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Abstract

Background: The gap between a large growing number of genetic tests and a suboptimal clinical workflow of
incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic
technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic
test recommendation system that not only can provide a comprehensive view of genetic tests as education resources,
but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we
developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB).

Methods: We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic.
Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language
Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio
across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have
been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO).

Results: Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic.
A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243
clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical
features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with
high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their
associated information about genetic tests and genetic disorders.

Conclusions: In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be
integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic
testing recommendation system, iGenetics.

Introduction
Individualized medicine, as a rapidly advancing field of
healthcare, intends to enable accurate predictions about a
person’s susceptibility of developing disease, the course of
disease, and its response to treatment based on genetic,
genomic, and clinical information of individual patients.
[1-5] No wonder so much hope is riding on the promise
of “individualized medicine”, particularly genetic screen-
ing and other tests provide more confident evidence for

tailoring treatments to patients, potentially improving
health care and saving money. With the recent advances
in genetic technology, genetic tests are performed by
over 500 laboratories for over 2,000 rare and common
medical conditions. [6] These tests can effectively help
health professionals determine or predict the genetic
conditions for their patients. However, physicians have
not actively incorporated these tests into their clinical
practices partly due to the lack of the familiarity and sup-
portive evidence of those genetic tests according to two
recent national surveys commissioned by UnitedHealth
Group in conjunction with Harris Interactive (n = 2,760;
fieldwork conducted in January and February 2012) [7].
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Obviously, there is an urgent need to develop an intelli-
gent system that will provide necessary information and
guidance to assist physicians in applying genetic tests in
their regular clinical practices. Ideally, this system will be
able to 1) provide comprehensive information about
genetic tests as education resources; 2) recommend the
most appropriate genetic tests to patients based on clini-
cal evidence.
Since the inception of the Human Genome Project [8]

in 1990, a large portion of genetic testing information
has been accumulated accordingly. The Clinical Pharma-
cogenetics Implementation Consortium (CPIC) [9] pub-
lished pharmacogenomics guidelines in peer reviewed
journals. [10-19] NIH maintains a list of genetic testing
relevant data resources including GTR (Genetic Testing
Registry), [9] ClinVar, [20] MedGen. [20] Electronic
health records (EHR) include a wide spectrum of clinical
information about patients, such as medical history,
laboratory tests including genetic tests. Particularly, EHR
data has attracted much more interests in accelerating
individualized medicine research, [21,22] given a sys-
tematic collection of health information contained in
EHR systems. [23] For instance, the NHGRI-funded
eMERGE network (electronic Medical Records and
GEnomics), [24] is coupling DNA biobanks to large
comprehensive EHRs (containing millions of patients)
for large-scale, high-throughput genetic research with
the ultimate goal of returning genomic testing results to
patients in a clinical care setting. To our knowledge, no
efforts have been made to extract clinical evidence
regarding to genetic testing from EHR to support
genetic test recommendation. In this paper, we intro-
duce our contribution in this particular area.
We have developed GTO (Genetic Testing Ontology)

[25] by integrating GTR, ClinVar, HPO (Human Pheno-
type Ontology) [26] as well as scientific evidence
extracted from the SemMedDB. [27] The capability of
providing sufficient information regarding to particular
genetic diseases or genetic tests and recommending
appropriate genetic tests based on the clinical observa-
tion and professional knowledge, has been demonstrated
in our previous study. [25] To enhance the aforemen-
tioned capability of the GTO with more concrete clini-
cal evidence identified from EHR systems, in this study,
we extracted and determined dominant clinical evidence
corresponding to genetic tests operated at Mayo Clinic
in 2013. Those clinical evidence will be integrated into
the GTO. Information about genetic tests available in
the EHR systems at Mayo Clinic is in semi-structured
format, we utilized a Natural Language Processing
(NLP) suite, MedTagger to extract information from the
EHR and statistical analysis has been performed to deter-
mine the most relevant clinical features accordingly for
each test. More detail about clinical evidence extraction

is described in the Background and Methods section.
Pros and cons about this study has been versioned and
discussed in discussion section.

