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Abstract

Background: Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e.
magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and
time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract
relevant information for monitoring purposes.

Methods: We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal
offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and
heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance
matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We
apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to
the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the
filters, is analyzed using three different configurations ranging from best to worst case.

Results: Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmo-
graphic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter
obtains mean errors (standard deviations) of -0.2 min—' (0.3 min~") and -0.7 bpm (1.7 bpm) (compared to -0.2 min~!
(04 min~") and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad
conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor
signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the
Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average
total computational time needed for the Kalman filters is under 25% of the total signal length rendering it possible to
perform the filtering in real-time.

Conclusions: [t is possible to measure in real-time heart and breathing rates using an adaptive Kalman filter
approach. Adapting the Kalman filter matrices improves the estimation results and makes the filter universally
deployable when measuring cardiorespiratory signals.
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Background

The increase in both life quality expectancy and quality
of life, together with improvements in medical support,
has led to an increase in the mean age of the popula-
tion in developed lands. The American Administration
on Aging (AoA) predicts that, compared with the year
2000, the absolute number of people aged >65 years will
double by 2030 and represent 19% of the total U.S. popu-
lation [1]. The increase in the elderly population will lead
to additional strains on the health-care system. There-
fore, there is an explicit need to transfer clinical mea-
surement devices and technology to the patient’s home.
The goal of personal health care is to relieve clinicians
and the clinical infrastructure by means of technical
improvements, but without reduction in diagnostic and
rehabilitation performance, e.g. with telemonitoring at
home [2]. This implies that new technology needs to
be integrated into daily activity which, compared with
a well-defined clinical environment, poses considerable
challenges in terms of signal acquisition and process-
ing. More complex processing algorithms are needed to
overcome noise, artifacts and multi-sensor problems. One
algorithmic approach is the use of the Kalman filtering
technique.

Since its introduction in the 1960s, the Kalman filter
has become a well accepted and state-of-the-art approach
for many applications, especially in the technical domain.
Initially, computational capacity was limited and costly,
making it difficult to use Kalman filters in real-time appli-
cations. However, over the years computational power has
increased, also outside the personal computer domain.
Today, high performance devices are available, including
microcontrollers, digital signal processors or specialized
computational units such as Field Programmable Gate
Arrays (FPGA). Therefore, it is now possible to move
complex mathematical computations into such devices
working in a self-sufficient way. Many examples of tech-
nical applications using Kalman filters in real-time have
been described [3,4]. In bio-medical engineering, Kalman
filters are often applied to smooth or extract physiological
signals, such as respiration and cardiac activity [5,6]. Also
in the domain of Electrical Impedance Tomography (EIT),
the Kalman filter is able to track fast changes in impedance
[7]. The Kalman filter is adequate for the present work, as
it is possible to integrate prior knowledge (e.g. about sen-
sor or system noise or state transitions). In addition, the
Kalman filter is capable to denoise, separate signals or fuse
sensor data, all in one architecture. Compared to other
filtering or signal separation methods the Kalman filter
is able to perform in real-time with very little systemic
delays.

To record evaluation data a non-contact measurement
technique, called magnetic induction monitoring, was
chosen. This technique is a relevant method since it
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comprises a variety of problems typical for non-contact
monitoring of vital signs. The complete employed mea-
surement setup is described in Section ‘Sensors and
measurement setup’. Afterwards, the detailed working
principle and the implementation of the Kalman filter is
explained (Section ‘Kalman filter’). Then, heart and respi-
ration rate extraction results of two different subjects are
shown and discussed in Section ‘Results and discussion’.
We oppose the non-adaptive, described in earlier work, to
the developed adaptive Kalman filter and show the per-
formance increase, especially when no a priori knowledge
about the sensor system is present. Finally, the conclusions
summarize the results and gives an outlook to future work
(see Section ‘Conclusions’).

Methods

Sensors and measurement setup

The signal were acquired in voluntary self-experiments
of the first two authors (JF and DT). Both signed an
informed consent to participate in this study. The local
ethics committee decided that this type of study with
this device was not in the scope of their responsibility
(internal reference number EK 013/14). In addition it was
stated that the self-measured data can be used for pub-
lication. Both signed an informed consent to participate
in this study. Consider, that this work is not conceived
to be an extensive study but rather a proof of concept.
Magnetic induction monitoring is a non-contact tech-
nique for recording thoracic activity. The technique is
based on magnetic coupling between the thorax and a
nearby sensor-coil, as developed by Teichmann et al.
[8,9]. As the coil has no conductive contact with the
skin it is called a non-contact technique. The sensor-
coil is driven by an alternating current and sends out an
alternating magnetic field. This field induces eddy cur-
rents within conductive objects in the vicinity of the
coil. In turn, these eddy currents reinduce a secondary
alternating magnetic field, which affects the primary one
and thereby changes the reflective impedance of the
coil. If the coil is placed near the thorax, cardiores-
piratory activity modulates the impedance of the coil
due to motions of inner organs and the thoracic wall
and/or because of changes in conductivity, e.g. caused
by more or less air in the lungs or blood shifts in the
heart. In this way, respiration and pulse can be easily
obtained by measuring the impedance changes of the
sensor-coil.

