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Abstract

Objective: Developed sequencing techniques are yielding large-scale genomic data at low cost. A genome-wide
association study (GWAS) targeting genetic variations that are significantly associated with a particular disease
offers great potential for medical improvement. However, subjects who volunteer their genomic data expose
themselves to the risk of privacy invasion; these privacy concerns prevent efficient genomic data sharing. Our goal
is to presents a cryptographic solution to this problem.

Methods: To maintain the privacy of subjects, we propose encryption of all genotype and phenotype data. To
allow the cloud to perform meaningful computation in relation to the encrypted data, we use a fully
homomorphic encryption scheme. Noting that we can evaluate typical statistics for GWAS from a frequency table,
our solution evaluates frequency tables with encrypted genomic and clinical data as input. We propose to use a
packing technique for efficient evaluation of these frequency tables.

Results: Our solution supports evaluation of the D′ measure of linkage disequilibrium, the Hardy-Weinberg
Equilibrium, the c2 test, etc. In this paper, we take c2 test and linkage disequilibrium as examples and demonstrate
how we can conduct these algorithms securely and efficiently in an outsourcing setting. We demonstrate with
experimentation that secure outsourcing computation of one c2 test with 10, 000 subjects requires about 35 ms
and evaluation of one linkage disequilibrium with 10, 000 subjects requires about 80 ms.

Conclusions: With appropriate encoding and packing technique, cryptographic solutions based on fully
homomorphic encryption for secure computations of GWAS can be practical.

Introduction
Because of recent advances in DNA sequencing technol-
ogies, the cost of DNA sequencers is dropping rapidly.
As a result, the scale of genomic data used by researchers
is becoming larger and larger. To conduct computations
on a large-scale genomic dataset, a cloud server that pro-
vides computational resources at low cost is regarded as
a promising option.
It is difficult to argue that genomic and clinical data are

highly sensitive. Outsourcing these data to an external

server raises concerns about the privacy of sensitive data.
Consequently, for outsourcing of computation with
genomic data, privacy should be rigorously preserved.
The fully homomorphic encryption (FHE) scheme is

attracting attention as a tool for secure outsourcing of
data analysis. FHE enables encryption of data and then
carrying out arbitrary computation using the encrypted
data without decrypting the data. The first FHE scheme
was proposed by Gentry [1]: subsequent improvements
[2,3] provided more practical FHE schemes.
Actually, FHE has been applied to secure outsourcing

of computation that involves genomic and clinical data.
Bos et al. [4] proposed a working implementation of
cloud service for private computation of encrypted health
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data using FHE. Lauter et al. [5] demonstrated an
approach to conducting private computation using
encrypted genomic data with FHE. Unfortunately, these
cryptographic solutions are not sufficiently time and
space efficient to conduct a GWAS-scale computation,
which can involve 300k SNPs for thousands or more
subjects.
In this manuscript, we present a protocol for secure

outsourced analysis of large-scale genomic data using
FHE. Precisely, our proposed protocol evaluates a fre-
quency table with encrypted genomic/clinical data as
input. This enables us to outsource computation of typi-
cal statistics related to GWAS securely, such as the
Hardy-Weinberg Equilibrium (HWE), c2 test for inde-
pendence and Linkage Disequilibrium (LD). Our method
works by virtue of the fact that we can pack integer vec-
tors into a single ciphertext of a certain type of FHE.
This packing technique enables us to evaluate a scalar
product of integer vectors through a single homo-
morphic multiplication using the packing technique;
such a batch style computation helps to conduct com-
putation of GWAS-scale data in an efficient manner.
Our basic strategy is to compute allelic frequency tables

and genotype frequency tables privately from encrypted
genetic data. With these tables, GWAS-related statistics
including D′ measure of LD, the Pearson Goodness-of-
Fit, HWE, and the c2 test are conducted. In this work
particularly, we apply our method to the c2 test and LD
to demonstrate the effectiveness of our protocol.
We review an allelic frequency table and a genotype

