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Abstract

Background: Syndromic surveillance systems can potentially be used to detect a bioterrorist attack earlier than
traditional surveillance, by virtue of their near real-time analysis of relevant data. Receiver operator characteristic (ROC)
curve analysis using the area under the curve (AUC) as a comparison metric has been recommended as a practical
evaluation tool for syndromic surveillance systems, yet traditional ROC curves do not account for timeliness of
detection or subsequent time-dependent health outcomes.

Methods: Using a decision-analytic approach, we predicted outcomes, measured in lives, quality adjusted life years
(QALYs), and costs, for a series of simulated bioterrorist attacks. We then evaluated seven detection algorithms applied
to syndromic surveillance data using outcomes-weighted ROC curves compared to simple ROC curves and timeliness-
weighted ROC curves. We performed sensitivity analyses by varying the model inputs between best and worst case
scenarios and by applying different methods of AUC calculation.

Results: The decision analytic model results indicate that if a surveillance system was successful in detecting an attack,
and measures were immediately taken to deliver treatment to the population, the lives, QALYs and dollars lost could be
reduced considerably. The ROC curve analysis shows that the incorporation of outcomes into the evaluation metric has
an important effect on the apparent performance of the surveillance systems. The relative order of performance is also

heavily dependent on the choice of AUC calculation method.

Conclusions: This study demonstrates the importance of accounting for mortality, morbidity and costs in the
evaluation of syndromic surveillance systems. Incorporating these outcomes into the ROC curve analysis allows for
more accurate identification of the optimal method for signaling a possible bioterrorist attack. In addition, the
parameters used to construct an ROC curve should be given careful consideration.

Background

Given the realistic possibility of bioterrorist attacks, a key
public health challenge lies in identifying practical dis-
ease surveillance methods that will minimize associated
casualties and costs by enabling a timely response. Ill-
nesses caused by many bioterrorism agents, including
anthrax, present with a prodrome indistinguishable from
that of influenza or other common illnesses, making syn-
dromic surveillance systems a useful option for the detec-
tion of bioterrorist attacks [1]. These systems differ from
traditional public health surveillance methods, which rely
upon reported disease-specific diagnoses and instead use
statistical algorithms to detect aberrations in pre-diag-
nostic data. For example, cases of inhalational anthrax
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may manifest as an increase in the number of ICD-9
codes for bronchitis, cough, or pneumonia in an elec-
tronic medical record system [2].

Due to the paucity of authentic data on bioterrorist
attacks, researchers have used simulated bioterrorist
attacks to assess the performance of syndromic surveil-
lance systems [3]. Previous studies have used the sensitiv-
ity, specificity, predictive values, and variations of
receiver operating characteristic (ROC) curves to evalu-
ate the performance of syndromic surveillance systems
using simulated data [3]. The success of a surveillance
system, however, will depend not only on whether the
attack was detected, but also on the timeliness with which
it was detected [4]. Kleinman et al simulated a set of
hypothetical bioterrorist attacks with anthrax [2] and,
using modified ROC curve analysis, evaluated seven
detection algorithms by weighting the sensitivity measure
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by the time lag in detecting an attack. They found that
both the absolute performance as well as the relative per-
formance of the systems differed after timeliness was
incorporated into the metric [4].

Although timeliness adds an important element to the
sensitivity metric, it remains a proxy for key health and
financial outcomes: deaths, illnesses, and costs. In a fol-
low-up study, Kleinman et al weighted the sensitivity
metric by the proportion of affected individuals and
found again that the weighting changed the relative per-
formance of the systems [5]. This study extends previous
research by incorporating associated costs, lives lost and
illness averted into the sensitivity metric of ROC curves.
It accounts for the health and financial benefits of early
detection, while also accounting for consequences of side
effects of prophylaxis, adverse events from treatment,
and the long-term sequelae of disease.

Methods

We simulated a series of anthrax attacks and performed
an evaluation of seven statistical detection algorithms
applied to syndromic surveillance data. The evaluation
employed weighted ROC curves that incorporate the fol-
lowing outcomes in order of increasing comprehensive-
ness: lives, quality-adjusted life years (QALYs), and costs.
A decision-analytic approach was used to predict out-
comes using data from the simulated attacks. Predicted
outcomes were then used to construct outcomes-
weighted ROC curves for each of the candidate metrics.

