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Abstract

Background: Fall events contribute significantly to mortality, morbidity and costs in our ageing population. In
order to identify persons at risk and to target preventive measures, many scores and assessment tools have been
developed. These often require expertise and are costly to implement. Recent research investigates the use of
wearable inertial sensors to provide objective data on motion features which can be used to assess individual fall
risk automatically. So far it is unknown how well this new method performs in comparison with conventional fall
risk assessment tools. The aim of our research is to compare the predictive performance of our new sensor-based
method with conventional and established methods, based on prospective data.

Methods: In a first study phase, 119 inpatients of a geriatric clinic took part in motion measurements using a
wireless triaxial accelerometer during a Timed Up&Go (TUG) test and a 20 m walk. Furthermore, the St. Thomas
Risk Assessment Tool in Falling Elderly Inpatients (STRATIFY) was performed, and the multidisciplinary geriatric care
team estimated the patients’ fall risk. In a second follow-up phase of the study, 46 of the participants were
interviewed after one year, including a fall and activity assessment. The predictive performances of the TUG, the
STRATIFY and team scores are compared. Furthermore, two automatically induced logistic regression models based
on conventional clinical and assessment data (CONV) as well as sensor data (SENSOR) are matched.

Results: Among the risk assessment scores, the geriatric team score (sensitivity 56%, specificity 80%) outperforms
STRATIFY and TUG. The induced logistic regression models CONV and SENSOR achieve similar performance values
(sensitivity 68%/58%, specificity 74%/78%, AUC 0.74/0.72, +LR 2.64/2.61). Both models are able to identify more persons
at risk than the simple scores.

Conclusions: Sensor-based objective measurements of motion parameters in geriatric patients can be used to
assess individual fall risk, and our prediction model’s performance matches that of a model based on conventional
clinical and assessment data. Sensor-based measurements using a small wearable device may contribute significant
information to conventional methods and are feasible in an unsupervised setting. More prospective research is
needed to assess the cost-benefit relation of our approach.

Background
It is well-known that fall events constitute an important
factor with regard to mortality, morbidity and costs in
our aging population. These events have a high incidence
especially in the elderly: 25.1% of the men and 37% of the

women aged 65 years and above fall at least once within
12 months [1]. The highest incidence is reported for ger-
iatric inpatients [1], which often have several risk factors
[2] at the same time and suffer from multiple diseases:
The prevalence rate of five or more somatic diseases for
persons aged 70 years and above has been reported in
the Berlin Aging Study to be 88% [3]. As fall events and
their consequences are very costly - an estimated annual
19.2$ billion in the U.S. [4] - preventive measures have
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been investigated intensively [5]. These measures them-
selves are costly, so that two predominant questions are:
Who should be treated in the first place, and who should
receive which kind of preventive measure?
In order to identify persons at risk to fall down - thus

being eligible for preventive treatment - many risk
assessment tools, e.g. the Timed Up&Go test (TUG) [6]
or the St. Thomas Risk Assessment Tool in Falling
Elderly Inpatients (STRATIFY) [7] have been developed
and evaluated in a multitude of studies. Comprehensive
reviews can be found e.g. in [2,8,9]. Several tests have
also been used to predict falls in outpatients, often with
a specific group of patients. Kikuchi et al. report that, in
a prospective study with 79 patients having a diagnosis
of cognitive impairment and lasting 12 months, only
their fall-predicting score, a self-answered 21-item ques-
tionnaire, was predictive of future falls [10], but not e.g.
the TUG. The latter test was, in contrast, found as the
only predictive parameter for falls in patients after hip
surgery in a 6-month prospective study by Kristensen
et al. [11] Hale et al. found that mobility scores were
not associated with falls in a 12-month prospective
study with 120 geriatric outpatients, but history of falls
was [12]. Oliver et al. conclude that even the best tools
are not able to identify the majority of fallers [9]. Keep-
ing this in mind along with the often time-consuming
nature of fall risk assessment tests (e.g. the Perfor-
mance-Oriented Mobility Assessment, POMA [13]) that
frequently require expert knowledge, several research
groups have developed the idea to perform a sensor-
based automatic or semi-automatic assessment using
wearable inertial sensors [14-17]. Apart from offering
continuous and objective data, this approach may also
serve to detect fall events once they have happened,
being aware of the fact that many falls go by undetected
and a person may lie injured hours or even days in her
or his flat. Despite promising first results of this sensor-
based approach developed by the authors [18], it
remains unclear how well the new methods perform in
comparison with conventional fall risk assessment tools.
Therefore, the aim of our research work for this paper

is to examine the predictive performance of our new
sensor-based method for fall risk assessment in compar-
ison with conventional and established methods. The
comparison is based on one-year follow-up data
obtained in a prospective study.