In this work, processed data were collected by three
magnetic induction sensors attached to the thorax,
as described in [10,11]. The sensors were located on
left breast, right breast and stomach level (Figure 1).
With this setting it is possible to detect motion pat-
terns. In addition to those three sensor signals, two
reference channels acquire data in parallel: one for a
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Figure 1 Kalman filter sensor fusion. Kalman filter sensor fusion (sensors: S1 to S3 with flow and PPG references) and vital signs extraction with

pulse photoplethysmographic (PPG) finger clip sensor
(ChipOx, Corscience GmbH & Co. KG) the other for a
thermal mass flowmeter (Model 4040, TSI). ECG and res-
piratory induction plethysmography (RIP) as references
have been discarded as they might influence the magnetic
measurement system. All measurements have been per-
formed in resting state, so that no artifacts due to running
or other movements are induced since we want to show
the performance of being able to extract heart and respi-
ration rates. The task of detecting artifacts is not part of
this work, since motion patterns have been analyzed in
previous work [11].

Magnetic induction monitoring is completely contact
free, i.e. no mechanical, conductive or optical contact
is necessary. Although this offers a considerable advan-
tage over other monitoring methods, there are prob-
lems related to this and other non-contact monitoring
techniques. A major drawback of magnetic induction
monitoring is its sensitivity to other thoracic motion not
related to respiration or pulse; therefore, motion arti-
facts are a common problem. Also, the signal content
related to respiration is much higher than the cardiac-
related signal content, since the thoracic conductiv-
ity distribution is more strongly affected by respiratory
motion. Often, the higher harmonics of the respira-
tory signal may overlap the much smaller cardiac sig-
nal; in this case signal separation by common frequency
filtering is not possible. To overcome these issues (at
least to some extent), an adaptive Kalman filter was
developed, based on previous work [5,12]. The Kalman
filter system consists of three individual sensor signals
(S1 to S3), that are direct inputs of the Kalman filter
(Figure 1). In addition to the filter system described

earlier [12], the respiratory rate and heart rate are esti-
mated continuously and fed back to the Kalman filter
where internal states and matrices are updated. Also some
of the state matrices containing information about the
measurement system are updated recursively and thus,
automatically adapting itself to any new configuration.
This procedure is described in detail in the following
sections.

The raw sensor data were acquired at a sampling rate
of 95 Hz, which is also the processing rate of the Kalman
filter. No pre-processing of the data is performed. Figure 2
presents a 30-s representative example of the employed
sensor signal with the PPG and flow reference acquired in
parallel.

In summary, the Kalman filter has to deal with the
following signal properties:

e A very high offset compared to the signal amplitude

e Respiration is visible in the time domain

e Heart activity is only slightly visible in the time domain
(very low ratio of heart to respiration signal level)

® Good signal-to-noise ratio (SNR) for the respiratory
signal, since noise is not noticeable in the time
domain for this sensor

e Higher harmonics of the respiratory signal may
overlap the pulse signal in the frequency domain

Kalman filter

In 1960, R.E. Kalman reported a new method for lin-
ear filtering and solving problems related to prediction
[13]. Generally, the so-called “Kalman filter” consists of
mathematical equations that represent an efficient way to
predict a future and/or unknown state of a system, based



Foussier et al. BMC Medical Informatics and Decision Making 2014, 14:37
http://www.biomedcentral.com/1472-6947/14/37

Page 4 of 15

Raw Magnetic Impedance Sensor Signal
6 Sensor 1 —— Sensor 2 Sensor 3
4 .
E
S 2F
=
.20
=
3 / / ./ \/
2
4
1 1 1 1 1 j
20 25 30 35 40 45
Normalized Flow and PPG references
—PPG Flow
1
Z0
g -1
o
&
Q
~
1 —
0
—1F+
i i i i i j
20 25 30 35 40 45
Time [s]
Figure 2 Raw signal example with parallel Flow and PPG reference recordings. Raw signal of sensor 1-3 example (top with arbitrary units [a.u.])
with parallel flow and PPG reference recordings (bottom with arbitrary units [a.u.]) (30 s window).

only on the use of the preceding step. The calculations are
very efficient so that they can be performed and imple-
mented in today’s standard default personal computers,
in digital signal processors (DSP) and in microcontrollers,
to work in real-time applications. When process and sen-
sor noise have time-dependent characteristics, the filter is
also called a “time-varying Kalman filter”. The filter finds
a prediction value X with minimum variance for a dis-
turbed state vector x [14]. The transitions from one state
to another are represented in the state transition matrix A
when no disturbance is present.

