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Abstract

Background: Accurate prediction of adverse drug events (ADEs) is an important means of controlling and reducing
drug-related morbidity and mortality. Since no single “gold standard” ADE data set exists, a range of different drug
safety data sets are currently used for developing ADE prediction models. There is a critical need to assess the
degree of concordance between these various ADE data sets and to validate ADE prediction models against
multiple reference standards.

Methods: We systematically evaluated the concordance of two widely used ADE data sets — Lexi-comp from 2010
and SIDER from 2012. The strength of the association between ADE (drug) counts in Lexi-comp and SIDER was
assessed using Spearman rank correlation, while the differences between the two data sets were characterized in
terms of drug categories, ADE categories and ADE frequencies. We also performed a comparative validation of the
Predictive Pharmacosafety Networks (PPN) model using both ADE data sets. The predictive power of PPN using
each of the two validation sets was assessed using the area under Receiver Operating Characteristic curve (AUROQ).

Results: The correlations between the counts of ADEs and drugs in the two data sets were 0.84 (95% Cl: 0.82-0.86)

applications focused on specific drug and ADE categories.
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and 0.92 (95% Cl: 0.91-0.93), respectively. Relative to an earlier snapshot of Lexi-comp from 2005, Lexi-comp 2010
and SIDER 2012 introduced a mean of 1,973 and 4,810 new drug-ADE associations per year, respectively. The
difference between these two data sets was most pronounced for Nervous System and Anti-infective drugs,
Gastrointestinal and Nervous System ADEs, and postmarketing ADEs. A minor difference of 1.1% was found in the
AUROC of PPN when SIDER 2012 was used for validation instead of Lexi-comp 2010.

Conclusions: In conclusion, the ADE and drug counts in Lexi-comp and SIDER data sets were highly correlated
and the choice of validation set did not greatly affect the overall prediction performance of PPN. Our results also
suggest that it is important to be aware of the differences that exist among ADE data sets, especially in modeling

Background

Predictive modeling of adverse drug events (ADEs) is
attracting growing interest. The high ADE-related costs
in the US have been known for many years [1,2], and
recent studies conducted in other developed countries
provide further motivation for the importance of this
problem worldwide [3-5]. To address these large and
growing ADE-related economic and public health con-
cerns, a wide array of ADE identification and prevention
methods have been implemented. These include early-

* Correspondence: aurel.cami@childrens.harvard.edu

'Division of Emergency Medicine, Boston Children’s Hospital, 1 Autumn
Street, 5th Floor, Boston, MA 02215, USA

2Department of Pediatrics, Harvard Medical School, Boston, MA, USA

( ) BiolVled Central

stage drug toxicity prediction and testing [6-8], clinical
trials for evaluating a drug’s safety profile, and post-
market surveillance methods for detecting abnormally
high ADE rates [9,10]. Still, many types of ADEs can go
undetected for years after a drug has been on the market
[11,12], necessitating constant additions of label warn-
ings and, in extreme cases, drug withdrawals [13,14]. At
the same time, toxicity and clinical safety concerns re-
main lead causes of the high attrition rates in the drug
development process [15], as the cost of bringing New
Molecular Entities (NMEs) to the market continues to
increase [16]. All these factors have spurred a noticeable
expansion in research on adverse event prediction —
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research that critically relies on good data. The emerging
field of system pharmacology is being increasingly recog-
nized as a promising new approach for predicting ADEs
[17]. System pharmacological approaches typically rely
on the integration of various diverse types of data, such
as chemical, biological and taxonomic, followed by the
application of quantitative models to extract information
from these data. Often times, the data are represented
and integrated through network models [18,19]. In re-
cent years, a number of system pharmacology predictive
models for ADEs have been proposed [20-27].

