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Abstract

Background: Methods for linking real-world healthcare data often use a latent class model, where the latent,
or unknown, class is the true match status of candidate record-pairs. This commonly used model assumes that
agreement patterns among multiple fields within a latent class are independent. When this assumption is violated,
various approaches, including the most commonly proposed loglinear models, have been suggested to account for
conditional dependence.

Methods: We present a step-by-step guide to identify important dependencies between fields through a
correlation residual plot and demonstrate how they can be incorporated into loglinear models for record linkage.
This method is applied to healthcare data from the patient registry for a large county health department.

Results: Our method could be readily implemented using standard software (with code supplied) to produce an
overall better model fit as measured by BIC and deviance. Finding the most parsimonious model is known to
reduce bias in parameter estimates.

Conclusions: This novel approach identifies and accommodates conditional dependence in the context of record
linkage. The conditional dependence model is recommended for routine use due to its flexibility for incorporating
conditional dependence and easy implementation using existing software.
Background
Health information exchanges (HIE’s), with highly hetero-
geneous data, are becoming increasingly important sources
of integrated clinical data supporting many healthcare tasks
and health-related research. HIE data are captured from
different independent databases with different patient iden-
tifiers, and best practices for implementing and operating
HIE’s are needed. Specifically with respect to data integra-
tion and patient matching, in its formal recommendations
to the Director of the Office of the National Coordinator
for Health Information Technology (HIT) in 2011, the HIT
Policy Committee recognized the need to develop and dis-
seminate best practices for patient matching [1] because
best practices for matching data in HIE’s are lacking.
Many methodologies have been proposed to identify

records in two or more databases that are related to the
same entity. Deterministic approaches are based on ad-hoc
rules, which classify a pair of records as matches if the two
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records satisfy certain conditions. Although straightforward
to implement, deterministic approaches are often too con-
servative with unacceptably high false negative (missed-
match) rates, especially when data are noisy [2]. This may
lead to suboptimal care since physicians lack the informa-
tion necessary to make informed medical decisions.
Distance-based methods that can handle numerical or

categorical fields, as described in [3], are another method
to link records. These methods have been shown to per-
form similarly to probabilistic methods for both numeric
[4] and categorical data [5] but require one to establish ap-
propriate distance measures for each variable under con-
sideration. They are not investigated further here as they
are not commonly used in practice and have not yet been
investigated thoroughly in the HIE setting although they
may be of interest in future work [6].
Another alternative to deterministic linkage methods

are probabilistic methods. A common probabilistic record
linkage method was proposed by Fellegi and Sunter in
1969 [7]. This model is a latent class model, where the la-
tent, or unknown, class represents the true match status
of the record pair. For this model, each field contained in
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both data sources is compared as a record pair and a bin-
ary variable is created which is a 1 if the two fields agree
and 0 otherwise; thus a binary vector is created for each
record pair. The Fellegi-Sunter (F-S) model assumes that
the agreement patterns of the fields are independent con-
ditional on the true match status.
This conditional independence assumption is often vio-

lated in real-world record linkage scenarios [8]. When con-
ditional independence does not hold, estimates of model
parameters can be substantially biased [9]. This bias can
lead to inaccurate record linkage outcomes as described
previously [2,8]. Therefore, finding the most parsimonious
model that accounts for the conditional dependence will
provide the most accurate classification of record pairs.
Various methods have been proposed to address the

lack of conditional independence in latent class models for
record linkage. For example, Tromp et al. incorporated
conditional dependence between two fields by combining
them into one field with four nominal levels of agreement
[2]. This strategy can be cumbersome if conditional de-
pendence exists between more than two fields since the
number of nominal categories increases when combining
agreement patterns for multiple fields. Schürle proposed
an alternate approach to incorporating conditional depen-
dence in the traditional F-S model framework by working
directly with the joint distribution of the observed agree-
ment pattern given the true match status. However, this
model involves heavy parameterization that leads to sig-
nificant overfitting of the model [10]. For example, when
seven fields are used for record matching, this model in-
volves 255 parameters, while the data could estimate at
most 127 parameters. Due to the extreme complexity of
the model, the proper choice of starting values is critical
for parameter estimation. This greatly limits the usefulness
of the approach due to the computational effort required
to examine multiple starting values.
Latent class models with conditional independence

