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Abstract 

In cancer research there is much interest in building and validating outcome prediction models to support treat-
ment decisions. However, because most outcome prediction models are developed and validated without regard 
to the causal aspects of treatment decision making, many published outcome prediction models may cause harm 
when used for decision making, despite being found accurate in validation studies. Guidelines on prediction model 
validation and the checklist for risk model endorsement by the American Joint Committee on Cancer do not protect 
against prediction models that are accurate during development and validation but harmful when used for decision 
making. We explain why this is the case and how to build and validate models that are useful for decision making.
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Introduction
Treatment decisions in cancer care are guided by treat-
ment effect estimates from randomized controlled trials 
(RCTs). RCTs estimate the average effect of one treat-
ment versus another in a certain population. However, 
treatments may not be equally effective for every patient 
in a population. Knowing the effectiveness of treatments 
tailored to specific patient and tumor characteristics 
would enable individualized treatment decisions. Getting 
tailored treatment effects by averaging outcomes in dif-
ferent patient subgroups in RCTs requires an infeasible 
number of patients to have sufficient statistical power in 
all relevant subgroups for all possible treatments. Instead, 

we must rely on statistical modeling, potentially using 
observational data from non-randomized studies to fur-
ther the individualization of treatment decisions.

The American Joint Committee on Cancer (AJCC) 
recommends that researchers develop outcome predic-
tion models in an effort to individualize treatment deci-
sions [1, 2]. Outcome prediction models, sometimes 
called risk models or prognosis models, use patient and 
tumor characteristics to predict a patient outcome such 
as cancer recurrence or overall survival. The assumption 
is that the predictions are useful for treatment decisions 
using rules such as “prescribe chemotherapy only if the 
outcome prediction model predicts the patient has a high 
risk of recurrence”. Many outcome prediction models are 
published every year. Recognizing the importance of reli-
able predictions, the AJCC published a checklist for out-
come prediction models to ensure dependable prediction 
accuracy in the patient population for which the outcome 
prediction model was designed [1]. However, accurate 
outcome predictions do not imply that these predic-
tions yield good treatment decisions. In this comment, 
we show that outcome prediction models rely on a fixed 
treatment policy which implies that outcome prediction 
models that were found to accurately predict outcomes 
in validation studies can still lead to patient harm when 
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used to inform treatment decisions. We then give guid-
ance on how to evaluate whether a model has value for 
decision-making and how to develop models that are 
useful for individualized treatment decisions.

Accurate predictions have unknown value 
for decision‑making
Individualizing treatment decisions means changing the 
treatment policy. For example, if for a specific cancer type 
and stage the current treatment policy is to give the same 
treatment to all patients, then individualizing treatment 
decisions means recommending treatments tailored to a 
patient’s characteristics. The value of an outcome predic-
tion model is not in how well it predicts under a certain 
historic treatment policy, but rather what is the effect of 
deploying this model on treatment decisions and patient 
outcomes?

Consider an outcome prediction model that uses pre-
treatment tumor characteristics to predict an outcome 
but ignores whatever treatment the patients may have 
had, i.e. treatment-naive models  (e.g. [3–5]). Interest-
ingly, the decision to ignore treatments in the outcome 

prediction model is in line with the AJCC checklist for 
outcome prediction models (item 12 [1]). However, these 
outcome prediction models can cause more harm than 
good when used to support treatment decisions, even 
when they are accurate under the historic treatment pol-
icy. Consider for example an outcome prediction model 
that predicts overall survival for stage IV lung cancer 
patients based on the pre-treatment growth-rate of the 
tumor. An accurate model would predict shorter survival 
for patients with faster growing tumors. Applying this 
outcome prediction model, a clinician could decide to 
refrain from palliative radiotherapy in patients with faster 
growing tumors under the assumption that their life 
expectancy is too short to benefit from radiotherapy. This 
decision based on the outcome prediction model would 
be unjustified and harmful, as faster growing tumors are 
more susceptible to radiotherapy [6]. See Fig.  1 for an 
illustration of introducing an outcome prediction model 
for treatment decisions.