Background and methods
Genetic testing operation at Mayo Clinic
Genetic testing is a type of medical test to analyze chro-
mosomes, genes, or proteins. The results of a genetic test
can detect suspected heritable medical condition and
furthermore determine the percentage of developing or
passing on a genetic disorder for individual patient. More
than 1,000 genetic tests are currently in use, and more are
being developed.
At Mayo Clinic, there are about 65,000 samples being

tested per year. Among these 65,000 samples, about
3,250 samples (5%) are from Mayo Clinic, and the rest of
samples are referred from outside Mayo Clinic. In this
study, we focused on the 5% Mayo Clinic patients, as
their complete medical records are available in the EHR
systems. The Department of Laboratory Medicine and
Pathology (DLMP) at Mayo Clinic maintains genetic test-
ing information that include patient clinical id, date of
birth, gender, test reported, collected and received date,
reason for referring, test results and interpretation,
shown in Figure 1. We had an IRB approval (13-008995)
to allow us accessing patient data for this study.

Clinical evidence extraction
In this retrospective study, we analyzed patients’ medical
information extracted from the EHRs in order to deter-
mine the most significant clinical features observed in
particular population groups for each genetic test. Four
steps performed accordingly, are described as below.
Genetic test selection
In this study, we obtained information about 61 genetic
tests operated at Mayo Clinic in 2013. In order to access
patients’ complete lists of their medical history, only
patients from Mayo Clinic were included in this study. In
addition to ensure accuracy of data analysis with enough
samples, we mannually selected 7 genetic tests being
tested for more than 100 patients. However, there are two
genetic tests are used to detect risk for multiple genetic
disorders respectively. “BRAF Mutation Analysis (V600E)
Tumor” with internal Mayo test id “87980” is used to
detect BRAF V600E mutation for diagnosis of Lung ade-
nocarcinoma, Colorectal adenocarcinoma, Brain glioma,
and etc. “Hereditary Nonpolyposis Colorectal Cancer
(HNPCC) Screen” with Mayo internal test id “82500” is
used to evaluate tumor tissue for evidence of defective
DNA mismatch repair and consequently support further
diagnosis of Gallbladder adenocarcinoma, Brain astrocy-
toma, Colorectal adenocarcinoma and etc. We excluded
these two tests due to a small sample size resulted for
each involved genetic disorder accordingly. Thus, total five
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genetic tests were selected for this study, and listed in
Table 1.
Patient group composition
To compare and determine the most relevant clinical fea-
tures for each genetic disorder based on the patients’ medi-
cal history, we composed four different population groups.
Group A (All) is consisted of 138, 229 patients from Mayo
Clinic Employee Community Health (ECH); group
T (Tested) is consisted of Mayo patients being tested by
one of five selected genetic tests accordingly; group
P (Positive) is consisted of Mayo patients being tested as
positive for the genetic test; and group N (Negative) is con-
sisted of Mayo patients being tested as negative for the
genetic test. Genetic testing information is stored in semi-
structured format, for instance, patient general information
including patient id, sex, date of birth is in structured for-
mat, but referring reason, test results, and interpretation

are in free text. To our knowledge, there is no NLP tool
for extracting test result and observation for genetic tests,
we manually reviewed the test results and separated test
samples into group P and group N. Specifically, each test
includes predefined categories to desribe specific “test
result” and relevant “interpretation”. For example, cate-
gories for “test result” of the test “9497” are summarized in
Table 2. We manully reviewed such category information
assigned to each patient for each test, and sepreated group
T to group P and group N.
Clinical feature extraction
In order to extract clinical feature from clinical notes
more intentionally, avoiding non-relevant clinical fea-
tures interfering the final annotation results and decreas-
ing the computation cost, we first collected the most
common clinical features from a local copy of the HPO
for each genetic disorder. In order to facilitate further

Figure 1 Genetic test template available at the DLMP.