System and measurement noise, which are assumed
to be white (zero mean) and statistically independent
from each other, are represented by w and v, with
their co-variance matrices Q and R (both hermitian

symmetric and positive semidefinite), respectively.
External disturbances (e.g. systematic errors) are fed
into the system with the control vector u and the
matrix B, that describe the dynamics of the distur-
bance. Finally, the measurement matrix H describes
the integration of a real measurement into the filter
procedure.

The matrices A, Q, R, B and H are generally time invari-
ant, but may be adaptable over time. Especially when the
acquired quality of the sensor data changes over time,
the values of Q, R and H should take this into con-
sideration. When the assumed system model is exposed
to changes, A and B also need to be updated. All time
variant matrices and vectors are denoted with a small
index k.
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X = ApXg-1 + Brug1 (1)
P = AP AT + Qi (2)
—. T . T -1
Ky = P, Hy, <HkPk H T + Rk> 3)
Xk = X + Ki (zie — Hiky) (4)
Py = (I — KxHy) Py (5)

The prediction step, also called “time update’, is
described with (1) and (2). The aim of this step is to
minimize the co-variance of the estimation error which
represents a degree of uncertainty of the estimation [14].
Note that both equations are only valid for k > 0. The
initial values of Xy and Pg have to be determined before
the first iteration. The control input uy is not used in this
model and is set to the zero vector, thus the matrix By in
(1) can be ignored.

The Kalman gain Ky defined in (3) weights the innova-
tion with respect to the measurement error co-variance
matrix Ry and the estimation error co-variance matrix
P, directly related to Q. Higher values in Ry give more
importance to the real measurement, whereas higher val-
ues for Qi put more trust in the estimation of a state.
The choice of Ry and Qy is crucial for optimal filter per-
formance. The correction step, also called “measurement
update”, integrates the innovation of a new measurement
zx to the estimated measurement in (4). Finally, the co-
variance matrix of the estimation error Py is updated
in (5).

The advantage of a Kalman filter is that it does not act
as a pure filter, but also signal separation and fusion are
realizable in a single implementation. Signal separation is
done by defining several system states that are desired as
separate outputs of the filter. Fusion is realized by expand-
ing the measurement matrix H or Hy to multiple sensors.
With this, the Kalman technique is applicable to a wide
field of applications, especially where no exact system
model is known [14].

Signal extraction and separation

The employed system was developed to work with three
sensors, each measuring heart and breathing activity sep-
arately on top of a large offset (Figure 2). Therefore, the
Kalman filter was split into seven states, two for heart
activity (named Xy x and Vf ), two for respiration (named
Xk and Vsx) and three sensor offset estimates (named
C1k» Cox and C3 i), merged into one estimated state vector
Xk:

~ T
Xk = (Xf,k7 V:f,k)XS,k; V'S,k) Cl,k; C2,k7 CB,k) ’ (6)

In previous work, the state transition matrix A was
time invariant [12]. It was designed to extract two
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sinusoidal-shaped signals (with different but fixed fre-
quencies) and three offsets from three measurement sen-
sor signals. It has been shown that the filter model
for periodic motion is able to compensate (to some
extent) for incorrect assumptions of the angular fre-
quencies wy and ws [5]. In conditions where either the
real breathing frequency or the heart rate is different
from the model assumption, the estimated states tend
to measure wrong frequencies. Therefore, the model
needs to be updated over time by feeding back the esti-
mated frequency into an adaptive state transition matrix
which has been derived from the work of Spincemaille
etal. [5]:

1 At 0 0000
—wf At 1 0 0000
0 0 1 At000

Ay = 0 0 —w3At 1000 )
0 0 0 0100
0 0 0 0010
0 0 0 0001

with wgx = 27 - fir and wrx = 27 - fri being the
time changing angular frequencies of the breathing fre-
quency fox and the heart beat rate fyx at time step k,
respectively.