Fig. 1 Illustration of the use of outcome prediction models that ignore treatment allocations in the historical data (i.e. are treatment naive) 
for treatment decision making. These models change the treatment decisions and thus patient outcomes but whether this change improves 
patient outcomes is not determined by the prediction accuracy of the outcome prediction model
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Prospective validation does not test value 
for decision‑making
The gold standard for evaluating the accuracy of an out-
come prediction model is prospective validation [1, 7]. In 
a prospective validation, patient characteristics and out-
comes are recorded for a new patient cohort according 
to a predefined protocol. Comparing the outcome pre-
diction model’s predictions with the observed outcomes 
provides an estimate of how accurate the outcome pre-
diction model is outside the cohort in which the model 
was developed. The outcome prediction model from the 
lung cancer example above, if well-estimated, would be 
found accurate in a prospective validation that uses the 
historic treatment policy because the outcome predic-
tion model was developed under the same historic policy. 
It would then fulfill all the AJCC checklist items but still 
lead to patient harm when used for treatment decisions 
because the differential effect of radiotherapy depending 
on tumor growth-rate is not accounted for in the out-
come prediction model.

As an additional validation step, one may conduct a 
prospective validation study where the outcome pre-
diction model is used for treatment decisions in new 
patients, thus changing the treatment policy. If such a 
validation were carried out for the lung cancer survival 
outcome prediction model, the patients with fast-grow-
ing tumors would be given radiotherapy less often due to 
the predictions of the outcome prediction model, lead-
ing to even worse survival for these patients than before 

introduction of the outcome prediction model. Introduc-
ing the outcome prediction model for decision making 
caused harm because under the new policy treatments 
are withheld from those who would have benefited most 
(the patients with fast-growing tumors). However, in this 
validation study with model deployment the prediction 
model is still accurate as the model already predicted that 
patients with fast-growing tumors have a poor prognosis.

Models should improve decisions
The crux of the issue with outcome prediction models is 
that they answer the question “What is the chance of the 
outcome given these patient and tumor characteristics, 
with the assumption that we will keep making the same 
treatment decisions as we always did?”. Similar issues 
exist with other kinds of outcome prediction models 
which make predictions using the historical treatments 
but without regards to the policy for how those treat-
ments were assigned (i.e. post-decision models such as 
[8–12]). Post-decision outcome prediction models are 
also in line with the AJCC checklist (item 12 [1]). To 
improve treatment decisions however, we need models 
with a foreseeable positive effect on outcomes when used 
in decision-making.

Outcome prediction models assume treatment deci-
sions follow the historical policy and thereby cannot 
inform us on the effect of a new policy derived from the 
outcome prediction model. This reliance on the histori-
cal treatment policy leads to a fundamental gap between 

Fig. 2 Illustration of the difference between outcome prediction model accuracy and its value for treatment decision making. Validation 
of an outcome prediction model following the AJCC checklist leads to a reliable estimate of the outcome prediction model’s accuracy if 
the treatment policy does not change. However, because the outcome prediction model relies on a fixed historic treatment policy, prediction 
accuracy does not imply value for decision making, as visualized with the gap. This gap can only be bridged with causality 
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a prediction model’s accuracy and its value for treatment 
decision-making in clinical practice (Fig.  2). Bridging 
the gap from prediction accuracy to value for decision 
making is only possible with causality. Evaluating the 
effect of a prediction model-based treatment policy on 
patient outcomes requires a causal study design or causal 
assumptions.

How to validate models used for treatment decisions?
The ultimate test of the effect of introducing a new treat-
ment policy for example based on an outcome predic-
tion model is a cluster randomized controlled trial [7, 
13]. In a cluster RCT with outcome prediction models, 
some groups of clinicians are randomly selected to get 
access to the model while others are not. This allows for 
the estimation of the effect of introducing the model on 
treatment decisions and patient outcomes. For example, 
the cluster RCT could demonstrate that using the model 
leads to fewer treatment side effects and better over-
all survival. However, in the context of shared decision-
making, patients may weigh the value of overall survival 
versus treatment discomfort differently [14]. These indi-
vidual preferences need to be taken into account in the 
cluster RCT when calculating the value of introducing a 
model for decision-making.

As an alternative to cluster RCTs, the expected out-
comes under a treatment policy (e.g. based on a predic-
tion model) can be evaluated in data from a standard 
RCT. This can be done by calculating the average out-
come in the subgroup of patients for whom the rand-
omized treatment assignment was concordant with the 
policy [15]. Multiple policies can be compared this way, 
for example comparing a policy based on a new predic-
tion model with current clinical practice. The policy with 
the best outcomes is preferable. However, such an analy-
sis does not take into account that in practice the compli-
ance with the new treatment policy might not be perfect. 
Notably, the validation steps recommended in the AJCC 

checklist [1] provide no information on what the effect is 
of deploying an outcome prediction model on treatment 
decisions and patient outcomes.