Table 1 Information about five selected genetic tests

Test ID Genetic test Name Genetic Disorder

82993 Alpha-1 Antitrypsin Alpha 1-antitrypsin deficiency

81508 Hemochromatosis HFE Gene Analysis, Blood Hereditary hemochromatosis

61247 EGFR Gene. Mutation Analysis Lung Cancer

9497 Cystic Fibrosis Mutation Analysis, 106 Mutation Panel Cystic Fibrosis

9569 Fragile X Syndrome, Molecular Analysis Fragile X Syndrome
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data integration, we mapped all collected clinical features
to Unified Medical Language System (UMLS) via UMLS
MetMap API. Then for each genetic test, we extracted
mentions of the identified clinical features from clinical
notes for each patient group by applying an existing NLP
tool, MedTagger suite. [28,29]
Clinical feature prioritization
For each genetic test, we computed frequency of each
clinical feature occurring in the above four patient
groups by using Eq.(1), and we manually compared the
calculated frequencies across four groups for each clini-
cal feature. The frequency of each clinical feature in
increasing trend among the four population groups,
from group A to group N, has been labeled as an
enriched clinical feature. In addition to further quanti-
tively measure the significance of the enriched clinical
features impacting genetic test results, we calcualted
odds ratio between group P and group N, as it is critical
to determine the significance of the features by assessing
odds and probability of clinical features identified
among patients with positive test results against negative
test results.

Feature% = Number of patients with the clinical feature / Total number of patients in that group (1)

Results
Data collection for genetic tests

• Genetic testing information. We obtained 3,595
patients’ genetic testing information for 61 tests. As
mentioned before, only five tests with sample size
greater than 100 have been selected for this study.
Thus, 2,054 patients being tested by the five selected
genetic tests were remained in this study. Of these
2,054 patients, 604 patients without clinical notes
have been excluded. Total 1,450 patients with test

information including clinical id, date of birth, gen-
der, reason for referring, test results, interpretation
and their medical records have been extracted for
further data analysis.
• Patient cohort. Four patient groups have been
composed to compare and determine the signifi-
cance of clinical features. Group A including
138,229 patients from the ECH was retrieved as a
reference patient group to provide overall prevalence
level of the clinical features for each genetic test. For
each test, by excluding the patients whose test was
cancelled after the test been prescribed and inserted
into the DLMP system, the remaining patients are
consisted of group T. By manully reviewing category
information of “test results” for each test, we
sepreated group T to group P and group N. The dis-
tribution of these four patient groups is shown in
Table 3.

Clinical feature collection
In this study, we programmatically identified 243 com-
mon clinical features for five genetic disorders from the
HPO. We applied MedTagger to annotate mentions of
the identified clinical features in clinical notes of study
subjects. We excluded the clinical features that are men-
tioned in less than one patient’s clinical notes in the
group P and group N. Thus, the remaining 60 clinical
features were left for further analysis. It is worthy to
note that there is no mention of any of the identified
clinical features in clinical notes for tested patients for
the test “61247”, thus we excluded this test for further
analysis. Four genetic tests along with the number of
clinical features from the original list and annotation
results are listed in Table 4.

Table 2 Categories of test results for test “9497”

• NO CHARGE Test canceled, ordered in duplicate with order number 6606002374.

• None of the listed mutations were detected, indicating a revised risk of 1/507 (see interpretation). Intron 8 poly T alleles are 7T/7T.

• None of the listed mutations were detected.

• One copy each of the delta F508 and A349V mutation in exons 10 and 7 respectively, was identified.

• One copy each of the deltaF508 and 3905insT mutations in exons 10 and 20 respectively, was identified.

• One copy of the R117C mutation in exon 4 was identified.

• One copy of the R117H mutation in exon 4 was identified. Intron 8 poly T alleles are 7T/7T.

• One copy of the R334W mutation in exon 7 was identified.

• One copy of the R553X mutation in exon 11 was identified.

• One copy of the deletion of exons 2-3 was identified.

• One copy of the deltaF508 mutation in exon 10 was identified.

• Test canceled. Testing already performed on the patient in past thus testing is canceled per genetic counselor Vickie. NO CHARGE

• This is a testing accession

• Two copies of the S549R(T>G) mutation in exon 11 were identified.