frequency table with two markers. Table 1 gives a view
of a genomic dataset Dg. Each record contains an expli-
cit identifier ID and SNPs. Similarly, Table 2 gives a
view of a phenotype dataset Dp. Each record contains an
explicit identifier ID′ to identify each subject and an
attribute to indicate the disease status of the subject.
Presuming that M subjects and N SNPs are involved,
then the dataset Dg contains N rows, with each row con-
taining M data points; the dataset Dp includes M rows.
Presuming that A, a are possible alleles. An allelic fre-

quency table (Table 3) consists of 2 × 2 counts

o1 = 2Ncase
AA +Ncase

Aa o2 = 2Ncase
aa +Ncase

Aa
o3 = 2Ncontrol

AA +Ncontrol
Aa o4 = 2Ncontrol

aa +Ncontrol
Aa

,

where Ncase
AA and Ncase

Aa are the observed population
counts for genotype AA and Aa in the case group:

Ncontrol
Aa and Ncontrol

Aa are the observed counts for the
control group.
A c2 test for the additive model is equivalent to the c2

test based on Table 3. The one degree of freedom (d.f.)
test statistic is written as

χ2
a =

2M(o2(o3 + o4) − o4(o1 + o2))
2

N1N2N′
1N′

2
.

In addition to a c2 test, we can evaluate the Hardy-
Weinberg Equilibrium directly from an allelic frequency
table similarly.
Given alleles (A/a and B/b) at two markers, a geno-

type frequency table (Table 4) with two markers is
obtained that consists of 3 × 3 counts

o11 = NAABB o12 = NAaBB o13 = NaaBB

o21 = NAABb o22 = NAaBb o23 = NaaBb

o31 = NAAbb o32 = NAabb o33 = Naabb.

The value Nii′ jj′ denotes the observed population
counts for genotype ii’ and jj’ where i, i′ ∈ {A, a} , and
j, j′ ∈ {B, b} .
We evaluate LD from Table 4. The linkage disequili-

brium is calculated as D = pAB - pApB, where probabilities
pAB, pA and pB are computed, respectively, as (2o11 + o12 +
o21)/2M, (2N′

1 +N′
2 − o22)/2M and (2N1 + N2 − o22)/2M.

We omit the frequency o22 to avoid the problem of haplo-
type ambiguity, especially when only genotypes are mea-
sured. See [6] for more details.
We remark that several measures for measuring link-

age disequilibrium were proposed, including Pearson’s
correlation, Lewontin’s D′, frequency difference and
Yule’s Q. Our proposal works for all these measures.
However, we applied our method to Lewontin’s D′ mea-
sure in the experimentation because of space limitations.
Additional details related to these measurements are
explained in an earlier report of the literature [6].

Table 1. Raw genome data Dg

ID Genomic Data

1 CC CG CT GG AA

2 AG CT CT AG CT

3 CT GG CC AG AA

4 AA GG GG AG CC

Table 2. Raw phenotype data Dp

ID’ Disease Status

1 Case

2 Control

3 Control

4 Case

Table 3. Observed allele frequency in a case-control
study of M subjects

Allele Type total

A a

case o1 o2 N1

control o3 o4 N2

total N′
1 N′

2 2M
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Problem settings and threat model
Problem settings
For our secure outsourcing of GWAS, we consider three
stakeholders, data contributors, researchers, and the
cloud. The data contributors (e.g. hospitals, research
institutes or subjects) contribute private genomic or
clinical data to the cloud. A researcher is an entity that
wishes to conduct a GWAS. The cloud is an untrusted
entity that includes researchers and data contributors
with computational resources.
We assume that genotype/phenotype data of one subject

can be contributed from different contributors. In other
words, datasets Dg and Dp can be horizontally or vertically
partitioned and can receive contributions from different
contributors. Additionally, we assume that all subjects are
identified with obfuscated IDs so that the cloud can cor-
rectly merge contributed data from two or more sources.
Given the contributed datasets Dg and Dp, the protocol

proceeds as follows. 1) The cloud computes sufficient
statistics with Dg and Dp, although it knows nothing
about the contributed data and sends the resulting suffi-
cient statistics to the researcher. 2) The researcher first
reconstructs a frequency table from the sufficient statis-
tics and then conducts GWAS.