While all these predictive approaches rely critically on
“known” drug-ADE associations, there is currently no
“gold standard” source for drug safety data. As a result,
several different ADE data sets have been used to deve-
lop predictive pharmacological models. Often, the drug-
ADE associations listed in these data sets are primarily
extracted from drug package inserts. This is the case, for
instance, with SIDER — a widely used public database,
and Lexi-comp — a widely used commercial database.
Alternatively, the listed drug-ADE pairs may be extrac-
ted from post-marketing databases, such as FAERS (for-
merly AERS; http://www.fda.gov/Drugs). Thus, the drug
safety data used to train the above models may contain
drug-ADE associations supported by strong evidence (e.g.
associations for whom a causal link between the drug and
ADE has rigorously been established) as well as asso-
ciations supported by weaker evidence (e.g. associations
based solely on post-marketing reports).
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Recent work has highlighted various types of incon-
sistencies in the reporting of drug safety information,
including discrepancies among the reports for bio-
equivalent drugs, or reports used in different countries
[28-30]. However, systematic comparisons of the major
safety data sets used in system pharmacological models
and assessment of the impact of data-set choice on pre-
diction performance are lacking. In this paper, we sys-
tematically compare the Lexi-comp and SIDER ADE
data sets. While the choice of an ADE data set can also
have diverse clinical and economic consequences, we
focus on its implications for predictive models. As a case
study, we use the Predictive Pharmacosafety Networks
(PPNs) model.

Methods

Framework overview

Figure 1 shows an overview of the study framework.
First, we integrated data from multiple sources, includ-
ing data on drug-ADE associations from two snapshots
of Lexi-comp and one snapshot of SIDER, drug and
ADE taxonomies, and intrinsic drug properties. Next, we
carried out a number of steps to standardize and inte-
grate these data, including mapping the Lexi-comp and
SIDER ADE names to MedDRA High Level Terms
(HLTs), standardizing the drug names in Lexi-comp and
SIDER, and constructing bi-partite network representa-
tions of the drug-ADE associations. Next, we assessed
the strength of the association between the counts of
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Figure 1 Overview of the study framework. First, data were integrated from multiple sources, including data on drug-ADE associations from
two different sources (Lexi-comp and SIDER), drug and ADE taxonomies, and intrinsic drug properties. Next, a number of steps to standardize and
integrate these data were carried out. The strength of the association between the counts of ADEs and drugs in Lexi-comp and SIDER data sets
and the differences between these two data sets were assessed. Finally, a PPN model was trained using a 2005 version of Lexi-comp and validated
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ADEs (per drug) and drugs (per ADE) in Lexi-comp and
SIDER data sets. We also identified the difference be-
tween the two data sets and characterized it in terms of
drug categories, ADE categories and ADE frequencies.
Finally, we trained a PPN model using a 2005 version of
Lexi-comp data and validated the prediction perform-
ance of PPN using both Lexi-comp 2010 and SIDER
2012 as reference standards.

Data description

The NCGC Pharmaceutical Collection (NPC) resource
[31] was used to identify different forms of drug names
that refer to a common “active pharmaceutical ingredi-
ent”. The Medical Dictionary for Regulatory Activities
(MedDRA) standard (www.meddra.org) was used to
code ADE names. Drug attributes were extracted from
World Health Organization Anatomical Therapeutic Che-
mical Classification System (ATC) (www.whocc.no/atc),
University of Alberta DrugBank (www.drugbank.ca), and
National Center for Biotechnology Information’s Pubchem
Compound (www.ncbi.nlm.nih.gov/pccompound).