• Two copies of the deltaF508 mutation in exon 10 were identified.
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Clinical feature prioritization
We calculated and compared numbers of patients and
frequencies of each clinical feature among four popula-
tion groups. In Table 5 enriched clinical features in bold
are manually selected based on frequency comparison
across four population groups. Subsequently we calcu-
lated odds ratio for each clinical feature by comparing
group P and group N, the results are listed in Table 6.
The clinical features with odds ratio greater than 1 were
selected as dominant features and shown in bold in
Table 6. For example, “hepatic failure”, “emphysema”
are the two clinical features with high odds ratio
(greater than 1) for test “82993”. Patients with these two
clinical features will be highly recommended for the
genetic test, “Alpha-1 Antitrypsin”. The clinical features
with their odds ratio as ranking weight, along with their
associated genetic tests and genetic disorders have been
loaded into iGTKB for further data integration to the
GTO and genetic testing recommendation.

Discussion
Genetic testing allows genetic diagnosis of vulnerabilities
to inherited diseases, and determine a child’s parentage
(genetic mother and father) or in general a person’s
ancestry. However, insufficient resources and tooling
hinder incorporating genetic testing into regular clinical
practice. In this paper, we introduce an EHR based
genetic testing knowledge base, iGTKB, as a fundamen-
tal clinical evidence resource in computational manor
that will be able to better assist clinical decision making,
especially to support development of an individualized
genetic test recommendation system, iGenetics. In this
section, we discuss multiple benefits gained as well as

challenges and issues arising from this preliminary work
and proposed future plans accordingly.

A. An executable genetic testing resource, iGTKB
Multiple resources, such as GTR, ClinVar, GeneReview
maintained by the NIH contain comprehensive genetic
testing information, which is browseable through NIH
websites. In the meantime, authorized professionals are
manually defining and approving genetic testing guide-
lines as golden standard to guide physicians to prescribe
appropriate genetic tests. For instance, CPIC [9] as a
shared project between PharmGKB [30] and the PGRN
[31] publishes pharmacogenomics guidelines that are
peer-reviewed and published in a leading journal. The
goal of the CPIC is to publish 3-4 guidelines per year as
this is an entire manual curation process. More and
more efforts have been/will be made to provide and
maintain new and the existing resources, as genetic test-
ing is one of critical steps towards individualized medi-
cine. However, most of these existing resources are
primarily based on domain knowledge and information
provided by the laboratories. To our knowledge, there is
no effort made by mining EHR data to identify indivi-
dualized information about genetic testing from patient
perspective. In this study, we focused on genetic testing
information and patient information retrieved from the
EHR systems at Mayo Clinic and successfully identified
dominant clinical features for the selected genetic tests.
In our previous study, we have generated a genetic test-
ing ontology (GTO) by integrating GTR, ClinVar, HPO
and SemMedDB. In the next step, we will integrate clini-
cal evidence identified from this study and our previous
study [32] into the GTO to provide more comprehensive

Table 3 Genetic testing information

Test ID # of patients in group T # of patients in group P # of patients in group N

82993 514 70 464

81508 427 187 240

61247 101 15 86

9497 220 18 202

9569 168 9 159

Table 4 Distribution of clinical features

Test ID # of CFs selected from the HPO # of CFs mentioned in the clinical notes

82993 9 6

81508 86 38

61247 4 0

9497 74 7

9569 131 9
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Table 5 Statistical numbers for clinical features identified from patients’ clinical notes