Simulated Attack Data
We used two data sets: simulated attack data and
observed surveillance system data. Full data on the simu-
lations and observed data can be found in a previous pub-
lication; we offer a brief summary here [2]. The observed
data are counts of respiratory complaints recorded in
electronic medical records of the ambulatory encounters
of approximately 250,000 patients in eastern Massachu-
setts. In the simulation data, an attack is assumed to be
the result of the release of anthrax spores from a crop
dusting airplane. The attack resulted in simulated cases,
of which a proportion corresponding to the proportion of
the total population included in the observed surveillance
system were added to the surveillance system data, by zip
code. We then assessed the evidence for the attack using
various statistical algorithms described below. Since
detection ability depends on the time of year and day of
the week, we repeated this exercise with three separate
simulated attacks on each day of 2003. We recorded the
simulated number affected on each day. The total popula-
tion in this region is approximately 2.5 million [2].

We recorded which of the simulated attacks were
detected and on which day, by each of seven algorithms,
using 11 different sensitivity thresholds. Three of the
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algorithms, Scan 1, Scan 3, Scan 7, used space-time scan
statistic methods with maximum signal durations of one,
three or seven days respectively [6]. Three others, GLMM
1, GLMM 3, GLMM 7 used a Poisson generalized linear
mixed effects model with fixed one, three or seven day
durations [7]. The last method used a time series
approach [4]. The number of false positive signals that
occurred over a one-year period for each of the seven
methods and thresholds was calculated as the number of
"detections" in the absence of simulated attacks.

Decision analytic model

Figure 1 depicts the states that an individual has the
potential to progress through following a bioterrorist
attack with anthrax. A healthy individual exposed to
spores of bacillus anthracis may develop anthrax illness.
The illness begins in the prodromal phase and, if not
treated, will progress to the fulminant phase according to
a time-dependent probability distribution [8]. Death was
assumed to occur within 24 hrs of developing fulminant
disease, regardless of whether medical treatment was
provided [8]. Using the time-dependent probability of
disease progression, we were able to estimate the number
of individuals that would be expected to fall into each ill-
ness state (i.e.,, prodromal illness, fulminant disease,
recovery with and without long-term sequelae, death) on
each of days one through ten following a given attack.

If an attack was signaled by the detection system, it was
assumed that all cases of anthrax would receive appropri-
ate and timely medical care. Those with prodromal illness
would be treated with multiple antibiotics, with regimens
similar to those used for the anthrax attacks in the U.S. in
2001 [8]. If treated, an individual with prodromal illness
has a chance of survival. Those who recover may experi-
ence sequelae of anthrax illness. Those with fulminant
disease would be admitted to critical care units and
treated, but were assumed to ultimately die from anthrax
exposure.

The remainder of the population of Eastern Massachu-
setts would be considered at risk, and would be started on
antibiotic prophylaxis with a 60-day course of oral cipro-
floxacin. Prophylaxis was considered to be 100% effective
in preventing the development of illness among those
exposed to anthrax. A percentage of these individuals
would be expected to experience mild or severe adverse
effects from the medication. However, it was assumed
that oral ciprofloxacin does not carry any risk of mortal-

ity.
Decision Analysis Inputs
The model inputs were derived using a combination of

literature review, empirical calculation, and expert inter-
view. They are summarized in Table 1.
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Analysis of Lives and Quality-Adjusted Life-Years (QALYs)
Three main endpoints were included in the analysis: lives,
quality-adjusted life-years, and costs. The total number
of deaths, given detection on a given day following an
attack, was determined by summing the number of fulmi-
nant and dead cases and adding to this the number of
prodromal cases expected to progress to the fulminant
stage despite treatment. The probabilities of progressing
through the states of anthrax illness were taken from a
comprehensive review of anthrax illness [8]. The base
case estimate is that associated with the 2001 US attacks,
where six out of seven individuals with prodromal illness
survived. The probabilities associated with prophylactic
antibiotics were derived from CDC surveillance reports
of the 2001 prophylaxis population [9,10]. Other proba-
bilities were derived from the literature and expert opin-
ion. (P. Brachman, pers. comm.)

