Younesi et al. BMIC Medical Informatics and Decision Making 2012, 12:148
http://www.biomedcentral.com/1472-6947/12/148 BMC

Medical Informatics & Decision Making

TECHNICAL ADVANCE Open Access

Mining biomarker information in biomedical
literature

Erfan Younesi', Luca Toldo® Bernd Muiller', Christoph M Friedrich', Natalia Novac®, Alexander Scheer”,
Martin Hofmann-Apitius'* and Juliane Fluck'

Abstract

Background: For selection and evaluation of potential biomarkers, inclusion of already published information is of
utmost importance. In spite of significant advancements in text- and data-mining techniques, the vast knowledge
space of biomarkers in biomedical text has remained unexplored. Existing named entity recognition approaches are
not sufficiently selective for the retrieval of biomarker information from the literature. The purpose of this study was
to identify textual features that enhance the effectiveness of biomarker information retrieval for different indication
areas and diverse end user perspectives.

Methods: A biomarker terminology was created and further organized into six concept classes. Performance of this
terminology was optimized towards balanced selectivity and specificity. The information retrieval performance
using the biomarker terminology was evaluated based on various combinations of the terminology's six classes.
Further validation of these results was performed on two independent corpora representing two different
neurodegenerative diseases.

Results: The current state of the biomarker terminology contains 119 entity classes supported by 1890 different
synonyms. The result of information retrieval shows improved retrieval rate of informative abstracts, which is
achieved by including clinical management terms and evidence of gene/protein alterations (e.g. gene/protein
expression status or certain polymorphisms) in combination with disease and gene name recognition. When
additional filtering through other classes (e.g. diagnostic or prognostic methods) is applied, the typical high number
of unspecific search results is significantly reduced. The evaluation results suggest that this approach enables the
automated identification of biomarker information in the literature. A demo version of the search engine SCAIView,
including the biomarker retrieval, is made available to the public through http://www.scaiview.com/scaiview-
academia.html.

Conclusions: The approach presented in this paper demonstrates that using a dedicated biomarker terminology
for automated analysis of the scientific literature maybe helpful as an aid to finding biomarker information in text.
Successful extraction of candidate biomarkers information from published resources can be considered as the first
step towards developing novel hypotheses. These hypotheses will be valuable for the early decision-making in the
drug discovery and development process.
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Background

During the past years, high-throughput technologies
have been extensively employed for the study of molecu-
lar mechanisms underlying different diseases; this has
led to the discovery of a large number of molecular bio-
markers [1]. The US National Institutes of Health
defines a biomarker as “a characteristic that is object-
ively measured and evaluated as an indicator of normal
biological processes, pathogenic processes or pharmaco-
logical responses to a therapeutic intervention” [2].

Depending on representing molecular, physiological,
or structural features, biomarkers show significant diver-
sity — spanning from genes, proteins, DNA, RNA, and
SNPs to blood cholesterol levels and patterns of brain
abnormality. Due to such diverse coverage, ambiguity in
defining biomarkers types and classes continues to exist
[3-5].

Application of biomarkers, however, goes beyond dis-
ease prediction and monitoring; in fact they have also
been utilized throughout various stages of drug discov-
ery and development [6]. For example, biomarkers play
an important role in drug target discovery and validation
(e.g. as quantitative readouts for candidate drugs) [7], in
the monitoring of toxicity mechanisms (e.g. assessment
of indication of unwanted side-effects) [8], and non-
invasive imaging of diseased organs [9]. In the process of
drug development, biomarkers are considered to be piv-
otal for informed go/no-go decision-making in the early
stages of drug development [10]. For example, mechan-
istic biomarkers can be used to pre-clinically measure a
drug's pharmacological activity in terms of its distribu-
tion and interaction with a defined protein target. Such
measurements help to decide whether to move forward
to the next phase of clinical development.

A first step to finding supportive evidence for clinically
important potential biomarkers is to search the accumu-
lated data and knowledge generated from basic research
[11]. For efficient exploration of the suspected large
amount of biomarker information contained in the
biomedical literature, semantic search and information
retrieval systems are of utmost importance. The lar-
gest publicly available biomedical literature resource,
PubMed, makes use of MeSH (Medical Subject Head-
ings) concepts to annotate the abstracts so that it
maps these concepts to user queries and by this means
allows for semantic search [12]. However, to search for
reported biomarkers, (e.g. genes, proteins, or genetic
variations) in a text corpus, additional annotation of
these entities and their normalization to relevant data-
bases is required. Such a search is currently not pro-
vided by PubMed. Manual annotation is also time
consuming and lags behind due to the ever abundance
of new publications. For example, compiling a com-
pendium of potential biomarkers for pancreatic cancer
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was carried out by systematic manual curation of the
literature and took over 7,000 person hours [13].