Methods
General approach
We recruited a sample of geriatric patients - who are
known to have the highest risk of falling [1] - and per-
formed selected conventional assessment tests which are
used to determine fall risk. Furthermore, fall risk was
assessed by the interdisciplinary geriatric care team

(physicians, nurses, physiotherapists, occupational thera-
pists) of the Department for Geriatric Medicine at
Braunschweig Medical Center in Germany. In addition to
these measures, a sensor-based assessment of fall risk was
performed, which employs gait and motion parameters
obtained during a Timed Up&Go test and a 20 m walk
during the patients’ hospital stay. These parameters are:
kinetic energy, pelvic sway along the transversal axis, stan-
dard deviation of gait periodicity, mean step duration, step
length, number of steps during Timed Up & Go test and a
number of spectral density distribution parameters such as
the frequency of the most prominent spectral density
peak. The sensor equipment used, the methods for para-
meter extraction from raw data and the generation of pre-
diction models are explained in detail in [18,19]. The
study protocol has been approved by the Hanover Medical
School ethics committee.

Study population
The study population consisted of geriatric inpatients of the
Braunschweig Medical Center’s Department for Geriatric
Medicine who met the following inclusion criteria:

• admission between April 24th and October 18th,
2007
• ability to stand up and walk
• written consent (also by a third party) to take part
in the follow-up interviews

Although 119 patients took part in the first phase of the
study, including the geriatric fall risk assessment tests and
the sensor measurements, only 50 were able or willing to
participate in the follow-up investigation (37 women and
13 men). The reasons for drop-outs were: death (n = 17),
untraceable (n = 13), no answer to the letter asking for
written consent (n = 27), rejecting the telephone interview
despite previous consent (n = 4), and several other pro-
blems such as deafness or cognitive impairment (n = 8)
[18]. Four of the motion sensor data sets were corrupted,
so that altogether 46 persons (mean age 81.3 years) could
be included in the fall risk assessment performance com-
parison study. With regard to the high number of drop-
outs we compared the group of participants with the
drop-outs in respect of relevant clinical parameters and
fall risk assessments (age, body mass index, Timed
Up&Go test, geriatric team risk score as described below,
STRATIFY score and Barthel index score). There were no
statistically significant differences between the two groups,
except for a higher STRATIFY score in the drop-out-
group (2.8 vs. 2.3, p = 0.036). As mental alteration is one
of the STRATIFY items, this result may indicate that per-
sons with cognitive impairments were more likely to
decline to give written consent or even to die. In a further
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analysis of STRATIFY sub-items, however, no significant
group differences could be identified.

Conventional geriatric fall risk assessment tests and
additional clinical parameters
Several clinical parameters as well as geriatric assess-
ment tests were performed by clinical staff members on
admission to the geriatric department. The clinical para-
meters were age, sex and body mass index (BMI).
Furthermore, the St. Thomas Risk Assessment Tool in
Falling Elderly Inpatients (STRATIFY) score [7] and the
Barthel index [20] were assessed, and the Timed Up&Go
test [6] was performed plus an additional 20 m walkway.
Apart from these standardized methods, the multidis-

ciplinary geriatric care team assessed individual fall risk
using a self-developed rating scale, which simply con-
sists of three values: no risk, low risk and high risk.
In addition to the above-mentioned assessments which

are performed during hospital stays, in the second phase
of the study - conducted one year after the first phase - we
used telephone interviews in order to assess fall events
within the last year as well as general physical activity
levels. A detailed account of physical activity levels among
fallers and non-fallers can be found in [21]. The fall-
related interviews were structured in accordance with the
Prevention of Falls Network Europe (ProFaNE) consensus
criteria [22] and are described in more detail in [18].

Sensor equipment
During the inpatient phase of the study, all participants
wore a wireless triaxial accelerometer system (Freescale
RD3152MMA7260Q) on a belt around the waist (Figure 1)
during the Timed Up&Go test and the 20 m walkway in
the physiotherapy department of the clinic. The data were
transmitted to a PC and stored for processing.