The frequency measurement is based on a simple peak
detector which extracts the location of maxima and min-
ima in the signal and then computes the mean interval
length between maximal and minimal points. The main
advantage of a peak detector is the reduced computational
complexity compared to other frequency measurement
methods, e.g. based on the spectrum analysis. To accu-
rately measure respiration and heart rate, the algorithm
needs to buffer the output signal of the Kalman filter,
where the denoted “Breathing” and “Heart” feedbacks in
Figure 1 are represented by the internal Kalman states
Xsx and Xy, respectively. Note that it is not possible to
estimate the heart rate directly from the raw sensor sig-
nal, due to the small heart signal amplitude and a possible
frequency overlap of respiratory harmonics. A buffer of
20 s (approx. 1900 samples) for respiration and of 10 s
(approx. 950 samples) for the heart signal were chosen
to guarantee at least two consecutive respiratory cycles
and several heart beats within the buffer. However, having
such a large buffer causes systematic delays in the fre-
quency estimation of half of the buffer length, i.e. 10 s
and 5 s, respectively. Generally, because heart and res-
piration rates change slowly, we do not need to adapt
the system model at 95 Hz. In fact, only at every tenth
sample a frequency measurement is performed, result-
ing in an effective estimation rate of 9.5 Hz reducing
computational effort by 90%. The remaining nine sam-
ples are filled with the last valid estimation to keep the
same sampling rate of 95 Hz as the rest of the Kalman
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filter. This high sampling rate is needed to keep systematic
errors at a minimum. At 95 Hz, the maximum absolute
time resolution to measure the time between two signal
peaks is 951]_[2 = 10.5 ms, inducing a measurement error
increasing with the heart rate with 0.0175% per beat per
minute (bpm) (e.g. at 80 bpm the relative error is up to
1.4% equivalent to an absolute error of 1.12 bpm). The fre-
quency measurement procedure has been validated with
simulated sinusoidal signals covering heart rates from
60 bpm to 120 bpm and respiration rates from 12 min~!
to 15 min~1.

For stability reasons, abrupt changes in the frequency
measurement need to be avoided, e.g. false estimations
of the frequencies or artifacts, directly fed into the state
transition matrix Ay of the adaptive Kalman filter. There-
fore, the estimated frequencies representing the heart and
the respiration rates are each lowpass filtered with first
order infinite impulse response (IIR) Butterworth filters,
designed with the Matlab R2011a (MathWorks) “Signal
Processing Toolbox” with cutoff frequencies of 0.1 Hz and
0.05 Hz, respectively.

In our previous work [12], the measurement noise
co-variance matrix R was also time-invariant, fixed to
the standard deviation of each sensor signal determined
before the real measurement. Therefore, no continuous
adaptation to changes in the sensor signal quality was
possible. Since such adaptation is important for opti-
mal performance and, generally, this type of a priori
calibration is inconvenient for our work, the measure-
ment noise was also estimated leading to a time variant
matrix Ry:

100
2
Re=(010 " Onoisek’ (8)
001
ith . 1 2 3 T ideal
wit Onoise,k (Gnoise,k noise,k Gnoise,k) as 1deal mea-

surement variances of sensor 1-3 at time step k, respec-
tively. Generally, the ideal value is unknown and different
for each sensor. So, at each discrete time step k, the noise
co-variance matrix Ry has to be updated by estimating
the standard deviation (std) of a numerically differenti-
ated (diff) short signal segment. In our case the last 0.5 s
(approx. 48 samples) s; o of each sensor i have been taken
into account:

i std (dlff (Si,A))
o . =
noise,k «/2
Note that all estimations that are described in this
work have been computed every tenth sample and low-
pass filtered in the same way as the heart rate estimation
value as described previously (first order Butterworth
filter with 0.1 Hz cutoff frequency). Also, the devel-

opment of all the described estimations first has been
applied to simulated signals, where noise and standard

. )
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deviations of the heart and respiratory signals were
known.

Signal filtering

Spincemaille et al. have shown [5] that same ratios of Ry
and Q also give similar filtering performances. So, chang-
ing the Rk matrix also means adapting the system noise
co-variance matrix Qg appropriately:

1000 0 0 0
2
002,00 0 0 0
0010 0 0 0
00 0w O 0 0
_ ’ 2
=159 0 0 (G o |’
2
0000 0 (0Zas) 0
2
0000 O 0 (02 pmar)

(10)

with variances of the long-term trend O¢endx =

T
<Ut}"end,k Gt%‘end,k Ut?"end,k) of sensors 1-3.