To calculate the number of quality-adjusted life years
gained through earlier detection, each final health state
was assigned a utility value between zero and one, one
being equivalent to perfect health and zero being equiva-
lent to death. Utilities represent individuals' relative pref-

erence for a health state and are used to adjust for the
lower quality of life associated with short- or long-term
morbidity [11]. By adjusting years of life by their associ-
ated health state utilities, the number of quality adjusted
life years (QALYs) can be calculated. One QALY can be
roughly described as equivalent to one year in perfect
health. This metric accounts for both life years gained
due to averted deaths and morbidity averted due to ear-
lier detection. The number of life years gained for an
averted death was calculated using US life tables and an
average population age of 36.5 years.

The long-term sequelae of anthrax illness include
depression, anxiety and long-term cardiac and respira-
tory disability [12]. The base case estimate for the utility
associated with this state assumes life-long sequelae [13].
The range for sensitivity analysis varies the duration of
sequelae from 5 years to life. Side effects from antibiotics
were assumed to last for three days in the base case and
were varied from one to seven days in the sensitivity anal-
ysis. Health state utilities were derived from the literature
[14]. An annual discount rate of 0.03 was applied to all
future health states.
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Table 1: Decision analytic model inputs
Variable Value Range for sensitivity analysis Source
Health state transition probabilities
Probability of recovery from fulminant anthrax 0 - [8]
Probability of recovery from prodromal anthrax 0.857 0.66-0.9375 [8]
Probability of prophylactic antibiotic effectiveness 1.0 - [9]
Probability of developing mild side effects from antibiotics 0.57 0.3-0.57 [10]
Probability of developing severe side effects from antibiotics 0.003 0-0.01 [10]
Probability of seeking medical attention for mild side effects 0.16 0-0.25 [10]
Probability of seeking medical attention for severe side effects 1.0 - [10]
Health state utility values
Death 0 -
Recovery from anthrax 0.56* 0.4*-0.56t [12,13,24],
Mild side effects from antibiotics 0.998 0.994-0.999 [10,14]
Severe side effects from antibiotics 0.992 0.980-0.997 [10]
No side effects from antibiotics - healthy 1.0 -
Cost estimates (2006 USD)
Cost of treatment of prodromal anthrax 9,223 9223-18446* [15-17],
Cost of a course of prophylactic antibiotics 638 - [19,20]
Cost of office visit for mild side effects 30 - [17]
Cost of treatment of severe side effects 189 - [17,18]
Willingness to pay to avoid sequelae associated with recovery from anthrax ~ 214,9105 peryear Life*-5 yrst [12,22],
Value of a statistical life 73m 5.51m-13.23m [22]

*This health state utility was matched to the EQ-5D [24], and assumed to continue throughout the life span. An average age of 36.5 years was
assumed according to the US Census Bureau and average remaining life span of 43 years was calculated using the 2002 US Life Tables [25,26].
A five year duration for this health state utility was used as the upper bound.

*The upper bound was estimated by doubling the cost for the base case.

SThis estimate was adjusted to assume that one out of every six anthrax patients would be able to return to work.

Cost analysis

Defining outcomes in terms of costs allows for the most
comprehensive adjustment as it takes into account mor-
bidity and mortality, as well as cost of treatment. Costs of
medical care were based on Medicare payment rates,
wholesale prescription drug prices, and published esti-
mates from health economic literature. The cost of treat-
ing prodromal anthrax included costs of hospitalization
and infectious disease consultative services [15-17]. The
cost associated with side effects is that of a brief office
visit for those with mild side effects who seek treatment
and is the cost of an emergency room visit for all those
with severe side effects [17,18]. The cost of prophylactic
antibiotics assumed a 60-day regimen of oral ciprofloxa-
cin [19,20]. All costs were converted to 2006 US dollars
[21].