The Lexi-comp ADE data were extracted from Lexi-
Drugs® (http://www.lexi.com), a commercial database
widely used in hospitals today. For this study, we had ac-
cess to data on 809 Lexi-comp drugs. For each drug, we
were provided with two text fields extracted, respect-
ively, from 2005 and 2010 versions of Lexi-Drugs®. Each
of these text fields integrates ADE information from
drug package inserts, relevant clinical trials, case stu-
dies and post-marketing reports. We extracted the ADE
names contained in each field and mapped them to
MedDRA Preferred Term (PT) level. In order to com-
press the space of all possible drug-ADE pairs, each PT
was further mapped to one or more High-Level Terms
(HLT) in the MedDRA hierarchy [21]. As an example,
the PT “myocardial infarction” was mapped to the fol-
lowing two HLTs: “ischaemic coronary artery disorders”,
and “coronary necrosis and vascular insufficiency”. Since
several different PTs could typically map to the same
HLT, this mapping compresses the space of possible
drug-ADE pairs, thereby reducing the computational
time needed to train and validate the prediction model.
The main trade-off of such mapping is that more com-
plex follow-up investigations would be needed to evalu-
ate a predicted drug-HLT pair because only a subset of
the PTs mapping to the predicted HLT may actually be
associated with the drug. After these pre-processing
steps, the final Lexi-comp data used in our study con-
sisted of two lists of pairs of the form (drug name, HLT
name) — one list corresponding to 2005 and another to
2010.

The SIDER data used here is the most recent version
of the publicly available SIDER2 database, released in
October 2012. We downloaded these data from the
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FTP site ftp://sideeffects.embl.de/SIDER/2012-10-17/.
Although earlier versions of SIDER going back to
2009 are available, SIDER?2 is the first version of the
database providing MedDRA-coded ADEs, making it
suitable for this comparative study. SIDER integrates
ADE information contained in package inserts and
post-marketing reports using five main public sources:
British Columbia Cancer Agency (www.bccancer.bc.ca),
Facts@FDA (http://www.fda.gov), FDA Center for Drug
Evaluation and Research (http://www.fda.gov), FDA Med-
Watch (http://www.fda.gov/) [32].

To enable the comparison of Lexi-comp and SIDER
data, we standardized the drug names in both data sets
using the NPC resource [31], and mapped SIDER ADE
names from the Preferred Term level to the High-Level
Terms level of MedDRA. The final pre-processed SIDER
data used in our study consisted of a lists of pairs of the
form (drug name, HLT name) corresponding to year
2012.

Overview of PPNs

Predictive Pharmacosafety Networks (PPN) [21] are pre-
dictive models that exploit the overall network structure
of all known drug-ADE relationships and combine it
with inherent attributes of drugs and adverse events in
order to predict unknown adverse events. Rather than
waiting for sufficient post-marketing evidence to accu-
mulate for a specific ADE, this predictive approach relies
on leveraging contextual information from previously
known drug-safety relationships, and thus has the poten-
tial to predict certain candidate ADEs earlier than they
can be detected by existing pharmacovigilance methods.

Here, we provide a brief overview of the PPN model;
complete details of the model, including a full specifica-
tion of the data sets used to train the model, are given in
Cami et al. [21]. Using logistic regression, we model the
presence or absence of drug-ADE associations Yj;, i=1,
...number of drugs, j=1,...,number of ADEs, as a
Bernoulli random variable and a function of three types
of covariates. Network covariates depend only on the
structure of the bipartite drug-ADE network. Taxono-
mic covariates depend on the structure of the drug-ADE
network and on ATC and MedDRA codes. Intrinsic covar-
iates depend on the structure of the drug-ADE network
and on the intrinsic drug properties. Model fitting is car-
ried out by maximum likelihood. After the model is esti-
mated, each drug-ADE pair (i, /) not reported to be an
association in the training data is scored using the pre-
dicted probabilities generated by the model.

Cami et al. [21] used the Lexi-comp 2005 ADE data to
form a bi-partite network that contained 39,591 links
among 809 drugs and 852 HLTS. The drug and ADE at-
tributes described above were integrated with the nodes
of this network. Twelve predictor variables were then
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computed and a logistic regression (LR) model was esti-
mated. This estimated LR model achieved an area under
the Receiver Operating Characteristic curve (AUROC)
of 0.87 in predicting the 10,845 drug-ADE associa-
tions that were newly reported in the 2010 version of
Lexi-comp.