The co-variance matrix Qg is initialized with the heart
and breathing frequencies wy x and w; x and the trend vari-
ations otiren 4 initialized by the user at time step k = 0,
respectively. We will show, that those values do not need
to be very accurate, since they are automatically esti-
mated over time. However, as the exact trend variance is
unknown it is also estimated using the raw sensor signal:

. 2 . 2
<6tlrend,k> = 0.01- <6:esp,k> (11)

A

0';fesp,k = std (li’A) ’

with &}fesp, « s standard deviation estimation of the respi-
ration using the long-term segment /; o over the last 20 s
(approx. 1900 samples). We defined that the trend varia-
tion corresponds to 1% of the respiratory variation. Lower
entries in the matrix (10) mean that more trust is placed
on the predicted model states than on the raw measure-
ment. Higher frequencies also cause higher amplitudes in
the differentiated Kalman state vector signals V7 and Vx
and are proportional to a)ﬁk and a)sz,k, respectively. A high
long-term variance in the sensor signal is assumed to be
caused by respiration and heart beat. The values for the
states X, x and X7, defined in eq. (6) normally are smaller
than for Vi and Vyi. With this, more trust is given
to the system model than to the measurement result-
ing in smoothed sinusoidal-shaped signals with angular
frequencies of around wy x and wy «, respectively. This sim-
plifies the detection of peaks in the signal and improves
frequency estimation. In fact, the states V;; and Vy con-
tain more actual sensor information, thus more noise
and possible artifacts are present; these states would

(12)
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need a processing step before being used for frequency
estimation.

Sensor fusion

In general, we assumed that the sensor configuration is
able to measure vital signs. The first four columns of the
measurement matrix Hy, representing the heart and res-
piration states of the estimated state vector X, defined in
(6), are updated by using the noise estimation previously
described in (9), (12) and (15):

. & S
h},k = ( Ahie”rt’k> ~sc¢zl} (13)
noise,k
W= (6t ) scal 14
sk Gresp,k scats (14)
R std (s; A
Oheartk = ( : ) (15)

v2
with scal} and scall as sensor specific scaling factors for
measuring heart and respiratory activity. This is the only
a priori information that has to be defined by the user.
Generally, the general performance of the filter is not very
sensitive to this scaling as the Kalman filter itself adapts
to the average of all three sensors. Nevertheless, it might
enhance the filtering performance. In our case we know
that sensor 1 mainly contains cardiac information since
it is attached right above the heart (see Figure 1) and all
other sensors are located far away from the heart. Those
are scaled to 10% as well as the respiratory data content of
sensor 1:

T
scalf=<scal} scalf scal}?’) =1 01 onT
(16)

T
scalf = (scal} scalf scal}?’) =01 1 »T.
(17)

If no a priori information is given, e.g. when the sensor
location is unknown, the scalf and scals settings should be
chosen as (1 1 1)7 to give the same scaling to all sensors.

The last three columns in Hy indicate which offset in
the estimated state vector Xy is linked to a specific sensor,
finally leading to:

It 0/ 0100
2 2
Hi= |77, 0h% 0010

3 3
B 0k, 0001

However, the offset links cannot be changed as they act
totally independently. In (3) and (4) the sensor fusion is
performed, as all measurement channels are joined into
the estimated state vector Xi with the Kalman Gain K.

(18)
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Results and discussion

In this section, the performance of the non-adaptive
and the adaptive Kalman filter is evaluated by compar-
ing the estimated respiration rates and heart rates with
the reference flow and PPQG signals. Instead of the peak
detection and filtering methods described in Section
‘Signal extraction and separation’ we applied a spectrum
based frequency estimator to the reference flow and
PPG signals to obtain much higher frequency resolution.
This estimator is not adequate for real-time application
since it is computationally much more complex. Note
that in the first 22.5 s (i.e. the minimal length of the
buffers used for the respiration frequency and signal
variance estimations), frequency estimation neither for
the respiration rate nor for the heart rate is computed.
Especially for the adaptive Kalman filter, it is important
to regulate the frequencies in the model only when both
frequencies are really measurable thus only when the
Kalman filter is settled. This avoids the filter reaching
an irreversible incorrect state. Therefore, during further
analysis, the first 22.5 s are ignored as generally no valid
and comparable data are available.