Classification model induction and evaluation
In order to evaluate the predictive performance of the sev-
eral fall risk assessment tools, we chose a two-fold
approach. First of all, we used the two dedicated fall risk
assessment scales - the STRATIFY score and the Timed
Up&Go test - along with the care team score to distin-
guish between fallers and non-fallers within the year of fol-
low-up. The cut-off points were set as proposed by the
developers in their original publications: ≥ 2 points for the
STRATIFY score [7], > 20s for the Timed Up&Go test [6]
and no risk vs. low/high risk for the team score. For each
score, we constructed a contingency table and calculated
sensitivity (SENS), specificity (SPEC), positive (PPV) and
negative predictive values (NPV) as well as overall classifi-
cation accuracy (ACC).
In a second step, we used all clinical and fall risk

assessment parameters to automatically induce a classifi-
cation model (model CONV). The same has been done

previously for the parameters that were extracted from
sensor data and overall activity (model SENSOR) [18].
We chose to use a logistic regression model based on its
known properties of stability and performance in small
data sets and employed the Open Source toolkit Waikato
Environment for Knowledge Analysis (WEKA, version
3.7.1, simple logistic algorithm; parameters: error on
probabilities = true, heuristic stop = 50, maximum num-
ber of iterations for LogitBoost = 5000, use cross valida-
tion = true, no weight trimming) [23]. For model
induction, the binary attribute fall within the last year
(yes/no) was used. The multi-parameter data sets were
pre-processed using a feature selection algorithm in
order to exclude parameters with low information
(WEKA, version 3.7.1, wrapper subset evaluator, employ-
ing the simple logistic regression algorithm as described
above). All automatically induced classification models
were evaluated using a ten times ten-fold cross-validation
procedure, and SENS, SPEC, PPV, NPV, ACC and the
area under the curve (AUC) were calculated. Further-
more, we computed the each model’s Brier score as a
performance measure [24], which is the mean squared
difference between the observed outcome and the pre-
dicted probability for each instance in the data set.
Finally, the positive likelihood ratios (+LR) of all models
were calculated as an additional performance measure
that spans the whole of each contingency table.

Results
Tables 1, 2 and 3 show the results of the single fall risk
assessment tests for the prediction of actual fall events
within a year after discharge from the geriatric ward. In
Table 4, all +LR values are presented. The STRATIFY
score (Table 1), a dedicated fall risk tool, has an overall
classification accuracy of 48% with a good sensitivity of
79% but a low specificity of 26%. While the NPV is 63%,
the PPV is only 43%, meaning that a positive assessment
result does not predict actual falls well.

Figure 1 Triaxial accelerometer sensor (Freescale
RD3152MMA7260Q), sensor casing and belt. No skin contact is
necessary for the sensor function
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The Timed Up&Go test results in Table 2 show an
overall classification accuracy of 50%, where a high sen-
sitivity of 90% is pitted against a very low specificity of
22%. Similar to the STRATIFY score results, the NPV is
slightly higher (75%) than the PPV (45%).
The geriatric team ’s fall risk assessment score

(Table 3) shows more balanced, though not really
much better results: A classification accuracy of 55%
is accompanied by a sensitivity of 63% and a specifi-
city of 50%. The NPV is 68% and the PPV is 44%. The
+LR values (Table 4) of all three simple fall risk
assessments (1.07, 1.15 and 1.25) confirm their low
predictive power, yet among these the team score has
the highest hit ratio.
The automatically generated classification model

CONV (Table 5) based on clinical and geriatric assess-
ment data shows markedly better performance values
than the three previous tests: The classification accuracy
is 72% with a sensitivity of 68% and a specificity of 74%.
Furthermore, both the NPV (77%) and the PPV (65%)
are balanced and on a fair level. The overall good per-
formance of this model is also shown by both the Brier
score of 0.2, an AUC of 0.74 and a statistically signifi-
cant +LR value of 2.64 (Table 4).
The classification model SENSOR (Table 6, [18])

matches the CONV model in its measures: Classifica-
tion accuracy is 70%, with a sensitivity of 58% and a
specificity of 78%. NPV (72%) and PPV (65%) are also
level. The +LR value of 2.61, however, does not reach
statistical significance due to the broader confidence
interval.