In the cost analysis, health effects are converted to dol-
lar values using published willingness-to-pay amounts
and estimates for the value of a statistical life [12,22]. For
example, the published value for willingness to pay to
avoid permanent disability was $1,032 per day and this
value would replace the health state utility value used in
the QALY analysis [22]. Therefore, the cost analysis
includes direct costs of medical care as well as morbidity
and mortality effects converted into dollar values.

Weighted ROC curves

We used weighted ROC curves to determine the relative
performance of the detection algorithms. Traditional
ROC curves are constructed by plotting the sensitivity
versus 1-specificity for various decision thresholds of a
test. A comparison of the area under the ROC curve
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(AUC) can be used to determine the relative performance
of several different tests [4]. The weighted ROC curves
used here replace the sensitivity of the test traditionally
found on the y-axis of the ROC curve with a metric
weighted by health outcomes.

In the case of disease surveillance, the benefit of detec-
tion depends on the number of adverse events averted,
which in turn depends on the timeliness of detection. The
surveillance system was considered to have failed if the
attack was not detected before the tenth day, as it is gen-
erally accepted that an anthrax epidemic would be caught
by traditional surveillance methods no later than the
tenth day [4]. Using the expected outcomes on day nine
as a baseline, we calculated the benefits of early detection
by weighting each detected attack by the proportion of
the outcome saved given the day of detection. The pro-
portions of lives saved for each detected attack were then
averaged together with undetected attacks, over all 1095
simulations, to determine a weighted sensitivity for each
algorithm at each threshold. This same procedure was
used to determine a weighted sensitivity for QALYs and
costs saved.

The weighted ROC curves were constructed with the
weighted sensitivity on the y-axis, and the false positive
rate per day on the x-axis. The area under the weighted
ROC curves (AUC) was calculated for each of the seven
statistical algorithms across the three dimensions of lives,
QALYs and costs. The relative performance of the seven
statistical algorithms was assessed by comparing their
respective AUCs. In the base case analysis, the AUC was
calculated using a non-parametric trapezoidal method
[23].

Sensitivity Analysis

Three types of sensitivity analyses were performed. First,
input parameters were varied using the ranges identified
in Table 1 to represent best and worst case scenarios.
These scenarios reflect the parameter sets that bound the
results for best and worst performance of the surveillance
systems. Second, we reduced the proportion of the popu-
lation required to receive prophylaxis, assuming it would
be possible to accurately identify the location of the
release, thus requiring prophylaxis for only 40% of the
population. Third, we used alternate methods to calculate
the AUC: a rectangular method and a truncated method.
The rectangular method assumes that movement
between test thresholds is discrete and that the sensitivity
of the systems remains constant between false positive
rates. The truncated method is used to reflect the fact
that a high false positive rate would not be tolerated, and
that only a portion of the curve is relevant. We used a
false positive rate of 0.1 alarms per day as a cut-off point.
Figure 2 shows a graphical depiction of the three AUC
methods.
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Results

Lives, QALYs, and Costs by Day of Detection

Figure 3 shows the number of people predicted to have
each of the three phases of Anthrax illness on Days 1
through 9 following an attack. The remainder of the pop-
ulation at risk would be eligible for prophylaxis. Of note,
the increase in the total number of people affected each
day follows a non-linear pattern. Figure 4 depicts the
number of lives, QALYs and costs that we predict could
be saved by day of detection. Again, the change by day is
non-linear, indicating that a one-day delay in detection
has a differential impact depending on the number of
days that have elapsed since the attack. For instance, a
delay from day 4 to day 5 would result in a larger loss than
a delay from day 1 to day 2. Detection in the first three
days has a similar effect; in this case our model estimates
that approximately 1400 lives, 50,000 QALYs, and $18 bil-
lion USD could potentially be saved (Figure 3).

Weighted ROC Curve Analysis - Base case

Using weighted ROC curves that incorporate lives saved,
QALYs gained, or costs, the Time-series system is consis-
tently the best-performing method. GLMM?7 consistently
performed worst and GLMM1 is second best. The rela-
tive performance of other tests varies by the measure
used. (Table 2) These areas were calculated using the
trapezoidal method, which assumes that the sensitivity of
the detection algorithms is continuously modifiable. In
some cases the curves required extrapolation to a false
positive rate of 1 alarm per day- in these cases the extrap-
olation point chosen was (1,1).