The automated identification of relevant terminology,
a process known as Named Entity Recognition (NER),
can support semantic annotation and information re-
trieval. In the past years, several NER methods for the
extraction of different biological entities have been
developed, primarily focusing on the recognition of gene
and protein names. In this regard, the BioCreAtIvE
assessments present an overview about the state of vari-
ous technologies and approaches in use [14-16]. NER
approaches have already been used to support the identi-
fication of biomarker genes. In [17], the authors applied
gene and protein name recognition techniques to Med-
line and OMIM (Online Mendelian Inheritance in Man)
to identify potential serum biomarkers for Down syn-
drome. Similarly, a named entity tagging approach was
employed to search for prostate cancer biomarker candi-
date genes in OMIM records [18]. Studies on biomarker
relation extraction from text have considered the extrac-
tion of semantic relations between diseases and genes or
proteins [19,20]. In a recent study, an information ex-
traction framework has been developed for the classifi-
cation of biomarker sentences that showed favourable
results, but the study was unfortunately focused on a
small training set [21]. Moreover, biomarker information
is often dispersed over the entire abstract, making it dif-
ficult to reach high information recall with sentence
classification systems.

The aim of this work is to analyze how information
about potential biomarkers is expressed in the complete
body of a scientific text, and identify additional textual
features that are relevant for the retrieval of potential
biomarker information from the scientific literature.

Methods
Information retrieval system and entity ranking
Our retrieval system is composed of two software com-
ponents: the named entity recognition tool ProMiner
and the knowledge discovery framework SCAIView
[22,23]. Figure 1 shows the design overview of the bio-
marker information retrieval system. ProMiner is one of
the systems for gene normalization, which performed
very well in BioCreAtIvE I and II assessments [24-26],
reaching an F-score of 0.8 for the recognition and
normalization of human genes and proteins. The ProMi-
ner system has been designed for the semi-automated
generation of dictionaries and the recognition of spelling
variants, as well as the disambiguation of acronyms and
common word synonyms.

The biomarker retrieval terminology and other dic-
tionaries were incorporated into ProMiner, followed by
ProMiner's annotation of all Medline abstracts using the
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Figure 2 Example annotation of a biomarker abstract in SCAIView.
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dictionaries. The resulting entity annotations are stored
in an Apache Lucene(TM)-based search index, together
with the documents and their meta-information. SCAI-
View incorporates the Lucene-based index and allows
for searches that include exact matches, wildcard
options, and Boolean operations. The document visual-
ization within SCAIView provides highlighting for all the
entity classes with tooltips containing available linkouts,
descriptions, and depictions (Figure 2).

The annotations are organized in the form of hierarch-
ies (semantic trees) and can be navigated by the user via
selecting full classes (e.g. ‘genes’ or ‘diseases’), selecting
certain subclasses (e.g. ‘Nervous Systems Diseases’), or
singular dictionary entries (e.g. ‘Alzheimer’s Disease’).
For Boolean operations, either single entity class or
complete tree classes could be selected. For example, the
query “ ‘Alzheimer’s Disease’” AND ‘Evidence marker’ ”
would retrieve all abstracts that contain one or more
terms of both terminology classes. By selecting the
Human Genes/Proteins, an entity table containing a list
of the recognized genes and proteins in the selected cor-
pus would be displayed (Figure 3).