Table 1 Initialization parameters using different settings
for subject 1and 2

SE SE DS DS BS BS
Subject 1 2 1 2 1 2
fr [Hz 13 17 15 15 10 10
£ Hz] 03 02 0.1 0.1 0.1 0.1
& rend0 989.0 54.1 100.0 100.0 10 1.0
& end0 1592 8199 1000 100.0 10 1.0
63 omao 10577 18015 1000 100.0 10 1.0
G hoise,0 536 6.7 10.0 100 10000  1000.0
62 ise0 1.2 122 100 100 10000  1000.0
83 ise0 64.2 156 100 100 10000  1000.0
Fpeareo 111211 70.1 100.0 100.0 10 1.0
S oarto 1958 1988 1000 100.0 10 1.0
6 amo 16058 4548 1000 100.0 10 1.0
8 esp0 101957 1912 100000 100000 1.0 1.0
20 11144 41371 100000  10000.0 1.0 1.0
o0 84980 58465 100000 100000 1.0 10
scal} 1.0 1.0 1.0 1.0 1.0 1.0
scal] 0.1 0.1 0.1 0.1 0.1 0.1
scal} 0.1 0.1 0.1 0.1 0.1 0.1
scall 0.1 0.1 0.1 0.1 0.1 0.1
scal? 1.0 1.0 1.0 1.0 1.0 1.0
scal® 1.0 1.0 1.0 1.0 10 1.0
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For the performance analysis between the adaptive and
non-adaptive Kalman filter, we defined three different
settings:

e SE: When the Sensor Estimation settings is used, the
whole raw sensor signal is first analyzed, giving the
optimal estimations of variances. Note that this
setting only works in a post-processing way, but it is
used to create the best-case setting in this work.

e DS: The Default Settings should adequately work in
most cases.

e BS: Bad Settings that give a very inappropriate
definition of the system - the worst-case scenario
when the user misconfigures the Kalman filter.

In Table 1 the initialization parameters for each set-
ting and subject are shown. Note that for BS, especially

the noise variances have been set to very high and the
respiration/heart variances to relatively low values. This
setting reflects a possible misconfiguration of the Kalman
filter, e.g. when wrong a priori information are set by the
user. With BS we want to demonstrate that the user does
not have to care about the correct settings when using
the adaptive Kalman filter contrarily to the non-adaptive
filter. The SE setting, so the optimal settings determined
by preprocessing the raw acquisition data, shows that the
sensor amplitudes between both subjects are very differ-
ent making it very difficult to estimate correct parameters
from case to case. The ratios between the estimated heart
and respiration deviation (ihf“"’o confirm the fact that sen-

Uresp,O
sor 1 contains most of the heart signal information with

respect to the respiratory signal compared to all other
Sensors.
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Heart and respiration rates from Adaptive and Non—Adaptive Kalman Filter — DS setting

. —Heart .
adaptive non-adaptive

120} | ——Heart ——PPG

100

Rate [bpm]

601
40 60 80 100 120 140
Subject 1
25r
Resp adaptive Resp non—adaptive Flow

Ty
E 1st
8
<
o
10}
5

40 60 80 100 120 140

Time [s]

120y Heartadaptive Heartnon—adaplive PPG
— 100}
g
j=9
=2
i}
&
80
601
50 100 150
Subject 2
25r
Respadaptive Respnon—adaptive Flow
20t
_‘r—‘
.g
E 15t
8
<
o~
5 1 1 1
50 100 150
Time [s]

Figure 4 Heart and respiration rates determined by adaptive and non-adaptive Kalman filter with PPG and flow reference using the DS
setting. Heart (top) and respiration (bottom) rates determined by adaptive (red) and non-adaptive (blue) Kalman filter with PPG and flow reference
(gray) using the DS setting for subject 1 (left column) and 2 (right column). The dotted gray lines indicate the starting frequencies of the heart and

respiration rates defined in the setting at startup.

The available signal segment lengths for subject 1
are 144.8 s and 163.4 s for subject 2. The results of the
frequency estimations of heart and respiration over
those segments are shown in Figure 3, Figure 4 and
Figure 5 after having applied the procedures described in
Section ‘Kalman filter’ with the adaptive and non-adaptive
Kalman filter for the SE, DS and BS settings, respectively.
The configurations SE and DS show very good frequency
estimation performance for both Kalman filters, the
adaptive and non-adaptive version, and for both subjects.
The estimated rates follow the reference lines very well.
To support the visual analysis, the mean difference and
standard deviation between the reference and the esti-
mated frequency have been computed which are listed
for each setting and subject in Table 2. Settings SE and
DS generate errors that are all in the same range, show-
ing almost equal performances between both Kalman