Threat model
The goal of our system is to ensure that 1) the cloud ser-
ver cannot learn anything about the private data contrib-
uted by data contributors beyond the public information,
such as the total number of subjects; 2) the researcher
cannot learn beyond what is revealed by the frequency
table. Even in the case in which the cloud server colludes
with some contributors, they still have no means to learn
anything about the data contributed by other contribu-
tors except the final results.
In our setting, we assume that the cloud servers do not

behave maliciously. However, the cloud server has moti-
vation to learn some information related to the private
data contributed by data contributors. This assumption
naturally holds when the cloud server wishes to maintain
a good reputation of their services. To avoid a man-in-
the-middle attack, we assume that the key setup works
correctly and that all data contributors obtain the correct
encryption key from the analyst which can be enforced

with appropriate use of Certificate Authorities. The
Figure 1 to be described in the following section is thus
designed to be secure against an honest-but-curious
cloud server. Additional assumptions that must be made
are the following.
1) The cloud server is not in collusion with the

researcher to disclose private data contributed by data
contributors. 2) Existence of a secure channel between
data contributors and the cloud, e.g. SSH.

Methods
Before description of our protocol, we first introduce a
homomorphic encryption and packing technique used
as building blocks of our protocol.

Building block I: homomorphic encryption
Homomorphic encryption is a cryptosystem that allows
performance of arithmetic operations of ciphertexts
without decryption.
We detail a homomorphic encryption scheme based

on ring-Learning with Errors (RLWE) assumption [7].
Let n be the lattice dimension of the scheme, where n is
given as an integer of 2-power. Then, the message space
of the scheme is given as a polynomial ring
At : Zt[x]/(xn + 1), where t is a prime number. Simply,
we identify At with the set of integer polynomials of
degree up to n − 1 reduced modulo t. Moreover, we
identify modulo t in the interval (−t/2, t/2].
For our implementation, we used HElib [8], which is

an implementation of the Brakerski-Gentry-Vaikunta-
nathan (BGV) scheme proposed in [2]. The BGV’s
scheme is a public-key cryptosystem that supports
homomorphic operations. Pre-suming that m1, m2 ∈ At

are two plain polynomials and Epk (m1), then Epk (m2)
are the corresponding ciphertexts encrypted by BGV’s
scheme under an encryption key pk. The BGV’s scheme
supports both homomorphic addition and multiplication:

Dsk(Epk(m1) ⊕ Epk(m2)) ≡ m1 +m2 mod (xn + 1, t)

Dsk(Epk(m1) ⊗ Epk(m2)) ≡ m1 × m2 mod (xn + 1, t)

Dsk(Epk(m1) ⊕ c) ≡ m1 + c mod (xn + 1, t)

Dsk(Epk(m1) ⊗ c) ≡ m1 × c mod (xn + 1, t),

where c ∈ At and Dsk(·) is the decryption function using
the corresponding decryption key sk. It is noteworthy that
homomorphic multiplication costs much more time than
a homomorphic addition does in terms of magnitude.
We remark that the BGV’s scheme supports the eva-

luation of circuits that are not deeper than a pre-defined
level L. In other words, L denotes the maximal depth of
evaluable circuits. The scheme security was analyzed
intensively by Gentry et al. in [9]. We omit details of
the security analysis and state their results below. The
following equation describes the lattice dimension n that

Table 4. Genotype frequencies at markers M1 and M2 of
M subjects

Marker M1 Total

AA Aa aa

BB o11 o12 o13 N1

Marker M2 Bb o21 o22 o23 N2

bb o31 o32 o33 N3

Total N′
1 N′

2 N′
3 2M
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is necessary to evaluate deep-L circuits correctly with
guarantee of �-bits security,

n >
(L(log n + 23) − 8.5) (κ + 110)

7.2
.