Discussion
The performances of the simple fall risk assessment
tools used in this study - the STRATIFY score, the
Timed Up&Go (TUG) test and the geriatric care team
rating - are limited. In a recent meta-analysis Oliver et
al., who have developed the STRATIFY score, report the
following values for geriatric patients: SENS 67.2%,
SPEC 51.2%, PPV 23.1% and NPV 86.5% (n = 1285
patients, four different studies) [9]. Kim et al. have also
evaluated the STRATIFY score, albeit with a much
younger cohort (mean age 56 years, n = 5489 patients,
60 fallers), and find: SENS 55%, SPEC 75.3%, PPV 2.4%
and NPV 99.3% [25]. Our results show a slightly worse
performance than was reported in the meta-analysis by
Oliver et al. [9]. This may well be due to our very small
sample size. The same applies to the Timed Up&Go
test. Nordin et al. have studied the predictive validity of
the TUG in 183 patients with a mean age of 84.3 years
and a cut-off point of 20s [26]. They report a sensitivity
of 79% and a specificity of 32%. In the large Tromsø
study Thrane et al. find sensitivity values of 44-14% and
specificity values of 58-90% for the TUG, depending on
the choice of the cut-off points (here between 12 and
17s) [27]. Kristensen et al. report SENS 95%, SPEC 35%,
PPV 41%, NPV 93%, +LR 1.5, -LR 0.1 for the TUG’s
predictive performance for patients after hip surgery
(mean age 81 years, n = 59 patients, 19 fallers, cut-off
value 24s) [11]. Our results (Table 2) also show a
remarkable sensitivity of 90% for the TUG, yet the spe-
cificity is way too low for a screening test. This is con-
firmed by the low +LR value of 1.15.

Table 1 Classification results and contingency table for
the STRATIFY score [7] (cut-off point ≥ 2 points)

STRATIFY score

contingency table

classification accuracy 48% fall within one year

sensitivity 79% yes no Sum

specificity 26% pred. yes 15 20 35

negative predictive value 63% pred. no 4 7 11

positive predictive value 43% sum 19 27 46

Table 2 Classification results and contingency table for
the Timed Up&Go test [6] (cut-off point > 20s)

Timed Up&Go test

contingency table

classification accuracy 50% fall within one year

sensitivity 90% yes no Sum

specificity 22% pred. yes 17 21 38

negative predictive value 75% pred. no 2 6 8

positive predictive value 45% sum 19 27 46

Table 3 Classification results and contingency table for
multidisciplinary geriatric team fall risk score (4 missing
values)

TEAM assessment

contingency table

classification accuracy 55% fall within one year

sensitivity 63% yes no Sum

specificity 50% pred. yes 10 13 23

negative predictive value 68% pred. no 6 13 19

positive predictive value 44% sum 16 26 42

Table 4 +LR values of all five classification models
including the confidence intervals

model name +LR value 95% confidence interval

STRATIFY score 1.07 0.71-1.61

Timed Up&Go test 1.15 0.83-1.59

Team Assessment 1.25 0.63-2.49

model CONV 2.64 1.07-6.5

model SENSOR 2.61 0.94-7.26
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Both tests are very simple to perform, either by history
taking or by conducting a simple physical test, and both
take only a couple of minutes. Therefore, these tests may
serve well - and in fact are frequently used - as general
screening methods, if necessary followed by more com-
plex, multimodal assessment inventories such as the Phy-
siological Profile Assessment (PPA) [28].
The geriatric care team fall risk score may be perceived

as a very subjective measure, yet it represents the profes-
sional opinion of several experienced experts that is very
likely based on an intuitive understanding of the complex
concept ‘fall risk’ as well as on a multitude of observa-
tions of a certain patient. This solid foundation is
reflected by the fair performance values of this score,
which are the most balanced of the three simple tests.
Similar results have been found in [26], where ‘global rat-
ing of fall risk’ (low/high) by staff members achieved a
sensitivity of 56% and a specificity of 80%.
The automatically induced model CONV (Table 5)

shows better performance values than all of the above
tests. This is of course due to the approach of including
basic clinical data such as sex, BMI and age in the induc-
tion process, but also to the combination of different
assessment methods ranging from a physical test (TUG)
over a measure of daily activity capability (Barthel index)
to a fall risk score (STRATIFY). In the induction process,
the most relevant parameters or scores are identified and

included, so that performance is optimized. The multi-
tude of candidate parameters may capture the multi-
factorial concept of fall risk more adequately than a sin-
gle test. The performance measures show that CONV
can identify most of the fallers and non-fallers correctly,
based on their one-year outcome. Thus, this model could
be suitable as a screening test for geriatric patients, facili-
tating the prescription of preventive measures.
When compared to the previously computed SENSOR