As case studies, eight prominent drug-ADE asso-
ciations discovered during the period 2006—-2010 were
identified by two pharmacologists. For each case study,
the specificity and the positive predictive value corre-
sponding to the score generated by PPN were computed.
It was found that the specificities corresponding to the
model-generated scores were consistently high, provid-
ing additional support on the utility of the model. For
example, the pair (norfloxacin, tendon ruptures) achieved
a specificity of 0.95, while (zonisamide, suicidal ideation) a
specificity of 0.93.

Comparative analysis

Since the Lexi-comp data available to us consisted of
two snapshots from 2005 and 2010, ideally the compari-
son of Lexi-comp and SIDER would have been based on
two SIDER snapshots from 2005 and 2010. However, the
MedDRA-coded SIDER data available to us consisted of
only one snapshot from 2012. Due to this restriction, we
designed the comparative analysis as follows. We first
identified the Lexi-comp 2010 drugs and ADEs from
Cami et al. [21] study that were also included in SIDER
2012. Our goal was to assess the concordance of the sets
of associations newly reported between these common
drugs and ADEs in Lexi-comp 2010 and SIDER 2012, as
well as the impact of data set choice on the prediction
performance of PPN. In this analysis, we did not address
any discordance between the sets of drug-ADE associa-
tions formed by drugs or ADEs that were included in
only one of the two data sets.

In the first part of the comparative analysis, we
assessed the strength of the association between ADE
(or, drug) counts in Lexi-comp 2010 and SIDER 2012 by
computing Spearman rank correlation. Next, we com-
puted the difference between the Lexi-comp 2010 and
SIDER 2012 data sets and characterized it in terms of
drug categories, ADE categories and ADE frequencies.
As described earlier, both Lexi-comp and SIDER use
package inserts as the primary source of information.
However, we expected that these data could differ for a
number of reasons. First, SIDER 2012 may include new
drug-ADE associations that were discovered after 2010
and thus could not be reported in the Lexi-comp data
sets. Second, both Lexi-comp and SIDER supplement
the package-inserts with other information extracted
from various sources, as described earlier. Third, the
mapping of ADE names to MedDRA- which, was inde-
pendently implemented in the two data sets — is a non-
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deterministic process. There are numerous ADE names
that appear in the original data sources for whom there
is no exact match to MedDRA and for whom the most
appropriate MedDRA code is determined either algorith-
mically or based on expert opinion.

In the second part of the comparative analysis, we
trained a PPN model using Lexi-comp 2005 and then
assessed the prediction performance of the model using
Lexi-comp 2010 and SIDER 2012, respectively, as vali-
dation sets.

In the Discussion section, we explain how the data re-
striction mentioned earlier, i.e. the availability of only
one SIDER snapshot taken at a different time point from
either Lexi-comp snapshot, impacts the interpretation of
our results.

Results

Common drugs and ADEs

Out of 809 Lexi-comp drugs used in the study by Cami
et al. [21], 695 (86%) were also included in SIDER; out
of 852 HLTs used in [21], 765 (90%) were also included
in SIDER. In the reminder of this section, we compare
the drug-ADE associations reported in Lexi-comp 2010
and SIDER 2012 between these common 695 drugs and
765 HLTs.

Correlation between drug and ADE counts

The Spearman correlation between the ADE counts in
the Lexi-comp 2010 and SIDER 2012 data sets was 0.84
(95% CI: 0.82-0.86) (Figure 2(A)), while the Spearman
correlation between the drug counts in these two data
sets was 0.92 (95% CI: 0.91-0.93) (Figure 2(B)). For com-
parison, we also computed the Spearman correlations of
ADE and drug counts between Lexi-comp 2005 and
Lexi-comp 2010 data sets. For these two data sets, the
correlations were, respectively, 0.87 and 0.99.