filters. The standard deviations are slightly smaller for
the adaptive filter. The mean deviations are within the
systematic error range resulting from the 95 Hz sampling
rate as described in Section ‘Signal extraction and sepa-
ration’. However, the BS setting gives a totally different
result. The non-adaptive Kalman filter is not able to
extract the heart rate any more but since the respiration
signal is much higher in amplitude than the heart signal,
even this bad configuration is usable for respiration rate
estimation. The adaptive Kalman filter compensates the
bad settings by adapting to the sensor recursively and
allowing it to extract heart rate estimations much more
accurately. Table 2 also clearly confirms this finding where
the heart signal mean error for the adaptive Kalman filter
is about sixty times and the standard deviation about
four times smaller than for the non-adaptive Kalman
filter.
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Heart and respiration rates from Adaptive and Non—Adaptive Kalman Filter — BS setting
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Figure 5 Heart and respiration rates determined by adaptive and non-adaptive Kalman filter with PPG and flow reference using the BS
setting. Heart (top) and respiration (bottom) rates determined by adaptive (red) and non-adaptive (blue) Kalman filter with PPG and flow reference
(gray) using the BS setting for subject 1 (left column) and 2 (right column). The dotted gray lines indicate the starting frequencies of the heart and
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Table 2 Mean Error (standard deviation) between
flow/PPG reference and estimated respiration/heart rates
for the non-adaptive and adaptive (Ad.) Kalman filter

Subj. Resp. Resp. Ad. Heart Heart Ad.
[min~"] [min~"] [bpm] [bpm]

SE 1 0.0(0.3) 0.0(0.3) -03(2.1) -02(1.4)
SE 2 -0.3(0.5) -0.2(0.3) -0.8(2.3) -0.7 (1.7)
DS 1 -0.1(0.3) 0.0(0.3) -1.2(2.3) -0.2(1.5)
DS 2 -0.3(04) -0.2(0.3) -03(2.2) -0.8(1.7)
BS 1 -0.1(0.2) 0.0(0.3) 11.2(5.7) -0.2(1.5)
BS 2 -0.2 (04) -0.2(0.3) 42.0(6.1) -0.7 (1.7)

Another performance indicator is the ability to sepa-
rate the sensor signal into an offset, heart and respiration
signals adequately. To evaluate the offset estimation per-
formance we compute the mean error between the offset
and the raw sensor signal shown in Table 3. High mean
errors imply a high deviation from the original signal and
that offsets are not correctly estimated. Note that the error
can only be compared within one sensor and subject,
since the sensors are not calibrated to the same amplitude
range. In all settings most of the mean error and standard
deviation values of the adaptive Kalman filter are under
or at least very near to the non-adaptive Kalman filter,
indicating that it outperforms the non-adaptive filter for
offset estimation. To give an insight in the heart and res-
piration signal separation capabilities we show 20 s of the
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Table 3 Mean Error (standard deviation) between estimated offset C; x-C3 x and raw sensor signals S1-S3 for the

non-adaptive and adaptive (Ad.) Kalman filter

Subj. S1-Cqyc $1-Cy Ad. $2-Cox $2-Cy Ad. $3-C3xc $3-C3 Ad.
1 (SE) 16 (4850) 1(1259) -0 (644) 11(571) -3 (4674) 84 (4027)

2 (SE) 1(11) 0(88) -304 (4016) -263 (3960) -429 (5634) -352 (6028)
1(DS) -817 (4039) 2(1253) -8300 (4172) 21 (574) -8302 (4119) 171 (4049)
2(DS) -882 (480) 0(88) -8832 (4996) -246 (3934) -8832 (4967) -334.(6009)
1(BS) 861 (11310) 1(1248) 203 (1264) 8 (569) -1693 (9014) 53 (4008)

2(BS) 3(245) 0(88) 698 (4239) -314(3971) -498 (6483) -407 (6033)

Xy and X; values in the middle of the acquired signal in
Figure 6, Figure 7 and Figure 8 for the three settings. It
is expected that Xy and X; follow a sinusoidal shaped sig-
nal with angular frequencies of wy and w;, respectively.
For Xj, the signals between the adaptive and non-adaptive

Kalman filter resemble through all settings as expected.
On the contrary, we see a large amount of respiration on
top of the heart rate signal in the non-adaptive Xy which
is not present in the Xy of the adaptive filter, regardless
of the used configuration. This interaction of Xy with the
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Figure 6 Internal states X, and X; determined by adaptive and non-adaptive Kalman filter with PPG and Flow Reference using the SE
setting. Internal states X (top) and X; (bottom) determined by adaptive (red) and non-adaptive (blue) Kalman filter with PPG and Flow Reference
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respiratory signal degrades the performance of detecting
the peaks that are needed for heart rate estimations. For
BS, the Xy of the non-adaptive filter does not contain
any visible heart signal any more, making it impossible
to estimate heart rates with the employed peak detection
procedure.