The biomedical entities are ranked either by fre-
quency or by relative entropy (in descending order of
importance). The frequency ranking orders the entities
with respect to the number of citations. The relative
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entropy ranking is based on the Kullback-Leibler di-
vergence (also known as information gain) [27,28], and
calculates the fraction between the documents contain-
ing the entity in the result set and the total number of
documents containing the entity in the complete Med-
line document set. The formula for the relative entropy is
given as:

RE(p1,p2) = p1 ~log§—: = p1-(log p; — log p,)

where p; is the number of abstracts containing the entity
in the query selected corpus and p, denotes the total
number of documents in which the entity occurs within
an unspecific reference corpus (i.e. the entire Medline).
The Kullback-Leibler divergence ranks those entities
high, which have especially high frequency in the selected
corpus in comparison to the unspecific reference corpus.
This means that frequently occurring entities do not re-
ceive high ranks. For example, using the query “ ‘Alzhei-
mer’s Disease’ AND ‘Evidence marker’” AND ‘Human
Genes/Proteins’ ”, we retrieved 331 abstracts containing
IL1B with a frequency ranking of 10. Conversely, accord-
ing to the relative entropy formula, IL1B has an entropy
rank of 34 despite its high occurrence in Medline (i.e.
40685 abstracts).
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Corpus annotation and terminology generation

Five end users were asked to provide 50 relevant
abstracts containing cancer or drug-related biomarker
information. The abstracts were chosen from the follow-
ing areas due to data availability and their current inter-
est in treating cancer.

NSCLC (Non-Small Cell Lung Cancer) related, Breast
cancer and predictive/prognostic, Met signaling and can-
cer, EGFR related, Gefitinib related, and Erbitux related.

A training corpus of 289 abstracts was established (see
Additional file 1 for PMIDs of the training abstracts),
and two annotators (different from the end users) were
asked to annotate 10 abstracts out of this corpus in a
first step. The annotators manually marked all bio-
marker information evidence that were perceived to be
relevant (see Figure 2 for an example of automatic anno-
tations). Instead of annotating the biomarkers them-
selves (i.e. the gene, protein, or SNP mentions), the
biomarker evidence was annotated and assigned to six
classes. These classes were chosen based on the conven-
tional classification of biomarker types as well as the dis-
tribution analysis of the potential biomarker information
in the literature. Subsequently, the following simple an-
notation guideline was generated:

e Clinical Management: annotate all terms indicating
clinical investigations in patients, which includes the
initial mentioning, the clinical study, and finally the
treatment

e Diagnostics: annotate all diagnostics that are used,
which includes the initial disease stage, the
molecular identification, and blood diagnostics

e Prognosis: annotate all terms indicating any
prognosis, outcome, or marker (e.g. clinical or
biomarkers, adverse effects, resistance, response,
disease progression or outcome)

e Evidence marker: annotate all changes in gene and
protein abundance, spanning from expression to
mutation, SNP variations to phosphorylation status

e Antecedent: annotate all risk factors mentioned for
the relevant disease

Using this guideline, both annotators annotated 50
abstracts independently, and resulting agreement be-
tween them was measured based on a kappa value. A
kappa value measures the degree of confidence between
the two annotators as follows [29]:

_ (Pr(a) —Pr(e))
kappa = =7 "5 76

where Pr(a) is the relative observed agreement among
the raters and Pr(e) is the probability of random
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agreement. The remaining abstracts were then annotated
by one of the annotators.

Performance evaluation

For all evaluations, our search for Alzheimer’s disease
(AD) or multiple sclerosis (MS) scenarios was expanded
using MeSH synonyms and matches of the human gene/
protein dictionary. The ranked gene list provided by
SCAIView was compared with the gold standard gene
set that we obtained for AD and MS from the BIOBASE
database [30]. This database contains manually curated
literature evidence for causal and correlative associations
of genes and proteins to human diseases. Both gold stan-
dards were created by filtering property reports, based
on the disease indication, and then importing the result-
ing list of genes and proteins to a text file based on their
supporting evidence (i.e. experimentally determined). To
evaluate the performance, a gene enrichment ranking
methodology adopted from the Gene Set Enrichment
Analysis (GSEA) was applied [31]. The goal of the en-
richment is to determine whether genes within the gold
standard (gene set S) are randomly distributed through-
out the ranked list of retrieved genes L (with length N)
or primarily found at the top or bottom of the list. Com-
puted score is the maximum deviation from zero when
walking down the list of genes L that is increased by
X; =1 every time a gene in the list L is in S. Thus, the
enrichment score (ES) is calculated as:

1
ES = max » X;
1<isN =)

Knowing that the output of the retrieval system is a
list of genes/proteins that are ranked according to their
relative entropy scoring, different combinations of the
biomarker terminology classes were applied. For all
combinations, values of precision, recall and F-score
were calculated. In order to compare the ranked gene
list with the gold standard, the F-score criterion was
used. An F-score is computed as the following:

2 X Precision x Recall
(Precision + Recall)

F — score =

where Precision is defined as TP/(TP+FP) and Recall is
defined as TP/(TP+FN) [32], and TP = True Positive,
FP = False positive, TN = True Negative (TN) and FN =
False Negative (FN).