Weighted ROC Curve Analysis - Sensitivity analysis

In the sensitivity analysis that assumes the most optimis-
tic scenario, there is little change in the relative perfor-
mance of the candidate methods. Time-series remains
the best-performing and GLMM?7 is consistently the
worst. (Table 3) The relative order of performance does
change for the worst case scenario and Time-series is no
longer consistently the best-performing method. (Table
4)

When the population targeted for prophylaxis is
reduced to 40% of the population in the base case, the rel-
ative ordering of performance remains consistent with
that of the base case. (Table 5)

When the AUC calculation method is changed from
trapezoidal to either rectangular or truncated, there is
marked difference in the relative performance of the sur-
veillance systems, as is demonstrated in Tables 6 and 7.
While GLMM 7 remains the worst performer, the two
systems that consistently had the top performances with
the trapezoidal calculation, Time-series and GLMM 1,
have relatively poor performance using either the rectan-
gular or the truncated method. The Scan systems appear
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to have the best performance using these methods, with
Scan 3 being the best performer across all analyses. It is
also notable that the ordering of performance is some-

incorporate these outcomes into the evaluation metric.
The outcomes were lives lost, QALYs lost, and costs
incurred, costs being the most comprehensive of the
three. In the base case, using the trapezoidal method of
AUC calculation, the relative order of performance
remained fairly consistent across the three outcome
weights. However, we found the relative order of perfor-
mance was sensitive to the model inputs as well as the
method of AUC calculation.

Our model predicts that, if undetected until the ninth
day, a bioterrorist attack with bacillus anthracis would
have a significant detrimental effect on the health of the
population. If a surveillance system was successful in
detecting the attack before the ninth day, and measures
were immediately taken to deliver treatment to the popu-
lation, the lives, QALYs and dollars that would be lost
could be reduced considerably. Earlier detection results
in better outcomes: our model estimates an absolute cost
savings of several billion dollars for a detection on the
eighth day rather than the ninth. Conversely, a false posi-
tive alarm has negative consequences associated with the
unnecessary use of prophylactic antibiotics, namely the
cost incurred and the adverse effects of the medication.
Consequently, a high-performing surveillance system
should not only be capable of detecting an attack before
the ninth day, but should also detect the attack in as
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ing a bioterrorist attack with bacillus anthracis.

timely a manner as possible and with a low rate of false
positives.

Public health authorities must consider both the posi-
tive and negative aspects of the programs they choose to
implement. In the case of surveillance for bioterrorism
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attacks, the benefits of early detection must be balanced
by the adverse effects of false positive alarms, an aspect of
surveillance systems that supports the use of weighted
ROC curve analysis in their evaluation. Results compar-
ing alternative surveillance algorithms could be used to
select an optimal algorithm depending on the outcome
public decision makers choose to optimize. This kind of
information, and the cost information assembled in Table
1, can help inform discussions about the value and appro-
priate role for syndromic surveillance.

When timeliness was incorporated into the evaluation
metric by Kleinman et al [4], the Time-series method was
the best performer, consistent with our results. The order
of relative performance of the other systems however was
different in the present analysis. Using a different weight-
ing scheme, Kleinman et al also performed an evaluation
of the systems that incorporated the number of people
affected by the attacks [5], and found an order of relative
performance that differs from both their previous analy-
sis as well the present analysis. As noted in the results, the
impact of a delay in detection varies with day of detec-
tion. We have shown that this variation also affects the
apparent performance of the surveillance systems, and
thus the incorporation of outcomes into the evaluation
metric has an important effect on their ranking.

