each participating party discloses the number
of genotypes and the number of individuals in the input.
We argue that these two pieces of information only reveal
very coarse-grained information about the input data; the
input data size can be inferred from the computation time
anyway. The design of leaking the information is mainly
for the purpose of performance optimization. We always
present an alternative to the institutional users, that is, an

Figure 4 Execution time for evaluating MAF and c2 statistics with different experimental setups.

Figure 5 Total bytes transferred by each party, with respect to
the number of individuals in the merged datasets.
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institution which is not willing to disclose that information
can simply use the least upper bound of all of its data as a
fixed size for all computations. This way all computations
will run in the same amount of CPU time.

Discussion on limitations
In this paper, we experimented with the PCF circuit fra-
mework [1] and BetterYao runtime system. The pro-
posed framework is able to generate customized circuits
using C-like programs for secure two-party computation
on federated genomic datasets. In our current imple-
mentation, the proposed framework supports both
secure and accurate MAF counting and c2 statistic com-
putation between two parties. We have conducted a
comprehensive performance evaluation in terms of scal-
ability of data size, parallel computation over multiple
cores, and different network topologies. The experimen-
tal results show that the proposed framework provides
promising performance in both computational tasks.
For example, it only takes a few minutes to securely
compute the c2 statistics over thousands of genotypes
between case and control groups.
It is worth mentioning that the proposed framework

still has some limitations. First, as the current implemen-
tation only supports secure two-party computation, only
two hospitals or institutions are allowed to collectively
conduct federated analysis with our implementation.
This limitation is inherited from that of the BetterYao
framework. We are actively planning to extend our work
to allow more than two-party data analysis. This goal can
be achieved by using other secure multi-party platforms
(e.g. FairplayMP [23]) with the additional costs of com-
putation and communication and by re-engineering our
implementation for more general scenarios.
Another limitation is the noticeable computational and

communication overhead in the current implementation,
when comparing the cost to carry out the same computa-
tion in a centralized non-encrypted environment. Owing
to the extensive use of cryptographic primitives in MPC
and communication overhead through the Internet, over
which federated analysis is deployed, the performance
may become a bottleneck when handling extra large scale
genomic data. However, the proposed framework
demonstrated good scalability for parallel computing in a
multi-core system. This warrants further investigation
along this line to improve the privacy-preserving feder-
ated genomic data analysis using secure MPC.
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