From the list of retrieved entities, eleven top ranking
genes/proteins were selected for an analysis, assessing
how much biomarker information content is contained
in their corresponding abstracts. Since more than one
abstract is retrieved per gene and protein, and because a
typical user might base its decision on the first retrieved
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abstracts (the most recent publications), only the first
ten abstracts were taken into account. Subsequently, and
after manually checking of abstracts, the number of true
positive and false positive biomarker abstracts was
determined.

Results

Development of biomarker retrieval terminology

The training corpus containing cancer or drug-related
biomarker information was pre-annotated using gene
protein and disease named entity recognition. In the
next step, we investigated if we could identify additional
terminology relevant to biomarkers from the abstracts.
Initially two annotators highlighted relevant parts in 10
abstracts and discussed the annotations. As a result, six
terminology classes were defined representing the rele-
vant content for biomarker identification (Table 1).
Abstracts containing information about potential gene
biomarkers most often comprise evidence of gene or
protein alteration as well as indication words for the
clinical management or investigation. Moreover, diag-
nostic methods and prognostic terms are found
frequently in these abstracts. Statistic evaluations
strengthen the relevance of biomarkers and in some
cases antecedents are strong indicators for disease status
or therapy decisions (see Figure 2). Based on those ter-
minology classes and a simple annotation guideline, all
10 abstracts were again annotated and discrepancies
were discussed until a common understanding was
reached between annotators. In the next step, the two
annotators annotated 50 abstracts and the inter-
annotator agreement was calculated. The kappa value of
0.81 showed that both annotators were in good agree-
ment when annotating concepts represented by the six
classes. Inconsistencies were mainly because of missed
annotations (e.g. the concept ‘patient’ was annotated 3
times instead of 4 times in one abstract), boundary dif-
ferences (e.g. annotation of ‘management of patients’
versus annotation of ‘patients’) and some differences in
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the annotation of diagnostic terms (e.g. the concept
‘Child’s score’ was only annotated by one annotator).
Those differences were discussed and one annotator
annotated the remaining abstracts.

All annotated terms in the training corpus were auto-
matically extracted and integrated into a seed biomarker
retrieval dictionary by manually assigning them to the
six main classes. In the next step, the seed set was struc-
tured, forming a seed terminology containing 76 entity
classes with 1132 different synonyms. After extension of
the terminology with similar classes and synonyms from
MeSH and UMLS as well as expert knowledge for diag-
nostic tests (after the analysis of larger disease- and
biomarker-related text corpora), the biomarker retrieval
terminology contained 119 entity classes with 1890 dif-
ferent synonyms.

Distribution analysis of different biomarker classes in
relevant text corpora (annotations in abstracts) showed
that every training abstract contains at least one bio-
marker retrieval term. Moreover, Clinical Management
and Prognosis terms were found most frequently in the
corpora, followed by Diagnostic, Evidence and Statistics
terms (see Table 1, last column). The Antecedent class
plays a minor role in the selected training data (recall of
20%), which might be quite different for diseases in
which antecedents play a role in biomarker search. The
six terminology classes are integrated into the SCAIView
Demo server and can be accessed through http://www.
scaiview.com/scaiview-academia.html.

Non-small cell lung carcinoma (NSCLC) as use case
scenario

As a base line for biomarker candidate retrieval, selec-
tion of the disease NSCLC in combination with the
automated recognition of gene names in our retrieval
system returns 10790 Medline abstracts mentioning at
least one gene concept (2663 different gene entities in
total). Without further specification, these numbers are
far too high to inspect and the resulting abstracts and

Table 1 Biomarker retrieval terminology classes and coverage of the terminology in the annotated corpora

Terminology  Description Examples Annotation found

class in abstracts

Clinical Terms indicating clinical investigations on patients Patient; Cohort study 96%

Management

Diagnostics Terms representing clinical as well as molecular diagnostics Immunohistochemistry; Emission 85%

Tomography; Microarray

Prognosis Terms indicating the prediction for a patient /kind of biomarker/ Surrogate end point; clinical response; 88%
outcome of therapies biomarker; predictor