It is reasonable to conclude that the shape of the out-
break also plays a part in the relative order of perfor-
mance. If the increase in the number affected is greater
during the first days following the attack, it follows that a
detection system that performs best in those first days
would result in fewer losses. However, if the increase in
the number of affected people is highest several days after
the attack, a detection system with a higher cumulative
sensitivity during the preceding days would have the best
performance, even if detection is delayed by several days.
Regardless of the shape of the outbreak, in all but a linear
relationship between number affected and time, the
incorporation of outcomes has a significant impact on
relative performance. The modified ROC curves
described in this paper allow for several dependent vari-
ables to be taken into account in one evaluation metric.

The results remained fairly constant in the 'best' and
'‘worst' case scenario analyses, indicating that our model
is robust to variation in model inputs. However, the rela-
tive order of performance is heavily dependent on the
choice of AUC calculation method. The rectangular and
truncated methods produced results quite different from
the classic trapezoidal method. The trapezoidal method
assumes that the surveillance system threshold can be
adjusted in a continuous manner, such that the false posi-
tive rate can be set anywhere between zero and one. This
may not in fact be a reasonable assumption given the
complexity underlying the statistical algorithms used by
the surveillance systems. Moreover, due to the need for
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Table 2: AUC of weighted ROC curves - base case
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Lives - weighted QALYs - weighted

Costs - weighted Timeliness - weighted [4]

System AUC System AUC System AUC System AUC
TS 0.514 TS 0.448 TS 0.424 TS 0.65

GLMM 1 0.447 GLMM 1 0411 GLMM 1 0.397 Scan 1 0.41

Scan 1 0.431 Scan 1 0.36 GLMM 3 0.336 Scan 3 0.378
Scan 3 0.413 GLMM 3 0.356 Scan 1 0.333 Scan7 0.349
GLMM 3 0.409 Scan 3 0.34 Scan 3 0.313 GLMM 3 0.276
Scan 7 0.377 Scan7 0.309 Scan7 0.283 GLMM 7 0.271
GLMM 7 0.316 GLMM 7 0.269 GLMM 7 0.251 GLMM 1 0.235

extrapolation and the resulting shape of the curves (Fig-
ure 2), this method gives more weight to the latter por-
tion of the curve where there are fewer data points. The
rectangular method assumes that the thresholds are dis-
crete and that the sensitivity of each detection algorithm
has a preset maximum. The area is therefore limited by
the preset maximum and the relative performance as
measured by the AUC is thus affected. The truncated
method goes a step further and assumes that there is a
false positive rate beyond which the negative conse-
quences are too great to consider using the system, allow-
ing the remainder of the graph to be disregarded. In this
case, we arbitrarily chose 0.1 false positives per day as the
cutoff. As is demonstrated in the results, the relative
ordering changed significantly from that determined in
the base case.

Further research into the differences between the
methods of area calculation is needed. If these evaluation
methods were adopted and used by public health authori-
ties, consideration should be given to the assumptions
underlying the method of ROC curve construction,
including the shape of the outbreak, the flexibility of the
detection algorithms and the threshold for an acceptable
false positive rate. For example, if an acceptable false pos-

itive rate were defined, this would restrict the portion of
the curve to be studied and potentially minimize the vari-
ation when alternative calculation methods are used. The
relative performances of the surveillance systems within
these bounds would be more accurately applicable to a
real-world setting.

Furthermore, the interpretation of these weighted ROC
curves is limited due to the nature of the data used to
construct the axes, a constraint shared by earlier analyses
of this type [4]. The false-positive rate on the x-axis is
based on only one year of historical data while the sensi-
tivity is calculated from a simulated data set with multiple
events that occur an arbitrary number of times. Rather
than using the analysis to draw conclusions about the
absolute performance of each system, the intention is to
compare the area under the weighted ROC curves from
the seven statistical algorithms in order to assess their
performance relative to each other.