can be equivalently formulated using a loglinear framework
[11,12]. Using this formulation, the conditional independ-
ence assumption can be readily relaxed to account for con-
ditional dependence among fields by including interactions
among fields within the match class or the nonmatch class
or both [13]. Such loglinear approaches incorporating in-
teractions within latent classes have been used in many ap-
plications, notably in diagnostic testing [14,15].
Similarly, loglinear models have been applied to record

linkage applications. Using survey data whose record pairs
had known match status, Thibaudeau identified fields with
conditional dependence using a loglinear model with se-
lected interactions [8]. Winkler estimated a loglinear model
using three-way interactions, acknowledging that identify-
ing the correct set of interactions is difficult when a large
number of fields are involved [16]. Loglinear models with
certain interaction terms have also been applied in record
linkage by Larsen and his colleagues [17,18]. There has
been no research on effectively identifying appropriate in-
teractions in record linkage until the stepwise model build-
ing strategy for identifying interactions recently proposed
by Zhu et al. [19]. However, this approach can only identify
models with all interactions of the same order.
Many previous record linkage studies focused largely

on maximum likelihood (ML) estimation, where the par-
ameter estimates of the loglinear model were obtained
using an Expectation-Maximization (EM) algorithm. For
situations such as the latent class model where incom-
plete data (unobserved classes) are involved, the EM al-
gorithm is a powerful tool to estimate model parameters
[20]. However, as noted by Winkler (1995), the EM algo-
rithm takes substantially longer to reach convergence when
conditional dependence is incorporated in the loglinear
model because the M-step does not have a closed-form so-
lution [21]. Alternatively, estimating the loglinear latent
class model can be conveniently implemented using rou-
tines in existing software, such as SAS® PROC NLMIXED
(Cary, NC), thus providing a pragmatic approach to in-
corporating conditional dependence more efficiently.
Even though loglinear models have been proposed by

multiple authors for handling conditional dependence in
HIE, implementation of such models requires custom-
ized programs and the process for choosing pairwise in-
teractions in these models has not been specified. We
therefore describe and evaluate a method for identifying
conditional dependence among fields, which are subse-
quently incorporated as interactions in a loglinear model
fitted using standard software. To illustrate the method-
ology, we use an application linking a client list of a
county health department to itself for de-duplication. The
step-by-step method described is supplemented by sample
code which can be readily modified for linking any two
data sets using standard statistical software.

Methods
We first describe a loglinear formulation of the extended
F-S model with conditional dependence. Let M be the
true match status of a pair of records (M = 1 for true
match and M = 0 for true non-match). For each record
pair with K fields, an agreement vector is observed

Y ¼ y1; y2;…; yKf g;

where yi = 1 if the ith field agrees and 0 otherwise. The match
prevalence is defined as the proportion of vector patterns
belonging to the true match record class and is π= P(M= 1).
The parameters of the classical F-S model include

Θ ¼ m1;m2;…;mK ;u1; u2;…;uK ;πf g
where the m-probabilities are the probability of field
agreement given the record pair is a true match, and
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the u-probabilities are the probabilities of field agree-
ment given the record is a true non-match.
To more effectively accommodate conditional indepen-

dence, the traditional F-S model can be reparameterized
using a loglinear formulation, where the mean number of
record pairs with agreement pattern Y and match status M
is given as follows:

logm Y ;Mð Þ ¼ λþ λMM þ
XK

k¼1
λkyk þ

XK

k¼1
λMkMyk : ð1Þ

With K fields, there are D= 2K possible different
agreement patterns. Let fd represent the frequency count
for the agreement pattern Yd (d = 1,2,…,D). Then the
log-likelihood is given by

l ΘjYð Þ ¼
XD

d¼1 fdlog P Ydð Þð Þ;

where the marginal probability of observing the agree-
ment pattern Yd is

P Ydð Þ ¼ m Yd;Md ¼ 1ð Þ þm Yd;Md ¼ 0ð Þ
Σ

D

d¼1 m Yd;Md ¼ 1ð Þ þm Yd;Md ¼ 0ð Þf g
: ð2Þ

The match score for a specific agreement pattern Yd is
defined as

log2
PðYdjMd ¼ 1Þ
P Yd Md ¼ 0jð Þ

� �
:

The loglinear formulation has been shown to be
equivalent to the F-S classical probabilistic formulation
of the conditional independence latent class model [12]
through the following relationships:

π ¼
Σ D

d¼1 m Yd;Md ¼ 1ð Þ

Σ D
d¼1 m Yd;Md ¼ 1ð Þ þ Σ D

d¼1 m Yd;Md ¼ 0ð Þ
;

mk ¼ exp λk þ λMkð Þ
1þ exp λk þ λMkð Þ ;

uk ¼ exp λkð Þ
1þ exp λkð Þ :

To incorporate conditional dependence in the loglinear
model setting, we add the appropriate interaction terms to
the model. For example, if there is dependence between
fields j and l within each latent class, the model then in-
cludes two additional terms:

logm Y ;Mð Þ ¼ λþ λMM þ
XK

k¼1
λkyk þ

XK

k¼1
λMkMyk

þλjlyjyl þ λMjlMyjyl:

ð3Þ

The above loglinear model with interaction terms is easy
to fit in standard statistical software such as SAS (example
code is provided in Additional file 1). The goodness of fit
of a model is measured by both the deviance G2 and the
Bayesian Information Criterion (BIC). We use deviance to
compare nested models. A model with lower deviance
provides a better fit to the data and hence will be pre-
ferred. For models that are not nested within each other,
BIC is the most commonly used criterion for latent class
modeling as it takes into account the sample size [22].
The model with a lower BIC is preferred.
In what follows, we describe a series of steps to fit a

loglinear model with appropriate interactions. Specifically,
we follow a six-step procedure by identifying the pairwise
dependencies between fields using the correlation residual
plot proposed by Qu, Tan, and Kutner [23]. We then in-
corporate the correlations into the model and re-examine
the fit of the new model. We iterate between these steps
as follows:

Step 1
Fit a loglinear model with no interactions using the ob-
served agreement vectors. This is simply the F-S model
formulated as a loglinear model, which provides initial
parameter estimates for the next model. Obtain deviance
and BIC of this conditional independence model. See
Additional files 1, 2 and 3 for SAS code with example.

Step 2
Compute the observed pairwise correlation between fields
j and l. The correlation between yj and yl is

Corrjl ¼
pjl−pjplffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pjð1−pjÞpl 1−plð Þ
q ; ð4Þ

where pj = P(yj = 1) , pl = P(yl = 1), and pjl = P(yj = 1,yl = 1).
Using the observed data, the estimates for pj, pl, and pjl
are given by:

XD

d¼1
fdydjXD

d¼1
fd

;

XD

d¼1
fdydlXD

d¼1
fd

; and

XD

d¼1
fdydjydlXD

d¼1
fd

;

respectively.

Step 3
Substitute the parameter estimates of λ’s from the fitted
model in Step 1 into Equation (1) to obtain the expected
number of record pairs m(Yd,Md) for each vector pattern
Yd and match status Md. Calculate the expected mar-
ginal probability P(Yd) using Equation (2) and the ex-

pected cell count f̂ d ¼ NP Ydð Þ for each vector pattern,

where N ¼
XD

d¼1
f d is the total number of record pairs. Ex-

pected pairwise correlations are then estimated using (4)
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(same formulas in Step 2) based on the expected counts f̂ d
rather than the observed counts f d .

Step 4
Compute the correlation residual, which is equal to the dif-
ference between the observed correlation and the expected
correlation for each pair of fields. Plot the residuals across
the different pairs of fields. A correlation residual which is
much different from zero would imply dependence for the
corresponding pair of fields.