Statistics Statistical methods indicating the strength of the biomarker Chi(2) test; mean +/— SD; univariate 48%
relationship analysis; Kaplan-Meier Analysis

Evidence Terms describing genetic/ molecular evidence for activity of a Mutation; gene amplification; 82%
gene polymorphism; expression

Antecedent Terms expressing exposure to hazardous agents and risk factors ~ Smoker; susceptibility; exposure 20%
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genes cover various aspects of NSCLC-gene relations
not relevant for the search of NSCLC biomarker candi-
dates. Putting additional restriction on the semantic
search using the five biomarker retrieval classes (ignor-
ing the class Antecedent) reduces the number of
retrieved documents down to 1539, containing 877
genes. Further reduction to relevant genes is possible
through the inclusion of frequency or relative entropy
ranking thresholds. Ignoring all gene mentions occurring
in less than 5 abstracts decreases the gene set to 126
genes. Spot checks of ten genes with low relative entropy
values revealed that nine of these genes are true positive
biomarker candidates (see Table 2).

One of the biomarker candidates is Mucin 1 for which
8 abstracts under the above- mentioned criteria were
retrieved. Mucin 1 is involved in invasiveness, metasta-
sis, and angiogenesis of NSCLC [33] and its expression
and localisation in lung adenocarcinoma patients is
altered compared to normal epithelial cells [34]. A fur-
ther exemplified action using the biomarker retrieval ter-
minology is the literature search for suitable Mucin-1
antibodies. This can be directly conducted by applying
the biomarker retrieval terminology. Selection of the
Diagnostic subclass Immunohistochemistry and the Evi-
dence subclass Expression together with the NSLCL
MeSH variants and the Mucin-1 gene concept retrieves
16 abstracts. In 11 abstracts immunostaining of Mucl is
directly stated but only 4 abstracts mention the specific
antibodies (CA15-3, clone DF3 in PMID 17409826,
HMFG2 in PMIDs 8980247, 2456176 and 1284790). A
further analysis of the retrieved full text articles is neces-
sary to retrieve in a next step all information about the
antibodies utilized. Higher recall rates for different anti-
bodies for this example could be reached with searches for
a broader disease area like Lung Neoplasms (31 abstracts),
the search with the Diagnostic subclass Immunohisto-
chemistry in combination with the text search ‘anti-Mucl’
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(105 abstracts), or in combination with the gene con-
cept Mucl and the Evidence marker Expression (1055
abstracts).

These examples demonstrate the ability of the bio-
marker search engine - depending on the application
area - to substantially increase recall or precision of the
search results, maximizing the efficiency of public do-
main literature searches.

Adaptation and evaluation of biomarker retrieval in
neurodegenerative diseases area

To demonstrate the applicability of the biomarker re-
trieval terminology in other disease indications inde-
pendently of the oncology-focused training corpus, the
performance of retrieval for biomarker-related abstracts
from Medline was tested in the field of Alzheimer’s dis-
ease and multiple sclerosis.

In a first test it became evident that the class Diagnos-
tics shows a high diversity between cancer and neurode-
generative diseases and that this class has to be extended
for the new disease areas. For instance, in the area of
neurodegenerative diseases, we included the diagnostic
imaging subtree of MeSH (after omitting microscopy
and molecular imaging) and a number of very specific
medical classification systems provided by experts (e.g.
MS Functional Composite score). The final BioMarker
terminology contains 164 classes and 2506 synonyms.

After this optimization for neurodegenerative diseases,
in three evaluation steps we examined: i) to what extent
biomarker class selection influences the biomarker gene
enrichment in comparison to the content of independent
gold standards (entity retrieval); ii) how many
biomarker-enriched abstracts could be retrieved with the
selection of our terminology (abstract retrieval); and iii)
how far new biomarker genes/proteins information
could be retrieved which are not provided by the gold
standard (potential biomarker identification).