Building models to individualize treatment decisions
Cluster RCTs are costly and time consuming. With tools 
from causal inference we can improve the chance of suc-
cess of models for decision making. One way to construct 
a good individualized treatment policy is with models 
that predict the outcome under hypothetical interven-
tions, where the intervention is the decision to give a 
certain treatment. The optimal treatment policy selects 
the treatment that leads to the most beneficial expected 
outcome.

Estimating such  models for prediction under inter-
vention requires unconfoundedness, which holds when 
there are no unknown variables that influence both the 
treatment assignment and the outcome (i.e. confound-
ers). RCTs are ideal for this as unconfoundedness holds 
by design because the treatment assignment is random. 
However, individual RCTs are generally too small to 
include many important patient and tumor character-
istics in the modeling. Observational data from regular 
clinical practice on the other hand are often more read-
ily available. If all variables that influence the treatment 
policy are available in a particular dataset, meaning that 
unconfoundedness holds, there are many approaches 
to prediction under intervention. These include ‘con-
ventional’ statistical approaches such as regression, or 
machine learning approaches, for example using neural 
networks [16].

To express available background knowledge and judge 
whether unconfoundedness holds in observational data, 
researchers can use directed acyclic graphs (DAGs) [17]. 
DAGs depict variables (such as treatment, outcome and 
confounders) and causal dependencies between the 
variables as arrows that point from a cause variable to 
an effect variable, see Fig. 3 for an example. Using tools 
from causal inference, the DAG determines whether a 

Fig. 3 Simplified Directed Acyclic Graph for the decision between surgery and radiotherapy for overall survival in lung cancer patients. As 
an example, consider a hypothetical study in early-stage lung cancer where researchers investigate whether the relative effectiveness of surgery 
versus radiotherapy for overall survival depends on a certain single-nucleotide polymorphism (SNP). The SNP assay was performed for the study 
only so this information did not affect the treatment decision. A DAG with four variables for this study is presented in this Figure. In this DAG, 
the variables age and SNP both have arrows to overall survival, but only age influences the treatment decision as older patients are less likely 
to get surgery. This DAG indicates that unconfoundedness holds when age is conditioned on in the analysis, as age is the only confounder 
between the treatment and the outcome [17]
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prediction under intervention model can be estimated 
and if so what confounders need to be accounted for [17].

In some cases not all confounders are available. In this 
setting with unobserved confounding standard methods 
based on confounder adjustment cannot be used, but 
sometimes prediction under intervention models may 
be estimated using specialized methods. Two examples 
are methods based on proxy-variables of unmeasured 
confounders [18, 19] and instrumental variable methods 
[20] and their machine learning variants [21, 22]. These 
methods rely on assumptions that may not hold perfectly 
in reality, so figuratively speaking they might reduce the 
gap between model accuracy and treatment policy value, 
but not close the gap entirely. DAGs encode assumptions 
about the data which may not hold perfectly in practice. 
The effects of potential violations of these assumptions 
may be estimated using sensitivity analyses [23].

A special case for prediction under intervention is the 
untreated risk, which is the hypothetical outcome under 
no treatment (or some baseline treatment) and would be 
observed in the control group of an RCT. For instance, 
when deciding to give adjuvant therapy after breast can-
cer surgery, the untreated risk of recurrence is the risk of 
recurrence when no adjuvant therapy would be given [24]. 
Knowing the untreated risk is valuable when considering 
giving no further treatment, and as a baseline to compare 
other potential treatments against. Although estimating 
the untreated risk requires unconfoundedness, in some 
cases it may be estimated quite accurately even from con-
founded data using specialized methods [25].

Because RCTs randomly assign patients to interven-
tions, models for prediction under intervention can be 
validated in RCTs with standard prediction validation 
approaches [7]. For shared decision-making, predic-
tion under intervention of different treatment options 
allows the patient to make their own judgment on how 
to weigh e.g. expected overall survival with expected 
treatment discomfort. Whereas individual RCTs ran-
domize a patient to a certain treatment, cluster RCTs 
randomize clinicians’ access to a model for decision sup-
port. Thereby individual treatment decisions may still be 
confounded in cluster RCTs meaning that cluster RCTs 
cannot validate predictions from prediction under inter-
vention-models directly. Both policy evaluation with 
cluster RCTs and prediction-under-intervention valida-
tion in standard RCTs are also possible in observational 
data but require unconfoundedness and thereby sensitiv-
ity analyses for potentially omitted confounders [23, 26].