Step 5
Incorporate the conditional dependence between the pair
of fields identified in Step 4 as the interaction term in the
loglinear model. Specifically, fit the following four models:
interaction in the match class only, interaction in the
nonmatch class only, interaction in both classes with dif-
ferent coefficients, and interaction in both classes with the
same coefficients. Since the four models are not all nested,
BIC is used to compare them and the model with the low-
est BIC is chosen. Repeat Steps 3 through 5 to obtain the
expected number of record pairs m(Yd,Md) by substitut-
ing the parameter estimates of λ’s of the chosen model
into Equation (3) with appropriate interactions instead
of Equation (1) until no large correlation residuals are
apparent.

Step 6
To classify individual pairs as match, non-match or un-
certain matches, we use the final model parameter esti-
mates to calculate the match score for each agreement
pattern. Record pairs are then declared as matches or
non-matches based on these match scores.
Approval to perform this study was obtained from the

Indiana University Institutional Review Board: approval
number 1010002784 (0909–68). De-identified data for the
HIE example described in the next section is provided as
Additional file 3.

Results
Description of the HIE dataset
We applied the above steps to de-duplicate the client
registry for the Marion County Health Department
(MCHD). De-duplication is a class of record linkage
where a data set is linked to itself to identify potential
duplicate records. MCHD is a member of the Indiana
Network for Patient Care, the nation’s largest and lon-
gest tenured HIE [24].
The MCHD client registry contains 779,466 patient re-

cords gathered from multiple public health service areas.
Therefore this data is highly heterogeneous and the
method of input may be any combination of standardized
electronic entry, paper entry, or manual entry for a given
field. Since the total number of all potential record pairs is
extremely large (3 × 1011 potential pairs), the data were
first blocked to minimize the search space for potential
matches. The MCHD client registry was blocked on last
name and first name, thus only record pairs agreeing on
these two fields are contained in the analysis. This reduced
the number of potential record pairs to 618,213. The re-
maining fields in this dataset include day, month, and year
of birth, social security number, telephone number, zip
code, and gender. Level of missing across the different
fields varies from as low as 0% for day, month, and year of
birth to as high as 95% for specific identifiers such as SSN.
Missing values were coded as disagreements. We then ap-
plied the six-step process described above to all pairs from
this block.
Application to HIE dataset
As described in the previous section, we first fit the con-
ditional independence model (Step 1). With 7 fields, this
model contains 15 parameters (Model 0). Parameter esti-
mates are provided in Table 1. The overall match preva-
lence was estimated to be 3.7% under this model. The
m-probabilities ranged from a low of .025 (SSN) to a
high of 0.716 (month of birth), indicating that only 2.5%
of the matched record pairs agreed on SSN while 71.6%
agreed on month of birth. The estimated u-probabilities
were small as expected, except for sex, which was esti-
mated to be 0.661, indicating that 66.1% of non-matching
record pairs agreed on sex. Also, the u-probability for SSN
was nearly zero, indicating that very few non-matching
record pairs agree on SSN. The deviance of this model
was G2 = 8852.9. Assuming independence, the observed
and expected pairwise correlations were calculated (Steps
2, 3) and the differences were displayed in the correlation
residual plot (Step 4), as shown in Figure 1 (Panel A).
The seven fields in this particular dataset yield 21 pair-

wise correlations. The difference between the 21 observed
and expected pairwise correlations from this model ranged
from −0.027 to 0.155. The majority of the correlation re-
siduals from the conditional independence model fluctuate
between −0.03 and 0.05. However, the correlation residual
between the fields telephone number and zip code is much
larger than the others (almost 5-fold difference), indicating
a violation of the conditional independence assumption
for this pair of variables.
To accommodate the conditional dependence between

telephone number and zip code, we followed Step 5 and
compared the fit of four models, specifically, models with
interaction in the match class only, interaction in the non-
match class only, interaction in both classes with different
coefficients, and interaction in both classes with equal
coefficients. The model with interactions between tele-
phone number and zip code in both classes with different



Table 1 Loglinear model results for last name/first name block

Model 0 Model I Model II

(Conditional independence)