Although the probability and utility estimates were the
best estimates available from the literature, we had lim-
ited data on some model inputs due to the limited num-
ber of anthrax cases. For example, the probability of
recovery from anthrax disease was based on the only data
available, the reported case series of seven individuals

Table 3: Sensitivity analysis of AUC of weighted ROC curves - best case scenario

Lives - weighted QALYs - weighted

Costs - weighted

System AUC System AUC System AUC
TS 0.540 TS 0.499 TS 0.533
Scan 1 0.470 GLMM 1 0.432 GLMM 1 0.469
GLMM 1 0.468 Scan 1 0.406 Scan 1 0.469
Scan 3 0.454 GLMM 3 0.385 Scan 3 0.455
GLMM 3 0.438 Scan 3 0.384 GLMM 3 0.439
Scan 7 0.413 Scan 7 0.348 Scan 7 0.415
GLMM 7 0.339 GLMM 7 0.293 GLMM 7 0.340




McBrien et al. BMC Medical Informatics and Decision Making 2010, 10:25
http://www.biomedcentral.com/1472-6947/10/25

Table 4: Sensitivity analysis of AUC of weighted ROC curves - worst case scenario
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Lives - weighted

QALYs - weighted

Costs - weighted

System AUC System AUC System AUC

TS 0.467 GLMM 1 0.375 GLMM 1 0.329
GLMM 1 0.434 TS 0.321 GLMM 3 0.242
Scan 1 0.400 GLMM 3 0.306 TS 0.212
Scan 3 0.391 Scan 1 0.273 Scan 1 0.178
GLMM 3 0.385 Scan 3 0.263 Scan 3 0.170
Scan7 0.352 Scan7 0.240 GLMM 7 0.168
GLMM 7 0.300 GLMM 7 0.225 Scan7 0.155

Table 5: Sensitivity analysis of AUC of weighted ROC curves - 40% prophylaxis

Lives - weighted QALYs - weighted Costs - weighted

System AUC System AUC System AUC

TS 0.514 TS 0.467 TS 0.449
GLMM 1 0.447 GLMM 1 0.415 GLMM 1 0.403
Scan 1 0.431 Scan 1 0.371 Scan 1 0.348
Scan 3 0.413 GLMM 3 0.363 GLMM 3 0.345
GLMM 3 0.409 Scan 3 0.351 Scan 3 0.327
Scan7 0377 Scan7 0318 Scan7 0.296
GLMM 7 0.316 GLMM 7 0.275 GLMM 7 0.259

Table 6: Sensitivity analysis of AUC of weighted ROC curves - rectangular calculation method

Lives - weighted QALYs - weighted Costs - weighted

System AUC System AUC System AUC

Scan 3 0.364 Scan 3 0.297 Scan 3 0.272
Scan7 0.347 Scan7 0.282 Scan7 0.258
Scan 1 0.325 Scan 1 0.267 Scan 1 0.245
GLMM 3 0.306 TS 0.254 TS 0.235
TS 0.303 GLMM 3 0.248 GLMM 3 0.227
GLMM 1 0.260 GLMM 1 0.213 GLMM 1 0.195
GLMM 7 0.246 GLMM 7 0.199 GLMM 7 0.182
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Table 7: Sensitivity analysis of AUC of weighted ROC curves - truncated method

Lives - weighted QALYs - weighted

Costs - weighted

System AUC System AUC System AUC
Scan 3 0.205 Scan 3 0.163 Scan 3 0.148
Scan 1 0.201 Scan 1 0.162 Scan 1 0.148
Scan7 0.171 Scan7 0.133 Scan7 0.119
GLMM 3 0.104 GLMM 3 0.082 TS 0.075
TS 0.097 TS 0.081 GLMM 3 0.074
GLMM 1 0.065 GLMM 1 0.052 GLMM 1 0.047
GLMM 7 0.041 GLMM 7 0.032 GLMM 7 0.029
treated for prodromal anthrax in the 2001 outbreak [8].

Furthermore, the analysis assumed that all individuals
with symptomatic anthrax illness would be treated on the
day of detection and that antibiotic prophylaxis would be
provided within one day to all persons at risk, an ideal-
ized scenario that may not be met in practice.

Conclusion

This study demonstrates the importance of accounting
for mortality, morbidity, and costs. Incorporating these
outcomes into the ROC analysis allows for more accurate
identification of the optimal method for signaling a possi-
ble bioterrorist attack. Future research should consider
the capabilities of current surveillance systems and deter-
mine acceptable false positive rates, in order to appropri-
ately calibrate available surveillance systems.
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