Test id Clinical Features #Pat_A #Pat_T #Pat_N #Pat_P Freq_A Freq_T FreqN FreqP

9497 Malabsorption 1036 3 1 2 0.00749 0.01364 0.00495 0.11111

9497 Emphysema 1058 2 1 1 0.00765 0.00909 0.00495 0.05556

9497 Chronic bronchitis 920 3 2 1 0.00666 0.01364 0.00990 0.05556

9497 Bronchiectasis 350 40 36 4 0.00253 0.18182 0.17822 0.22222

9497 Anemia 10832 23 21 2 0.07836 0.10455 0.10396 0.11111

9497 Diarrhea 26264 29 27 2 0.19000 0.13182 0.13366 0.11111

9497 Asthma 29676 50 47 3 0.21469 0.22727 0.23267 0.16667

9569 Tremor at rest 3093 8 6 2 0.02238 0.04762 0.03774 0.22222

9569 Joint hypermobility 48 4 3 1 0.00035 0.02381 0.01887 0.11111

9569 Moderate mental retardation 500 4 3 1 0.00362 0.02381 0.01887 0.11111

9569 Otitis media 11064 8 7 1 0.08004 0.04762 0.04403 0.11111

9569 Intellectual disability, moderate 28 11 10 1 0.00020 0.06548 0.06289 0.11111

9569 Depression 42371 35 33 2 0.30653 0.20833 0.20755 0.22222

9569 Seizure 14498 47 46 1 0.10488 0.27976 0.28931 0.11111

9569 Seizures 14498 47 46 1 0.10488 0.27976 0.28931 0.11111

9569 Anxiety 36674 47 46 1 0.26531 0.27976 0.28931 0.11111

81508 Telangiectasia 1340 7 1 6 0.00969 0.01639 0.00417 0.03209

81508 Autosomal dominant 216 6 2 4 0.00156 0.01405 0.00833 0.02139

81508 Autosomal dominant inheritance 216 6 2 4 0.00156 0.01405 0.00833 0.02139

81508 Skin hyperpigmentation 25 3 1 2 0.00018 0.00703 0.00417 0.01070

81508 Hepatic fibrosis 113 3 1 2 0.00082 0.00703 0.00417 0.01070

81508 Hypogonadotrophic hypogonadism 767 3 1 2 0.00555 0.00703 0.00417 0.01070

81508 Hypogonadism, hypogonadotropic 733 3 1 2 0.00530 0.00703 0.00417 0.01070

81508 Generalized hyperpigmentation 651 10 4 6 0.00471 0.02342 0.01667 0.03209

81508 Abnormal bleeding 2396 15 6 9 0.01733 0.03513 0.02500 0.04813

81508 Bleeding tendency 9682 11 5 6 0.07004 0.02576 0.02083 0.03209

81508 Heart failure 3009 20 10 10 0.02177 0.04684 0.04167 0.05348

81508 Enlarged liver 25 2 1 1 0.00018 0.00468 0.00417 0.00535

81508 Osteoporosis 23640 67 34 33 0.17102 0.15691 0.14167 0.17647

81508 Generalized osteoporosis 23640 67 34 33 0.17102 0.15691 0.14167 0.17647

81508 Arrhythmia 2362 15 8 7 0.01709 0.03513 0.03333 0.03743

81508 Erectile dysfunction 4418 21 12 9 0.03196 0.04918 0.05000 0.04813

81508 Abdominal pain 37984 96 57 39 0.27479 0.22482 0.23750 0.20856

81508 Alopecia 1243 5 3 2 0.00899 0.01171 0.01250 0.01070

81508 Arthralgia 17292 53 32 21 0.12510 0.12412 0.13333 0.11230

81508 Joint pain 16232 48 29 19 0.11743 0.11241 0.12083 0.10160

81508 Cardiomyopathy 1220 13 8 5 0.00883 0.03044 0.03333 0.02674

81508 Hepatic cirrhosis 62 13 8 5 0.00045 0.03044 0.03333 0.02674

81508 Cirrhosis 415 173 108 65 0.00300 0.40515 0.45000 0.34759

81508 Hepatomegaly 244 24 15 9 0.00177 0.05621 0.06250 0.04813

81508 Cardiomegaly 1751 11 7 4 0.01267 0.02576 0.02917 0.02139

81508 Diabetes mellitus 9692 64 41 23 0.07012 0.14988 0.17083 0.12299

81508 Congestive heart failure 2562 14 9 5 0.01853 0.03279 0.03750 0.02674

81508 Hepatocellular carcinoma 85 52 34 18 0.00061 0.12178 0.14167 0.09626

81508 Ascites 327 141 94 47 0.00237 0.33021 0.39167 0.25134

81508 Cholestasis 113 9 6 3 0.00082 0.02108 0.02500 0.01604
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view of genetic test and ultimately support automation of
genetic test recommendation.