Table 2 Spot check of NSCLC genes/proteins for their relevance to biomarker applicability and evidence

Gene or No. of retrieved Relative entropy Frequency based Example Biomarker Biomarker
protein document rank rank PMID applicability evidence

P53 281 1 1 20521348 Prognosis Expression
VEGFA 128 6 4 21964530 Prognosis Expression
BCL2 90 8 6 19560836 Survival Expression
PCNA 47 1 10 21495034 Prognosis Expression
VEGFC 22 16 21 19758816 Recurrence Expression
PTGS2 33 25 15 20592629 Survival Expression
CDKN1B 12 50 52 15483027 Prognosis Expression
DNAJB4 2 100 344 16788156 Survival Expression
CDK2 5 342 112 10817513 Prognosis No impact

For the SCAIView search the MeSH disease “Carcinoma, Non-Small-Cell Lung” in combination with five biomarker retrieval classes (omitting the class Antecedent)
were selected and the retrieved genes were ranked according the Relative Entropy or frequency. In spot tests the abstracts were analysed for containing

biomarker information for the respective genes.
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Using the gene enrichment ranking method and the se-
lection of Human Genes/Proteins (our baseline approach),
it turns out that almost all genes/proteins contained in the
gold standard (95% for Alzheimer’s and 97% for multiple
sclerosis) were covered by the results of our retrieval sys-
tem (see Human Genes/Proteins in Figures 4 and 5).

The system was able to successfully extract candidate
biomarker genes/proteins relevant to the queried dis-
eases and both ranking methods performed well for
high-ranking genes. Nevertheless, the baseline search
returned over 3600 genes from more than 33000
abstracts for Alzheimer’s disease and over 2300 genes
from more than 12900 abstracts for multiple sclerosis.
This amount of abstracts for manual inspection is over-
whelming. By additive selection of the Clinical Manage-
ment or Evidence Marker classes, it can be shown that
the relevant biomarker candidate genes are retrieved at
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Figure 5 Comparative gene enrichment plots for gene/protein
entities retrieved in the context of MS. Genes were ranked based
on frequency (A) or relative entropy (B) and evaluated against the
multiple sclerosis genes/proteins gold standard. The red color
represents the retrieval of all abstracts containing human genes/
proteins. The other color codings indicate the retrieval rate after

additive inclusion of further terminology classes.

higher ranks in both Alzheimer’s and multiple sclerosis
contexts (Figure 4 and Figure 5). For all other classes,
the slope of gene enrichment decreases at lower ranks
in comparison to selection of Human Genes/Proteins
alone. Overall, frequency-based ranking (Figure 4A and
Figure 5A) seems to perform better than relative
entropy-based ranking (Figure 4B and Figure 5B). Al-
though frequency-based ranking leads to higher gene
enrichment slope between the ranks 300 and 1500, we
observe a stronger enrichment at low ranking positions
using relative entropy-based ranking. Analysis of those
low ranking but frequent genes in Alzheimer’s disease
and multiple sclerosis shows that the high number of
cytokines and inflammatory proteins are mere indicators
of the disease. The frequency of those genes in the whole
Medline is very high and for this reason they are under-
represented in the specific corpus.
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Figure 6 Frequency-based gene enrichment plots after
combining additive classes in the context of AD and MS. Genes
were ranked based on frequency and evaluated against the
Alzheimer's (A) or multiple sclerosis (B) gold standards. The color
codings indicate the retrieval rate after additive inclusion of further
terminology classes.

Using an AND combination of three or more termin-
ology classes leads to similar enrichment slopes for
higher ranks but with reduced recall (Figure 6). When
compared to the MS gold standard, the combination of
classes Clinical Management, Evidence Marker and
Prognosis or Diagnosis performs even better than Clin-
ical Management and Evidence Marker alone but loses
some recall at lower ranks.

For Alzheimer’s disease, we analyzed the outcome of
the frequency based ranking method and calculated the
precision, F-score and rank for different recall ranges
(10%, 30%, and 50% recall) and determined the maximal
F-score (see Table 3). For the classes Clinical Manage-
ment and Evidence Marker as well as for the combined
selection of both classes, the values are similar but the
maximal F-score (0.59 for Genes/Proteins alone and 0.58
for the combination) is reached at lower ranking posi-
tions (rank 555 for the combination instead of rank 728
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for Genes/Proteins alone). For recall value of 0.3, the
precision is similar for all selections even with the com-
bination of the classes Clinical Management, Evidence
Marker and Prognosis. At recall value of 0.5, the preci-
sion drops down to 0.5, otherwise 0.63 if the class Prog-
nosis is not selected; moreover, the maximal F-score
looses 7% in comparison to Genes/Proteins alone.