Discussion
In line with American Joint Committee on Cancer rec-
ommendations [1, 2] many researchers develop outcome 
prediction models to individualize treatment decisions. 

The AJCC checklist provides important guidelines for 
outcome prediction model development and validation, 
such as clearly defining the patient population, predic-
tor variables and prediction time-point, in addition to 
validation in external datasets. These items improve the 
dependability of outcome prediction models for predict-
ing outcomes in the intended patient population if there 
are no changes in the treatment policy [1]. However, not 
changing the treatment policy directly contradicts the 
intended purpose of these models. Outcome prediction 
models that satisfy all the criteria in the checklist still 
have unknown clinical utility because high prediction 
accuracy in prospective validation studies does not imply 
value for treatment decision-making in clinical practice 
[27]. Because the gap between outcome prediction model 
accuracy and value for decision-making is due to causal 
issues, it is not resolved by larger datasets, more flexible 
prediction algorithms (e.g. machine learning) or even by 
prospective validation with model deployment. In con-
trast, we explained how models for prediction under 
intervention are useful for decision-making and how to 
validate any model used in decision-making.

The gap between outcome prediction model accuracy 
and value for decision-making is due to causal issues, 
but it is different from the standard “correlation does not 
imply causation”. In the standard “correlation is not cau-
sation” setting, all variables (treatment, outcome, patient/
tumor characteristics) are already present in the histori-
cal data, whereas in this case, the output of the outcome 
prediction model cannot be a cause of the outcome. This 
is because the outcome prediction model is not a variable 
in historical data, but a shift in policy that changes the 
distribution of the treatment.

It was noted before that cluster RCTs are the ultimate 
test for the impact of a new prediction model on clinical 
practice due to issues related to compliance with treat-
ment recommendations [13]. We show that because of 
the gap between prediction accuracy and value for treat-
ment decision-making, many accurate outcome prediction 
models will fail to demonstrate value in cluster RCTs. Also, 
cluster RCTs measure the effect of a new policy on average 
outcomes but do not directly measure whether a model 
accurately predicts the outcome under intervening to give 
a certain treatment, for this individually randomized data 
are most valuable. For shared decision-making accurate 
predictions-under-intervention may be most important. 
Two patients with the same predicted outcomes may make 
a different treatment decision because each patient has 
their own values and preferences. In a cluster RCT, these 
individual values need to be accounted for when evaluat-
ing a treatment policy, for example by eliciting the values 
and incorporating them in the analysis when weighing for 
example overall survival and treatment discomfort.
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Previous work underlined the value of prediction-
under-intervention models (sometimes referred to as 
counterfactual prediction) for supporting treatment deci-
sions [28, 29]. Our comment highlights the potential 
harm of current common practice where outcome pre-
diction models are deployed for decision making based 
on prediction accuracy alone, further emphasizing the 
relevance of prediction-under-intervention. In addition, 
we note how models may be validated for decision sup-
port for example with cluster RCTs.

Building models for prediction under intervention is 
harder than developing outcome prediction models due 
to the extra requirement of unconfoundedness, which 
involves formalizing assumptions about confounders for 
example with DAGs, gathering data on all confounders, 
often more complex statistical estimation, and sensitiv-
ity analyses. When the cost to do a cluster RCT is low, 
it may suffice to build outcome prediction models in line 
with the AJCC checklist and test them in cluster RCTs 

before model deployment. As illustrated in Fig. 4, when 
cluster RCTs are costly, impractical or unethical, mod-
els that predict under interventions are preferable as 
they have foreseeable effects when used for treatment 
decision-making.

There is a classical distinction between treatment 
effect estimation and prediction that amounts to “treat-
ment effect estimation is causal (and thus requires 
RCTs)” but “prediction is not causal”. When it comes 
to individualizing treatment decisions with prediction 
models, this distinction is unhelpful and confusing as 
the goal is to predict what would happen under differ-
ent interventions. Selecting the best treatment for a 
patient is a causal question and requires causal answers.
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