B. Clinical feature identification
Clinical features are key clinical factors to support clin-
ical decision making, particularly to guide genetic test
prescription. Thus it is very important to accurately
and completely identify a list of clinical features as
dominate clinical factors for each genetic disease.
Therefore, in this study, two steps have been per-
formed to identify clinical features from the EHR data.
1) For each genetic disorder, we automatically searched
the HPO for clinical features accordingly, which were
used to direct annotation with clinical notes in free
text. 2) We systematically annotated clinical notes to
extract mentions of the clinical features identified in
the first step, and statistically quantified significance of
individual clinical features to corresponding genetic
tests by calculating odds ratio. The strategy of clinical
feature identification is effectively identify the most
common clinical features and dramatically decrease the
computation cost as no extraction performed for those
non-relevant features.
Based on the current experiment, some of the clinical

features have zero occurance in the EHR data. The
main reason causing such absense is the identified clini-
cal features from the HPO have high level descriptions,
such as “abnormal head movement”. However, “abnor-
mal head movement” with zero occurrence does not
mean that there is no patient with abnormal head move-
ment. It is just because physicians do not describe in

this way in the clinical notes. Deep phenotyping will be
proposed for more in-depth SME involvement.
In this study, MedTagger has been applied to extract

clinical features from patients’ clinical notes only. The
reason why we skipped to annotate information pre-
sented in family history is that family history is not
always documented in clinical notes at Mayo Clinic. To
avoid false positive results generated from statistical
analysis due to inconsistent occurrence of family history
and patient’s medical history in clinical notes in this
early stage of experiment, we excluded annotation for
family history. To avoid such shortcoming occurring in
the EHR data, literature based analysis to identify infor-
mation about family history will be one of the solutions.
Previously we have conducted a preliminary study [33]
to analyze 10 randomly selected chapters of Gene-
Reviews, [33] which is “expert-authored, peer-reviewed
disease descriptions ("chapters”) presented in a standar-
dized format and focused on clinically relevant and
medically actionable information on the diagnosis, man-
agement, and genetic counseling of patients and families
with specific inherited conditions”. Family history as one
of sections is included in each chapter of GeneReviews.
In the future study, we will integrate annotation results
including information about family history from GeneRe-
views to the GTO, to provide extra criteria for genetic
testing guideline generation.
In this study, we were focusing on sign and symptoms

mentioned in clinical notes as clinical features. However,
there are several other clinical characteristics mentioned
in the report of radiology, laboratory and/or medications,

Table 5 Statistical numbers for clinical features identified from patients?’? clinical notes (Continued)

81508 Hepatic failure 21 9 6 3 0.00015 0.02108 0.02500 0.01604

81508 Hypoglycaemia 4500 32 23 9 0.03255 0.07494 0.09583 0.04813

81508 Hypoglycemia 4500 32 23 9 0.03255 0.07494 0.09583 0.04813

81508 Liver failure 244 41 30 11 0.00177 0.09602 0.12500 0.05882

81508 Splenomegaly 307 46 36 10 0.00222 0.10773 0.15000 0.05348

81508 Rapidly progressive 2167 7 6 1 0.01568 0.01639 0.02500 0.00535

81508 Rapid progression 2128 7 6 1 0.01539 0.01639 0.02500 0.00535

81508 Pleural effusion 510 10 9 1 0.00369 0.02342 0.03750 0.00535

82993 Emphysema 1058 16 12 4 0.00765 0.03113 0.02586 0.05714

82993 Hepatic failure 21 7 6 1 0.00015 0.01362 0.01293 0.01429

82993 Cirrhosis 415 160 142 18 0.00300 0.31128 0.30603 0.25714

82993 Chronic obstructive pulmonary disease 2048 18 16 2 0.01482 0.03502 0.03448 0.02857

82993 Hepatocellular carcinoma 85 53 48 5 0.00061 0.10311 0.10345 0.07143

82993 Hepatomegaly 235 24 22 2 0.00170 0.04669 0.04741 0.02857

# Pat_A: number of patients in group A have the clinical feature accordingly; # Pat_T: number of patients in group T have the clinical feature accordingly; #
Pat_P: number of patients in group P have the clinical feature accordingly; # Pat_N: number of patients in group N have the clinical feature accordingly; Freq_A:
frequency of the clinical feature occurring in group A; Freq_T: frequency of the clinical feature occurring in group T; Freq_P: frequency of the clinical feature
occurring in group p; Freq_N: frequency of the clinical feature occurring in group N.
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which also provide comprehensive information for genetic
testing guideline. We will extract and integrate that infor-
mation into the iGTKB for supporting accurate genetic
test predictions.