The analysis of the retrieved abstracts for the first 10
ranked genes implies that the combination of different
biomarker classes (Clinical Management and Evidence
Marker alone or together with Diagnostics and Progno-
sis) leads to a reduction in the number of abstracts but
to an increase in the number of remaining ones (Figure 7).
At this point, the user has to decide about the trade-off
between recall and precision. For genes with a high num-
ber of references (e.g. APP or APOE) a more stringent
selection of abstracts is favorable, whereas for genes with
a lower number of references a less restrictive search
strategy might be beneficial.

Analysis of novel candidates as potential biomarkers
Genes retrieved by the selection of Clinical Management
and Evidence Marker classes and not mentioned in the
AD gold standard were checked manually by a biologist
using the SCAIView environment. Such genes/proteins
might be valuable for identification of novel biomarkers
because they represent the yet-to-be identified biomar-
kers whereas those already matched with the gold stand-
ard are candidates that are better known as potential
indicators of the disease. For this purpose, the abstracts
must contain at least the information of the gene, which
is altered (e.g. overexpression or mutation) in a particu-
lar state of AD and their therapeutic response state.
Examples of such information with the corresponding
PMIDs are given in Table 4.

For AD, out of 400 genes, 158 genes/proteins had at
least one evidence in the literature as being a potential
biological indicator of Alzheimer’s disease and thus were
considered as true positives (~ 40%) whereas 241 genes/
proteins were recognized by the annotator as false posi-
tive genes (~ 60%) due to the lack of relevance to either
Alzheimer’s disease or biomarkers (Table 5).

Discussion

Protein biomarkers are required for informed decision-
making in drug discovery and development. In order to
evaluate and prioritize potential biomarkers, a systematic
literature search is the first step. Abstracts containing in-
formation about potential gene biomarkers most often
comprise evidence of gene or protein alteration as well
as indication words for the clinical investigations. More-
over, diagnostic methods and prognostic terms are found
frequently in these abstracts. Automated recognition of
gene names, co-occurrence search with disease names
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Table 3 Performance evaluation for Alzheimer’s disease
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Selection Rank Recall Precision F-score
Baseline: Genes / Proteins 60 0.10 0.92 0.17
230 0.30 0.73 042
469 0.50 061 0.55
Maximal F-score 728 0.67 0.52 0.59
Baseline + Clinical Management 61 0.10 0.90 0.17
226 030 0.75 042
465 0.50 0.61 0.55
Maximal F-score 682 0.65 0.54 0.59
Baseline + Evidence Marker 62 0.10 0.89 0.17
225 0.30 0.75 042
464 0.50 061 0.55
Maximal F-score 654 0.62 0.54 0.57
Baseline +Prognosis 63 0.10 0.87 0.17
247 0.30 0.68 041
541 0.50 0.52 0.51
Maximal F-score 740 061 047 0.53
Baseline + Diagnostics 64 0.10 0.86 0.17
237 030 0.71 042
494 0.50 0.57 0.53
Maximal F-score 520 0.52 0.57 0.54
Baseline + Statistics 64 0.10 0.86 0.17
227 0.30 0.74 042
678 0.50 042 045
Maximal F-score 377 041 0.62 049
Baseline + Clinical Management + Evidence Marker 60 0.10 092 0.17
224 0.30 0.75 042
451 050 0.63 0.56
Maximal F-score 555 0.57 0.59 0.58
Baseline + Clinical Management + Evidence Marker + Prognosis 61 0.10 0.90 0.17
230 030 0.73 042
568 0.50 0.50 0.50
Maximal F-score 479 047 0.56 0.51

Genes were ranked based on frequency and evaluated against the Alzheimer’s gold standard. For the different selections recall, precision, F-score and rank has
been estimated for 10, 30, and 50% recall. In addition the maximal recall has been estimated.

and their statistical ranking serve as a baseline for bio-
marker search.

Using our baseline approach, it turns out that almost
all genes/proteins contained in the gold standard were
covered by the results of our retrieval system. The sys-
tem was able to successfully extract biomarker genes/
proteins relevant to the queried diseases and both rank-
ing methods performed well for high-ranking genes.
Nevertheless, the baseline search returned over 3600
genes from over 33000 abstracts for Alzheimer’s disease
and over 2300 genes from more than 12900 abstracts for
multiple sclerosis. This amount of abstracts for manual

inspection is overwhelming. Making use of the bio-
marker retrieval terminology developed here results in
the significant reduction of the number of extracted
genes and documents with almost no loss in the gene
enrichment, especially for high-ranking genes. This indi-
cates that inclusion of more biomarker classes in the
search query helps to narrow down the retrieval results
by adding more restrictive context to the search.
Concerning the statistical ranking of the result set, the
frequency-based ranking method performs better than
the relative entropy-based ranking for biomarker gene
enrichment of the diseases investigated in this study.
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One explanation is that the relative entropy penalizes
genes/proteins common to many investigations/publica-
tions and these entities rank at the end of the relevancy
list, although they show a high frequency for the disease
in question. Another explanation might lay in the select-
ive annotation of entities by annotators of the external
AD and MS gold standards; if annotators have selected
the most frequent genes for annotation, the gold stand-
ard has a bias towards frequency ranking.