To assess whether the described procedure is able to
work in real-time, computational time measurements
were conducted. The filter procedure was implemented
in Matlab R2011a (MathWorks) on a personal computer
with a 3.10 GHz dual core processor and 4 GB RAM.
In total the adaptive Kalman filter (including all initial-
ization processes and filtering, but excluding reference
frequency measurements) in average 35.9 s (24.79% of
the total 144.8 s) and 40.5 s (24.80% of the total 163.4 s)
processing times are required, respectively for subject

1 and 2. Without adaptation, the procedures take in
average 24.2 s (16.73% of the total 144.8 s) and 24.7 s
(15.08% of the total 163.4 s). Hence, performing one
regular Kalman filter step requires about 1.7 ms out of
10.5 ms at 95 Hz sampling rate. The effective adapta-
tion rate is reduced to 9.5 Hz (every tenth sample equal
to 105 ms sampling time) and in average about 50-60%
more computational time is needed, i.e. approximately
2.6 ms per sample. Note, that the Kalman filter compu-
tations still are at 95 Hz sampling rate. The surplus of
9 ms within the 105 ms window (ten samples) compared to
the non-adaptive filter only occurs during the first adap-
tation sample which takes 1.7 ms + 9 ms = 10.7 ms
in total. This is slightly more than the sampling time of
10.5 ms resulting in a maximum lag of one sample every
tenth sample. Therefore we conclude that the intrinsic
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computations of both filters are real-time compliant
for separating respiratory and cardiac signal activity.
However, as described in Section ‘Signal extraction and
separation’, buffer sizes of 20 s and 10 s are still necessary
to estimate breathing and heart rates, respectively. Note
that, until now, no special code optimization has been
performed, which would further reduce the required com-
putational time and make it possible to integrate the pro-
cedures into microcontrollers or digital signal processing
units.

Although the signals were acquired on healthy young
men in this proof of concept, a target application might be
the telemonitoring of elderly at home. The main advan-
tage of this technique is the contactless and unobtru-
sive way the measurement are performed. The sensors
may be arranged in a shirt, a bed or in a chair just to

give some examples. Nevertheless, it has to be examined
how daily activities (e.g. cooking, vacuuming, mowing
the lawn or walking around) affect the performance of
detecting breathing and heart rates. The main draw-
back of the magnetic induction measurement method
is that movements relative to the coils cause large arti-
facts in the signal on top of the desired signal. These
may be detected or in a good case even be compen-
sated. We do not expect that the performance is age
dependent. Rather the position of the sensors is more
crucial for optimal performance. During resting activities
(e.g. watching TV, sitting in a chair reading or sleeping)
where the number of body movements is small, the devel-
oped filter should be able to perform as well as described
since it adapts automatically to the measurement
conditions.
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Conclusions

The above analysis shows that estimations of respiration
and heart rate based on the implemented adaptive Kalman
filter perform very well in a real-time acquisition scenario
employing contactless sensors measuring cardiorespira-
tory signals. The direct evaluation of the respiration and
heart rate only based on the Kalman filter states and
the direct feed-back into the time variant state transition
matrix Ay improved the results compared with the non-
adaptive procedure. It is also important that the filter does
not require a specific signal shape as long as it contains
periodic content for respiration and heart activity; there-
fore, the filter is suitable for all biomedical signals con-
taining two periodic motions on top of large signal offsets.
The delays caused by the buffer windows of 20 s for mea-
surement of the respiration rate and of 10 s for the heart
rate are necessary to correctly estimate the frequencies
with the described peak detection method. The frequency
measurement resolution of 0.0175% per bpm inherently
generates errors, especially with increased heart rates. For
shorter delays and a better frequency resolution, the fre-
quency estimation method needs to be improved, e.g. by
up-sampling the signal in the buffer or employing more
complex detection algorithms but without neglecting the
real-time ability.

In general, this implementation of the adaptive Kalman
filter is kept as simple as possible; this allows to port
the code to embedded processing units, e.g. microcon-
trollers or digital signal processors. It is also possible to
expand the system to more than three sensors by adding
one row and one column in the state transition matrix Ay,
the system noise co-variance matrix Qg and the measure-
ment noise co-variance matrix Rk and only one row in the
measurement matrix H.

Since this analysis is a proof of concept, a larger study
with additional subjects needs to be performed to validate
all of the above methods.
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