C. Clinical feature prioritization
In this study, the patient sample size of each genetic test
is still relatively small as only information about tests
operated in 2013 at Mayo Clinic has been included.
Small sample size resulted in insufficient annotation
results produced consequently, which significantly
impacted our statistical analysis for clinical feature
prioritization. In the next step, we will request more
data from the DLMP, especially increasing the time win-
dow of test operation to include more eligible genetic
tests.
Two steps have been performed to prioritize clinical

features for each genetic test accordingly, manual
enrichment analysis and statistical analysis based on
odds ratio, which produced consistent results, shown in
Table 5 and Table 6. The clinical features with high
odds ratio illustrate their significance to the genetic
tests, as odds ratio was calculated between group P and
group N. However, for those with lower odds ratio
maybe also meaningful clinical features in clinical set-
tings based on their overall prevalence distribution. For
example, “cirrhosis” as one of clinical features for
“alpha-1 antitrypsin deficiency”, corresponding to the
test “82993”, odds ratio is 0.78494, less than 1, however,
the odds ratio calculated based on group T and group A
to reflect overall prevalence distribution is 150.09353,
the highest value comparing to other features. The rea-
son for such huge difference between these two types of
odds ratio is this clinical feature had been observed in a

Table 6 Statistical analysis results

Test ID Clinical Features OR

9497 Bronchiectasis 1.31746

9497 Asthma 0.65957

9497 Diarrhea 0.81019

9497 Anemia 1.07738

9497 Malabsorption 25.12500

9497 Chronic bronchitis 5.88235

9497 Emphysema 11.82353

9569 Depression 1.09091

9569 Tremor at rest 7.28571

9569 Seizure 0.30707

9569 Seizures 0.30707

9569 Anxiety 0.30707

9569 Intellectual disability, moderate 1.86250

9569 Otitis media 2.71429

9569 Joint hypermobility 6.50000

9569 Moderate mental retardation 6.50000

81508 Telangiectasia 7.92265

81508 Autosomal dominant 2.60109

81508 Autosomal dominant inheritance 2.60109

81508 Skin hyperpigmentation 2.58378

81508 Hepatic fibrosis 2.58378

81508 Hypogonadotrophic hypogonadism 2.58378

81508 Hypogonadism, hypogonadotropic 2.58378

81508 Generalized hyperpigmentation 1.95580

81508 Abnormal bleeding 1.97191

81508 Bleeding tendency 1.55801

81508 Heart failure 1.29944

81508 Enlarged liver 1.28495

81508 Osteoporosis 1.29832

81508 Generalized osteoporosis 1.29832

81508 Arrhythmia 1.12778

81508 Erectile dysfunction 0.96067

81508 Abdominal pain 0.84602

81508 Alopecia 0.85405

81508 Arthralgia 0.82229

81508 Joint pain 0.82287

81508 Cardiomyopathy 0.79670

81508 Hepatic cirrhosis 0.79670

81508 Cirrhosis 0.65118

81508 Hepatomegaly 0.75843

81508 Cardiomegaly 0.72756

81508 Diabetes mellitus 0.68070

81508 Congestive heart failure 0.70513

81508 Hepatocellular carcinoma 0.64532

81508 Ascites 0.52143

81508 Cholestasis 0.63587

Table 6 Statistical analysis results (Continued)