Field Parameter Estimate Std Error Estimate Std Error Estimate Std Error

π 0.037 0.0004 0.035 0.0004 0.035 0.0004

Year of birth m1 0.581 0.0047 0.615 0.0048 0.615 0.0048

SSN m2 0.025 0.0011 0.027 0.0011 0.026 0.0011

Day of birth m3 0.572 0.0046 0.608 0.0048 0.608 0.0048

Telephone m4 0.173 0.0029 0.141 0.0026 0.140 0.0026

Zip code m5 0.409 0.0041 0.363 0.0040 0.362 0.0040

Sex m6 0.710 0.0037 0.695 0.0038 0.694 0.0038

Month of birth m7 0.716 0.0044 0.768 0.0044 0.769 0.0045

Year of birth u1 0.026 0.0002 0.026 0.0002 0.026 0.0002

SSN u2 6E-06 8E-06 1E-05 9.00E-06 5E-05 1E-05

Day of birth u3 0.032 0.0003 0.031 0.0003 0.031 0.0003

Telephone u4 5E-04 0.0001 0.002 0.0001 0.002 0.0001

Zip code u5 0.037 0.0003 0.039 0.0003 0.039 0.0003

Sex u6 0.661 0.0006 0.661 0.0006 0.661 0.0006

Month of birth u7 0.082 0.0004 0.081 0.0004 0.081 0.0004

G2 8852.9 2974.26 2881.45

Loglinear model results for MCHD data blocked on last name and first name (Number of record pairs = 618,213). All parameters are statistically significant
(p < .001) for all three models, except for u2 which is not significant for conditional independence model (p = .468) or Loglinear Model I (p = .143).
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coefficients yielded the lowest BIC and hence was selected
(Model I).
The parameter estimates of the match prevalence and

m- and u-probabilities for Model I are also shown in
Table 1. Model I provided a better fit to the data compared
to the conditional independence model, which is indicated
by its much lower deviance = 2974.3. The estimated match
prevalence was 3.5%, slightly lower than the estimate
under the conditional independence model. The estimated
u-probabilities were quite similar under both models. The
difference was seen in the estimated m-probabilities, with
an increase in the estimates corresponding to year, month,
day of birth and SSN and a decrease in estimates corre-
sponding to telephone, zip code and sex compared to the
conditional independence model.
After calculating the expected correlations under Model

I (repeat Step 3), Figure 1 (Panel B) shows the correlation
residuals for pairs of fields (repeat Step 4). The correlation
residual for telephone number and zip code is no longer
present since this pairwise dependence has been accounted
for by the model. The magnitude of all correlation resid-
uals were under 0.05. Our experience suggests that an ab-
solute value greater than 0.05 for the correlation residual is
a reasonable approximate guideline for identifying condi-
tional pairwise field dependence.
Although the correlation residual plot did not reveal sub-

stantial deviation of the conditional dependence between
other pairs of fields, the correlation residual between SSN
and telephone number (0.047) was more than twice of the
magnitude of the remaining residuals. To examine whether
it is appropriate to consider conditional dependence be-
tween this pair of fields, we repeated the Step 5 and com-
pared the fit of four additional models. These four models
again include models with interaction between SSN and
telephone number in the match class only, interaction in
the non-match class only, interaction in both classes with
different coefficients, and interaction in both classes with
equal coefficients. Based on the BIC, the model with inter-
actions in both classes with different coefficients was se-
lected (Model II).
Model II provided a better fit to the data compared to