Differences between Lexi-comp and SIDER data sets
Figure 2 indicates that drug and ADE counts generated
from SIDER 2012 are generally higher than the corre-
sponding counts from Lexi-comp 2010. In aggregate, we
found that relative to the Lexi-comp 2005 data snapshot,
Lexi-comp 2010 and SIDER 2012 introduced new drug-
ADE associations at a mean rate of 1,973 and 4,810 per
year, respectively. To better understand this difference
between Lexi-comp 2010 and SIDER 2012, we computed
the percentage of SIDER-only associations in each ATC
top-level category, each MedDRA top-level category, and
each ADE frequency group (“postmarketing”, “frequent”,
“rare”, “potential”, or exact number).

We found that the drug categories with the highest

percentages of SIDER-only ADEs were drugs targeting
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the Nervous System and Antiinfective drugs (21.9% and
11.4%, respectively, Table 1), while the ADE categories
with the highest percentages of SIDER-only drugs were
Nervous System Disorders and Gastrointestinal Dis-
orders (8.9% and 8.7%, respectively, Table 2). With re-
gards to ADE frequency classes, we found that for 63%
of SIDER-only associations the frequency of ADE was
missing. Of the remaining SIDER-only associations, the
type having the highest percentage was “postmarketing”
(46%), followed by “infrequent” (16%), “exact number”
(16%), “rare” (11%), “potential” (8%), and “frequent” (3%).

Table 1 Number and percentage of SIDER-only
associations by ATC top-level category

ATC top-level category Number (percent) of

SIDER-only associations

Nervous system 7641 (21.9%)
Antiinfectives for systemic use 3993 (11.4%)
Cardiovascular system 3894 (11.2%)
Antineoplastic and immunomodulating 3704 (10.6%)
agents

Sensory organs 3672 (10.5%)
Alimentary tract and metabolism 2573 (7.4%)
Musculo-skeletal system 2300 (6.6%)
Genito-urinary system and sex hormones 2157 (6.2%)
Dermatologicals 2024 (5.8%)
Respiratory system 1378 (3.9%)
Systemic hormonal preparations (excl sex 693 (2.0%)
hormones)

Blood and blood forming organs 514 (1.5%)
Various 219 (0.6%)
Antiparasitic products insecticides and 146 (0.4%)

repellents

Prediction performance of PPN

We compared the predictive scores generated by the
PPN model trained on data from Lexi-comp 2005 with
the newly introduced drug-ADE associations in Lexi-
comp 2010 and SIDER 2012 data sets. We found a very
minor overall change in the Area Under the Receiver
Operating Characteristic curve (AUROC) of the PPN
model when SIDER 2012 data were used for validation
instead of Lexi-comp 2010 data: 0.84 vs. 0.85, respec-
tively (Figure 3). Stratification of AUROC by top-level
MedDRA category — i.e. System Organ Class (SOC) —
showed that there is no clear relationship between the
number of SIDER-only associations in a category and
the change in AUROC when SIDER is used for valid-
ation instead of Lexi-comp (Table 3). In fact, the relative
change in AUROC was less than 5% for all but six SOCs
which are rather general and not specifically related to a
body organ or system: 1) Congenital, familial and genetic
disorders (relative change 34%), 2) Surgical and medical
procedures (relative change 20%), 3) General disorders
(relative change 12%), 4) Injury, poisoning and proced-
ural disorders (relative change 7%), 5) Investigations
(relative change 7%), 6) Pregnancy, puerperium and peri-
natal conditions (relative change 5.1%).

Discussion

This study aimed to systematically assess the concord-
ance between Lexi-comp and SIDER ADE data sets, as
well as the impact of using each data set in the predic-
tion performance of PPN model. Our main result was
that ADE and drug counts in the Lexi-comp 2010 and
SIDER 2012 data sets were highly correlated and that
the AUROC of the PPN model changed very little (ap-
proximately 1.1%) when SIDER 2012 was used for valid-
ation instead of Lexi-comp 2010.
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Table 2 Number and percentage of SIDER-only
associations by MedDRA top-level category