81508 Hepatic failure 0.63587

81508 Hypoglycaemia 0.47704

81508 Hypoglycemia 0.47704

81508 Liver failure 0.43750

81508 Splenomegaly 0.32015

81508 Rapidly progressive 0.20968

81508 Rapid progression 0.20968

81508 Pleural effusion 0.13799

82993 Cirrhosis 0.78494

82993 Hepatocellular carcinoma 0.66667

82993 Emphysema 2.28283

82993 Hepatomegaly 0.59091

82993 Chronic obstructive pulmonary disease 0.82353

82993 Hepatic failure 1.10628

OR: Odds Ratio
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large number of patients from group N (patients with
negative test result). To this end, “cirrhosis” has been
considered as one of key clinical features for test pre-
scription, although a majority of patients have negative
test results accordingly. Thus, to avoid losing any possi-
ble signals, we will integrate clinical features with odds
ratio calculated based on group P and group N, as well
as prevalence ratio calculated based on group T and
group A as one reference criteria into the GTO.

D. Genetic testing result annotation
As mentioned before, there are no NLP tools available
for genetic testing information extraction and normali-
zation. Currently we manually reviewed genetic testing
results as well as test result interpretation to separate
group T into group P and group N. However, manual
review is still cumbersome. Thus, we will work with
DLMP to seek possibility that we can help them to
define a normalized genetic test registry template. Ide-
ally the template will include normalized terms to indi-
cate test results and interpretation that can be parsed
programmatically, ultimately, it will facilitate the adop-
tion of such useful information for research purpose.
Consequently, development of an NLP tool for auto-
mated genetic testing information extraction is neces-
sary to accelerate the pace of building the iGTKB and
integrating more genetic testing information program-
matically, which will be the next step.

E. Patient cohort identification based on ICD9
In our previous study, we extracted group D namely a
patient group consisting of patients based on their ICD
9 codes. However, the accuracy and completeness of
patient retrieval for this group is very low due to the
natural structure of ICD 9, comparing to the refined
definition of ICD 10. For example, one ICD 9 code,
“273.5” has been defined and used to label multiple dis-
orders including Wilson’s disease. In comparison,
“E83.01”, an ICD 10 code for Wilson’s disease is a child
node of “Disorders of copper metabolism” (E83.0),
which is shown in Figure 2. This resulted that the num-
ber of retrieved patients according to the ICD 9 codes
of genetic disorders is very small. For example, we have
extracted 240 patients have been tested for “Cystic
Fibrosis Mutation Analysis” however, the total number
of patients we retrieved based on the ICD 9 codes
“277.00”, “277.01”, “277.02”, “277.03” and “277.09” of
“Cystic Fibrosis” is only 8. Such inaccurate and incom-
plete list of patients identified based on ICD 9 has nega-
tive impact on further analysis. Thus, in this study, we
excluded group D based on the ICD9 codes. Given the
importance of group D, alternatively, we propose two
steps to further improve patient retrieval based on their
diagnosis in the next step, 1) use both of codes, ICD 9
and ICD 10 if possible (ICD 10 is rarely being used in
current EHR systems) for patient cohort retrieval; 2)
apply more concrete phenotype algorithms for patient
cohort retrieval. Those algorithms will not only rely on

Figure 2 ICD9 and ICD10 definition for WD.
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the diagnosis codes, but also medications and appropri-
ate laboratory test will be considered to determine
patients with a particular disease. Some algorithms can
be found at PheKB [34], or generated with help from
the domain experts.

F. Genetic test recommendation
This is a first step to generate an EHR based genetic
testing knowledge base, and test recommending signals
have been shown based on existing evidence available in
the iGTKB. However, it can not support test prediction
for patients with clinical features that are not documen-
ted in the iGTKB. Such functionality will be designed
and embedded into iGenetics, which is developed on
top of the next generation of the GTO with other
resources we generated previously. [25,32,33]

Conclusion
In this study, we successfully built an EHR based genetic
testing knowledge base (iGTKB). The current version of
iGTKB consists information regarding to genetic test as
well as relevant genetic disorders, and clinical features
extracted from the EHR systems. To enlarge its recom-
mendation capability, we will integrate iGTKB and infor-
mation extracted from the GeneReviews into the GTO to
generate a comprehensive computational genetic testing
resource for supporting iGenetics development.
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