Model I with a smaller deviance and BIC, as well as smaller
correlation residuals (Figure 1 Panel C). However, the im-
provement of the model fit was marginal. This is indicated
by its deviance G2 = 2881.45, which was only slightly less
than the deviance of Model I. As a result, parameter esti-
mates under Model II did not differ much from the less
complex Model I. As this is consistent with our general
guideline regarding correlations above .05, we chose Model
I as our final model.
Patient records were then classified as match or non-

match based on the estimated match prevalence from these
three models. The conditional independence model classi-
fied 1,152 record pairs as matches. Model I classified 1,082
matches and Model II results were almost identical to
Model I with 1,081 matches. Thus not accounting for the
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Figure 1 Correlation residual plots for last name/first name block. Last name/first name block: pairwise correlation residuals for Model 0
(Panel A), Model I (Panel B), and Model II (Panel C).
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conditional dependence yielded the largest number of de-
clared duplicates; likely producing falsely-merged records
resulting in lost patient records. Since it was not the pur-
pose of our study to assess the accuracy of the different
models, we did not manually ascertain the true match sta-
tus of the records. We refer the readers to the literature
[2,7] for examples where accounting for the conditional de-
pendence may improve the performance of the matching
algorithm.

Discussion
For many record linkage applications, the assumption of
conditional independence for field agreement is often vio-
lated and ignoring the conditional dependence may lead
to a suboptimal record matching accuracy. To optimize
matching accuracy, it is important to examine whether
conditional dependence exists and to incorporate such de-
pendence in the model in a proper way.
In this paper, we presented a step-by-step procedure to

identify and incorporate conditional dependence among
fields using a loglinear latent class model. This stepwise
method can be implemented using standard statistical soft-
ware. In contrast to previous studies where loglinear latent
class models were estimated using the iterative EM algo-
rithm, we proposed estimating parameters using the readily
available SAS procedure NLMIXED. Our step-by-step
process was applied to the de-duplication of the MCHD cli-
ent registry. The results indicated that conditional depend-
ence can be readily identified using a graphical approach
and the model with appropriate conditional dependence
provided a much better model fit than the conditional inde-
pendence model.
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Although a stepwise variable-selection strategy was pre-
viously proposed by Zhu et al. [19] that accounted for the
conditional dependence using interaction terms in log-
linear models, the model building process proposed in this
paper is different in several important ways. First, the
quasi-Newton approach implemented in SAS NLMIXED
procedure used in this paper is more efficient than the
EM algorithm. Second, the final model obtained by the
Zhu et al. approach must include all interactions of
the same order, while our approach can identify specific
two-way interactions. When a large number of fields are
involved in record linkage, examining all interactions of
the same order will introduce a large number of additional
parameters. Model estimation can become quite complex
with many local maxima. In addition, important condi-
tional dependencies may not be detected using Zhu et al.’s
approach when only a few interaction effects exist.
In addition to loglinear models, latent class models with

conditional dependence have been extensively studied and
widely used in other domains. For example, in diagnostic
testing, latent class models with random effects [23,25],
probit latent class models [26], and finite mixture models
[27] have all been used to evaluate the accuracy of diag-
nostic tests when no gold standard is available to evaluate
the true disease status. Further investigation is needed to
examine how the other conditional dependence models
compare to loglinear models and to determine the impact
of incorporating conditional dependence in record linkage.
A potential limitation of our approach is that it is more

labor intensive because it requires understanding how to fit
loglinear models. Additionally, the loglinear model frame-
work requires parameterization that is not as readily under-
stood by practitioners. The approach is iterative thus is also
more computationally intensive. However, these challenges
are mitigated by providing example code as additional files.
Conclusions
We have proposed a novel and practical approach to iden-
tify and incorporate conditional dependence in record link-
age. Compared to the commonly used F-S model, the
conditional dependence model provides substantially better
fit to the data when conditional dependence exists. Given
that some fields commonly used for linking health records
often have correlated agreement patterns, we recommend
the routine use of our proposed methods to avoid model
misfit. Our approach can be easily followed using the step-
by-step instructions and the sample code provided.
Additional files

Additional file 1: MCHD Loglinear Models.sas. SAS program that uses
the loglinear approach described in this paper to fit the MCHD dataset.
Requires SAS® software available from SAS Institute Inc., Cary, NC, USA.
Additional file 2: corr macro.sas. SAS macro to compute the
correlation residual. Requires SAS® software available from SAS Institute
Inc., Cary, NC, USA.

Additional file 3: MCHD data.csv. MCHD data supplied in standard
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