Building block II: packing technique
The BGV encryption scheme takes polynomials as plain-
texts. An integer vector is transformed into a polyno-
mial form. Then the encryption function takes as input
the polynomial and outputs a ciphertext, which also

Figure 1 Protocol of secure outsourcing of c2 test & linkage disequilibrium.
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forms a polynomial [10,11]. These techniques are called
packing techniques.
Transformations introduced by Yasuda et al. [10] were

designed originally for secure Hamming distance evalua-
tion of binary vectors. We introduce their method and
designate the method as forward and backward packing.
Letting At be the given polynomial ring (with para-
meters n, t), and presuming that �u and �v are integer
vectors with length ℓ, then forward packing rfw (·) and
backward packing rbw (·) are defined respectively as

ρfw(�u) :=
�−1∑
i=0

uix
i, ρbw(�v) := −

�−1∑
j=0

vjx
n−j. (1)

In the equations above, ui is the i-th element of �u ; uj
is the j-th element of �v . It is readily apparent that if vi,
ui ∈ (−t/2, t/2] for 0 ≤ i <ℓ and ℓ ≤ n, then rfw and
rbw respectively transform vectors �u and �v into ele-
ments of the ring At .
One benefit of this transformation is that homo-

morphic multiplication of the ciphertexts with this pack-
ing engenders a scalar product �u · �v .

Epk(ρfw(�u)) ⊗ Epk(ρbw(�v))

= Epk

⎛
⎝�−1∑

i=0

uixi ×
⎛
⎝−

�−1∑
j=0

vjxn−j

⎞
⎠

⎞
⎠ = Epk

⎛
⎝−

�−1∑
i=0

�−1∑
j=0

uivjxn+i−j

⎞
⎠

= Epk

⎛
⎝�−1∑

i=0

uivjx0 +
�−1∑
i=0

j+h<�∑
j=0

uh+jvjxh−
�−1∑
k=1

j+k<�∑
j=0

uivj+kxn−k

⎞
⎠ .

(2)

The scalar product between vectors �u and �v is
obtained from the constant term of Equation 2. The
remaining 2ℓ − 2 terms are unconcerned.
Equation 2 allows evaluation of a scalar product

between two length-ℓ encrypted vectors only by a single
homomorphic multiplication. The correctness of this
evaluation is presented in Theorem 1.
Theorem 1 Let n be lattice dimension and t be prime

modulo. Let �u and �v denote length-ℓ vectors. Then, the
constant term of the decryption Dsk(eu ⊗ êv) , where

êv := Epk(ρbw(�v))and êv := Epk(ρbw(�v)) , gives the scalar

product
〈�u, �v〉if (1) ui, vi ∈ (−t/2, t/2] for 0 ≤ i, j <ℓ; (2)

ℓ ≤ n; (3)
〈�u, �v〉 ∈ (−t/2, t/2] .

The proof was obtained immediately from the deriva-
tion of Equation 2 and so is omitted here.

Proposed secure outsourcing of GWAS
Recall that our goal is to outsource the evaluation of fre-
quency tables efficiently while maintaining the genotype/
phenotype data private to the cloud servers. We present an
encoding scheme for genotype/phenotype data. Particularly,
with this encoding, we can securely evaluate a frequency
table through scalar products by the technique introduced
into the previous section. We present a protocol for secure

outsourcing GWAS in the last part of this section.
The detail of the protocol is described in Figure 1.
Data encoding
Let A and a be the alleles of the biallelic locus. Conse-
quently, the genomic data at the locus is either AA, Aa, or
aa. We represent each row of the genomic dataset Dg as
two integer vectors �xAA , �xAa . Here, xAAi , the i-th element

of �xAA , represents the frequency of genotype AA at the

marker locus: xAAi = 2 for AA and xAAi = 0 for other geno-

types. xAai is similar to xAAi except that xAai = 1 for Aa.
We presume that the disease status of each subject is

represented by a binary variable, then “disease” is repre-
sented by 1 (case); “non-disease” is represented by 0
(control). The phenotype dataset Dp for all subjects is
therefore represented by a binary vector �ycase .
Presume in addition to the following that dataset Dg

consists of N SNPs with M subjects. Q data contributors
are involved in the procedure. Therefore, they separately
hold the phenotype vector �ycase and 2N genotype vec-

tors �xAA(i) and �xAa(i) , where (i) is the ID of the genotype

data. Let π : {0, 1, 2}M × {1, 2, ..., Q} ↦ {0, 1, 2}M be an
assignment function that represents the partition of gen-
otype/phenotype held by the q-th data contributor. For
example, the vertical partition of a vector �x for the q-th
data contributor is represented as shown below.