MedDRA top-level category Number (percent) of

SIDER-only associations

Nervous system disorders 3091 (8.9%)
Gastrointestinal disorders 3038 (8.7%)
Skin and subcutaneous tissue disorders 2948 (8.4%)
General disorders 2487 (7.1%)
Respiratory, thoracic and mediastinal 2309 (6.6%)
disorders

Vascular disorders 2251 (6.4%)
Psychiatric disorders 2069 (5.9%)
Musculoskeletal and connective tissue 1764 (5.1%)
disorders

Eye disorders 1751 (5.0%)
Infections and infestations 1713 (4.9%)
Investigations 1477 (4.2%)
Metabolism and nutrition disorders 1417 (4.1%)
Blood and lymphatic system disorders 1287 (3.7%)
Cardiac disorders 1211 (3.5%)
Renal and urinary disorders 1116 (3.2%)
Reproductive system and breast disorders 1014 (2.9%)
Immune system disorders 784 (2.2%)
Neoplasms benign, malignant and 627 (1.8%)
unspecified

Hepatobiliary disorders 614 (1.8%)
Injury, poisoning and procedural disorders 524 (1.5%)
Endocrine disorders 409 (1.2%)
Ear and labyrinth disorders 388 (1.1%)
Surgical and medical procedures 276 (0.8%)
Pregnancy, puerperium and perinatal 218 (0.6%)
conditions

Congenital, familial and genetic disorders 125 (0.4%)

While we found overall concordance, there were also
differences between the Lexi-comp 2010 and SIDER
2012 data sets. These differences were most pronounced
for Nervous System and Anti-infective drugs, for Gastro-
intestinal and Nervous System ADEs, and for “postmar-
keting” ADEs. Our results suggest that the differences
between the two data sets do not simply arise from the
two-year time lag between them. Indeed, the correla-
tions of drug and ADE counts were higher between
the two Lexi-comp snapshots (separated by five years)
than they were between Lexi-comp 2010 and SIDER
2012. Further, relative to Lexi-comp 2005, SIDER 2012 in-
troduces new associations at a higher rate than Lexi-comp
2010. As discussed earlier, other factors that could have
introduced these differences include the use of various
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Figure 3 ROC curves of PPN model corresponding to the
Lexi-comp 2010 and SIDER 2012 reference standards.

sources to supplement package-insert information and the
independent mapping of ADE names to MEdDRA.

The observations of high overall concordance between
Lexi-comp and SIDER, and high robustness of the PPN
model under two different validation sets, are not af-
fected by the time lag between the two data sets. In fact,
the presence of the time lag makes the concordance and
robustness conclusions even stronger than they would
be if the same results were obtained by comparing data
from the same year. On the other hand, the differences
between the two data sets should be interpreted with
caution as it is not clear to what extent they are
accounted for by the time lag and to what extent by
other factors. The interpretation of these differences is
also hindered by the high proportion of missing ADE
frequency data (63%).

While this manuscript was under preparation, Lin
et al. [27] published a new study in which they devel-
oped an “external link prediction” method for unknown
drug-ADE associations. Using two snapshots of data
based on the intersection of SIDER with FAERS 2005
and FAERS 2011, respectively, they carried out a simu-
lated prospective validation of a subset of PPN covari-
ates analogous to the validation by Cami et al. [21]. The
training set in the study by Lin et al. consisted of 422
drugs and 462 ADEs. These authors found that in that
data set, the chosen subset of PPN covariates achieved
an AUROC of 0.75, while the “external link prediction”
method achieved an AUROC of 0.83. Thus, the study by
Lin et al. using a different ADE data source, different
validation year and different drug and ADE sets provides
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Table 3 AUROC of PPN by MedDRA top-level category
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MedDRA top-level category

Lexi-comp 2010
AUROC (95% CI)

SIDER 2012
AUROC (95% ClI)