Evaluation of retrieved genes not existing in the gold
standard for AD showed that almost half of these genes
have probably the potential of being considered as poten-
tial biomarkers. This indicates that automated text mining
using the biomarker terminology combinations increases
recall for biomarker information retrieval and makes it
possible to explore the biomarker space efficiently.

Comparing the number of retrieved entities between
AD and MS shows that the biomarker information for

each specific disease is distributed differently over the
literature corpora. Thus, to obtain the optimum results,
the search strategy should be adapted to each disease of
interest; however, combining more general queries with
the Statistics and/or Prognosis classes results in more
stringent outputs in terms of biomarker specificity, sen-
sitivity, and predictive parameters. For the purpose of
new biomarker identification, it is more suitable to use
less stringent combinations, which results in higher re-
call. In this case, the relative entropy-based ranking
method can increase the likelihood of finding proper evi-
dence in the support of a novel biomarker. For new dis-
ease areas, it is necessary to update the terminology
especially for the class Diagnostics which shows the
highest diversity of terminology in different disease
areas. One possibility to improve the generalisation of
the terminology would be to include all diagnostic
classes from publicly available terminology resources.

Table 4 Examples of articles accepted to contain biomarker information

PMID Gene Alteration Textual evidence
17387528 ACAD8 SNP In a European screening sample of 115 sporadic AD patients and 191 healthy control subjects, we
HMGCS2 analyzed single nucleotide polymorphisms in 28 cholesterol-related genes for association with AD.

The genes HMGCS2, FDPS, RAFTLIN, ACAD8, NPC2, and ABCG1 were associated with AD at a
significance level of P < or = 0.05 in this sample.

17531353 SLC17A7 Protein expression

decrease

Loss of VGLUTT and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in
Alzheimer disease. . .We quantified VGLUT1 and VGLUT2 in the prefrontal dorsolateral cortex

(Brodmann area 9) of controls and AD patients using specific antiserums. A dramatic decrease in
VGLUT1 and VGLUT2 was observed in AD using Western blot

19863188 HPX
SERPINF1

Cerebrospinal fluid
concentration

Five differentially-expressed proteins with potential roles in amyloid-beta metabolism and vascular
and brain physiology [apolipoprotein A-1 (Apo A-1), cathepsin D (CatD), hemopexin (HPX),

transthyretin (TTR), and two pigment epithelium-derived factor (PEDF) isoforms] were identified. Apo
A-1, CatD and TTR were significantly reduced in the AD pool sample, while HPX and the PEDF
isoforms were increased in AD CSF

Example evidence for genes retrieved via SCAIView for Alzheimer’s and MS diseases but not found in the corresponding gold standards.
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Table 5 Evaluation of genes not found in AD gold standard but retrieved using the biomarker terminology

No. of genes/ proteins retrieved by SCAIView
but not contained in gold standard

No. of genes with at least one
biomarker evidence in Medline

No. of abstracts with lack of relevance either to
the disease or to being a biomarker

400 158

241

However, this might lead to a decline in retrieval preci-
sion. Additionally, some medical diagnosis scores are
very specific and often do not occur in the large publicly
available resources such as MeSH and UMLS.

The flexibility of the biomarker terminology in relation
to different query formulations and different biomarker
classes should be tested in future investigations.

Conclusions

The work presented in this paper is a first step towards
developing a search engine for literature-based retrieval
and in-silico validation of biomarker candidates. It was
shown that the development and application of a dedi-
cated biomarker terminology could enhance the retrieval
performance significantly through combined search for
genes and selected classes of the biomarker retrieval ter-
minology. The experimental results, obtained in the
course of this study, demonstrate the effectiveness of the
proposed approach that provides a foundation in seman-
tic indexing and retrieval.
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