π(�x, q)j =
{
xj if q - th data contributor holds the j - th element of �x
0 o.w.

.

We assume that each element of vectors is contribu-
ted from only one data contributor, i.e.

∑
q π(�x, q)j = xj

holds for every j. For simplicity, we view π(�x, q) as a

polynomial whose j-th coefficient has value π(�x, q)j .
We use this data encoding in Step 1.1 and Step 1.2 in

Figure 1.
Evaluate the allelic frequency table
With the encoding described, we evaluate Table 3 through
scalar products of the representing vectors. More specifi-
cally, frequencies o1, N

′
2 , and N1 in Table 3 are evaluated

respectively through three scalar products as

o1 =
〈�xAA + �xAa, �ycase〉 ,N′

1 =
〈�xAA + �xAa, �1〉

,N1 =
〈�ycase, �1〉

,

Where �1 is a vector of which the elements are 1.
Because Table 3 is freedom-1 and the number of objects
M is assumed to be known, whole Table 3 can be
reconstructed with values o1, N

′
1 and N1. Therefore,

three homomorphic multiplications are needed here.
Step 3.1 of Figure 1 shows that the three scalar products
can be evaluated with homomorphic multiplication.
Evaluate the genotype frequency table
Similarly, we compute the genotype frequency table
described by Table 4 with two markers by scalar
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products of the represented vectors as well. In particu-
lar, to calculate a D′-measure for the LD, the following
six scalar products are needed.

4 · o11 =
〈�xAA, �xBB〉 , 2 · o12 =

〈�xAa, �xBB〉 ,
2 · o21 =

〈
�xAA, �xBb

〉
, o22 =

〈
�xAa, �xBb

〉
,

2N′
1 +N′

2 =
〈�xAA + �xAa, �1〉

, 2N1 +N2 =
〈
�xBB + �xBb, �1

〉
.

Step 3.2.1 of Figure 1 shows that the six scalar pro-
ducts can be computed with homomorphic multiplica-
tion as well.
Secure outsourcing GWAS protocol
The procedure of secure outsourcing GWAS is shown in
Figure 1. Recall that the evaluation of scalar product in
Equation 2 requires a forward-packed vector and a back-
ward-packed vector. Consequently, at Step 1.2, data con-
tributors upload four copies for one genotype data in the
form of the forward-packed and backward-packed vectors.
The cloud aggregates the collected ciphertexts at Step 2,
which only involves homomorphic additions. Then the
cloud computes the allelic frequency table and the geno-
type frequency table respectively at Step 3.1 and 3.2.

Results
We benchmarked the computational costs of our method
and compared it with a method proposed by Lauter et al.
in [5], in which a genetic data point and a clinical data
point are encoded respectively into three bits and two bits.
All experiments were conducted on computers with a
2.60 GHz CPU (Xeon; Intel Corp.) and 32 GB RAM. We
measured the computation time separately for Step 1.1
and 1.2 as the preparation time and for Steps 3.1 and 3.2
as the evaluation time. Details of the experiment settings
are presented following. 1) An artificial dataset includes
1.0 × 104 subjects. 2) Q = 5 data contributors are sharing
same quantity of data points. 3) We used 8 threads for
computation in parallel. 4) Parameters of the encryption
scheme were set as n = 8192, t = 640007, and L = 6.