model, which is based merely on accelerometer sensor
data and overall activity levels, we can state that this
model performs almost equally well than the CONV
model. The Brier scores (0.21 vs. 0.2) are nearly the
same, as are the AUC (0.74 vs. 0.72) and +LR values
(2.64 vs. 2.61). Therefore, regarding our preliminary
results we may conclude that by using sensor data -
which may be recorded over extended periods of time
during normal daily activities with a small and unobtru-
sive device - we can match the performance of conven-
tional methods with regard to fall risk assessment in a
sample of geriatric patients. The advantage of our
approach is of course the absent necessity of an expert
physiotherapist, nurse or physician to perform the assess-
ment. This could be done by the wearable device itself,
using long-term motion data along with the developed
algorithm. Potential drawbacks of our approach are pos-
sible technical failures such as data loss from the acceler-
ometer device, acceptance issues, limited battery lifetime
and the current lack of technical infrastructures (e.g. sen-
sor-enhanced health information systems [29,30]). Tech-
nical equipment and infrastructures are of course costly,
but so are falls and their consequences in the first place.
Future prospective studies will have to be conducted

with more patients and over an even longer period of
time, evaluating the validity of our approach and our
preliminary results in an independent patient sample on
the one hand and the cost-benefit relation on the other
hand. From an ethics point of view, however, one might
argue that every fall that is avoided is a big benefit for
the individual.
From a technical point of view, more research work is

needed to look into the potential predictive parameters
that can be extracted from sensor data [31]. Further-
more, in this study we have not considered any informa-
tion from the patients’ electronic health records (EHRs)
[32], such as diagnoses or additional history. Consider-
ing the multi-factorial aetiology of falls [33], our sensor-
based information may well be used in combination
with resp. as supplement to conventional geriatric
assessment tools and other clinical data.

Limitations
Our sample size is small and this - in comparison with
large trials evaluating the conventional methods-limits

Table 5 Classification results and contingency table for
logistic regression model based on clinical data and fall
risk assessment tests

model CONV

classification accuracy 72%

sensitivity 68% contingency table

specificity 74% fall within one year

negative predictive value 77% yes no Sum

positive predictive value 65% pred. yes 13 7 20

Brier score 0.20 pred. no 6 20 26

AUC 0.74 sum 19 27 46

Table 6 Classification results and contingency table for
logistic regression model based on sensor data and long-
term physical activity level

model SENSOR

classification accuracy 70%

sensitivity 58% contingency table

specificity 78% fall within one year

negative predictive value 72% yes no Sum

positive predictive value 65% pred. yes 11 6 17

Brier score 0.21 pred. no 8 21 29

AUC 0.72 sum 19 27 46
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the generalizability of our results. So does the fact that,
due to the sample size, we cannot use separate training
and test data sets for model induction. Nevertheless, we
have chosen a well-established procedure to avoid over-
fitting of our models, namely ten times, ten-fold cross-
validation. The necessity for written consent to be
returned by the patients via surface mail may have led to
the exclusion of persons with cognitive impairments,
even though consent by a third party was an option.
Furthermore, in our follow-up study telephone interviews
were used to identify fall events. This approach is error-
prone, as many factors (e.g. cognitive impairment) may
affect the recall of such events. In addition to this, con-
sidering the group of patients, within a period of twelve
months risk factors may have changed significantly.
Therefore, daily recordings as well as more frequent
interviews, e.g. on a monthly basis as recommended in
ProFaNE consensus criteria recommendation no.7 [22],
might have reduced the error rate, but have not been per-
formed due to a lack of resources. Hence, in our future
prospective studies, we will include a more stringent
monitoring approach.
From an economic perspective, it remains unclear if the

prediction results are good enough to justify the imple-
mentation of costly preventive measures for the false
positives [5]. A cost-benefit analysis should be conducted,
comparing direct and indirect costs of fall events with
those of preventive measures. Furthermore, despite pro-
mising preliminary studies (e.g. [34-36]), the patients’
acceptance of long-term monitoring should be assessed,
e.g. using the Sensor Acceptance Model [37].

Conclusions
To the authors’ knowledge, this is the first study to com-
pare sensor-based fall risk assessment to conventional
assessment tools in a prospective long-term setting. Our
preliminary results indicate that a fall risk model based on
accelerometer sensor data performs almost as well as a
model that is derived from conventional geriatric assess-
ment data. Therefore we may conclude that such a model
can provide relevant information and thus - considering
the multi-factorial aetiology of fall events - could be valu-
able not as a replacement of professional assessment
scores and tools, but as a supplementary method which is
feasible to be used outside of a supervised clinical
environment.
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