Nervous system disorders

Gastrointestinal disorders

Skin and subcutaneous tissue disorders
General disorders

Respiratory, thoracic and mediastinal disorders
Vascular disorders

Psychiatric disorders

Musculoskeletal and connective tissue disorders
Eye disorders

Infections and infestations

Investigations

Metabolism and nutrition disorders

Blood and lymphatic system disorders

Cardiac disorders

Renal and urinary disorders

Reproductive system and breast disorders
Immune system disorders

Neoplasms benign, malignant and unspecified
Hepatobiliary disorders

Injury, poisoning and procedural disorders
Endocrine disorders

Ear and labyrinth disorders

Surgical and medical procedures
Pregnancy, puerperium and perinatal conditions

Congenital, familial and genetic disorders

0.85 (0.84 - 0.86)
0.85 (0.84 - 0.86)
0.85 (0.84 - 0.86)
0.86 (0.84 - 0.87)
0.80 (0.79 - 0.82)
0.84 (0.83 - 0.86)
0.83 (0.82 - 0.85)
0.82 (0.80 - 0.84)
0.79 (0.77 = 0.81)
0.85 (0.83 - 0.86)
0.86 (0.84 - 0.88)
0.81 (0.79 - 0.83)
0.87 (0.86 - 0.89)
0.83 (0.81 - 0.85
0.86 (0.84 - 0.87

(

(

(

(

0.88 (0.87 - 0.90
0.80 (0.74 - 0.85
0.85 (0.83 - 0.88)
0.86 (0.84 - 0.89)
0.82 (0.79 - 0.85)
0.86 (0.83 - 0.89)
0.82 (0.73 - 0.89)
0.78 (0.63 - 0.93)
0.91 (0.83 - 0.98)

)
)
0.85 (0.82 - 0.87)
)
)

0.84 (0.84 - 0.85)
0.84 (0.83 - 0.85)
0.85 (0.85 - 0.86)
0.76 (0.75 - 0.77)
0.78 (0.77 = 0.79)
0.83 (0.82 - 0.84)
1(0.81 -0.82)
0.83 (0.82 - 0.84)
0.83 (0.82 - 0.84)
0.85 (0.84 - 0.86)
0.80 (0.79 - 0.81)
0.82 (081 - 0.83)
0.88 (0.87 — 0.88)
0.84 (0.82 - 0.85)
0.85 (0.83 - 0.86)
0.86 (0.84 - 0.87)
0.90 (0.89 - 0.91)
0.78 (0.76 - 0.80)
0.83 (0.81 - 0.84)
0.80 (0.78 - 0.82)
0.85 (0.83 - 0.86)
0.84 (0.82 - 0.86)
0.66 (0.60 — 0.72)
0.74 (0.66 - 0.82)
0.60 (0.53 - 0.66)

Note: Rows are shown in decreasing order of the number of SIDER-only associations. Bold-face: Six MedDRA categories with the highest AUROC difference between

SIDER 2012 and Lexi-comp 2010.

an independent confirmation of the robustness of PPN
variables with respect to the choice of ADE data set.

Recently, Tatonetti et al. [24] published a method to
extract potentially significant drug-ADE associations
from FAERS and a new accompanying data set of such
associations (OFFSIDES). Similarly, Cheng et al. [25] de-
veloped a new drug-ADE data set named MetaADEDB
by integrating information from SIDER, CTD (ctdbase.
org), and OFFSIDES, and utilizing Medical Subject
Headings (MeSH) to annotate compounds and diseases.
We believe that these data integration, standardization
and annotation efforts are important steps toward the
development of improved reference standards for drug-
ADE associations.

Conclusions
In summary, we have conducted a study that systematic-
ally compared two drug safety data sets and assessed the

impact of data set choice on the prediction performance
of the PPN predictive model. Overall, we found a high
concordance between the two data sets and only a minor
impact on the prediction performance of PPN. However,
we also identified a number of key differences between
the two data sets. We believe it is important for re-
searchers, drug safety professionals and public health
officials to be aware of such differences, especially in
modeling applications aimed at specific drug and ADE
categories, and a wide range of studies aimed at ADE pre-
diction models.
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