Performance of homomorphic encryption and
implementation hints
The implementation of Lauter et al. was done on an alge-
braic computation system, Magma, whereas our imple-
mentation was developed on native codes. To compare
our method with their method fairly, we measured the
computation time of operations in HElib and re-estimated
the computation time method of Lauter et al. Table 5

shows the computation time of the operations of homo-
morphic encryption scheme. Values are the mean of 1000
runs of each operation with 8-threads. We used parameter
n = 8192, which is not sufficiently large to conduct more
than 8192 subjects. Indeed, we partitioned vectors into
smaller parts and encrypted each part as a ciphertext. In
doing so, we were able to conduct a large-scale dataset
while maintaining smaller n. We remark that as the num-
ber of the partition increases, more communication time
must be used during the upload phase.

Artificial genotype & phenotype dataset
We benchmarked our proposed protocol of evaluating
c2 test on an artificial dataset that contains 1.0 × 104

subjects. The results are presented in Figure 2. The
number of the total SNPs was varied from 1.0 × 103 to
1.0 × 106. At Step 3.1 of the Figure 1, only three homo-
morphic multiplications are necessary to evaluate a c2

test statistics. Recalling that parameter n = 8192, one
can thereby maximally pack genotype/phenotype data of
8192 subjects into a single ciphertext. Consequently, to
conduct the experiment with 1.0 × 104 subjects, we par-
titioned a vector into two parts having equal length.
Figure 2 depicts the performance of our proposed
method and the estimated computation time of the
method of Lauter et al. [5]. As shown in Figure 2, for
evaluation of c2 test statistics of 1.0 × 106 SNPs with
1.0 × 104 subjects, our method took about 12 hours
(about 43 ms per test).
The benchmark of the evaluation of LD is presented

in Figure 3. In this experiment, we considered a smaller
synthetic data containing 1.0 × 103 SNPs of 1.0 × 104

subjects. The number of LD to be evaluated with p
SNPs is p(p − 1)/2. We therefore evaluated about 5.0 ×
105 LDs in this experiment. With this settings, our
method costs less than 11 hours (about 80 ms per LD).

Table 5. Timing of fully homomorphic scheme with
parameters n = 8192, t = 640007, L = 6

Operation Encrypt Mult Add Add with Plaintext

Time (ms) 3.08 7.57 0.032 0.789
Figure 2 Benchmark for outsourcing c2 test with 1.0 × 104

subjects.
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Conclusions
From Figure 2 and 2 we can see that Lauter et al’s cryp-
tographic solution [5] might take about 2000 days to
conduct the evaluation of c2 test of one million SNPs
and takes about 2600 days to conduct the evaluation of
half million of linkage disequilibrium. At the meantime,
it respectively took our approach about 12 hours and
11 hours to conduct the same computation. We con-
clude that with the appropriate encoding and packing
technique, secure outsourcing of GWAS using FHE can
be practical.

Related work
Studies of privacy-preserving data processing in GWAS
involve different techniques. Kamm et al. proposed a
secret sharing-based method in [12], by which private
information is divided into several parts and is trans-
ferred to at least three collusion-free servers. All servers
share the workload equally. The final result is aggre-
gated from the output of each server. Computation
based on secret-sharing requires multiple rounds of
communication between servers; the computation is
secret as long as no two servers collude. Because our
outsourcing approach executes the whole computation
with single cloud servers, computational environments
employed for the computation are different.
A cryptographic solution was proposed recently from

the work of Lauter et al. [5]. They constructed a method
for computation on encrypted genomic data using a
cryptosystem that is similar to BGV’s scheme. Each
genetic datum is encoded into three ciphertexts, which
can cause inefficiency in both time and space. Our pre-
vious work [13] proposed a specified approach for
secure outsourcing c2 test. In this manuscript we pro-
pose a more general approach for secure outsourcing of
c2 test, HWE and LD etc.

An orthogonal method to ours is differential privacy
[14]. With perturbation noise, differential privacy ensures
that distribution of the output is insensitive to any data
contributor’s record, making it impossible to infer data
from the obfuscated output. In our case, we can incorpo-
rate the perturbation noise in the query phase. Therefore,
differential privacy can enforce the privacy properties of
our protocol.
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