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Abstract
Objective This study aimed to construct a coronary heart disease (CHD) risk-prediction model in people living with 
human immunodeficiency virus (PLHIV) with the help of machine learning (ML) per electronic medical records (EMRs).

Methods Sixty-one medical characteristics (including demography information, laboratory measurements, and 
complicating disease) readily available from EMRs were retained for clinical analysis. These characteristics further aided 
the development of prediction models by using seven ML algorithms [light gradient-boosting machine (LightGBM), 
support vector machine (SVM), eXtreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), decision tree, 
multilayer perceptron (MLP), and logistic regression]. The performance of this model was assessed using the area 
under the receiver operating characteristic curve (AUC). Shapley additive explanation (SHAP) was further applied to 
interpret the findings of the best-performing model.

Results The LightGBM model exhibited the highest AUC (0.849; 95% CI, 0.814–0.883). Additionally, the SHAP plot per 
the LightGBM depicted that age, heart failure, hypertension, glucose, serum creatinine, indirect bilirubin, serum uric 
acid, and amylase can help identify PLHIV who were at a high or low risk of developing CHD.

Conclusion This study developed a CHD risk prediction model for PLHIV utilizing ML techniques and EMR data. The 
LightGBM model exhibited improved comprehensive performance and thus had higher reliability in assessing the risk 
predictors of CHD. Hence, it can potentially facilitate the development of clinical management techniques for PLHIV 
care in the era of EMRs.

Keywords Human immunodeficiency virus (HIV), Coronary heart disease (CHD), Machine learning, Risk assessment, 
Electronic medical record (EMR)
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Introduction
Coronary atherosclerotic heart disease (coronary heart 
disease, CHD) is currently the most common cardiovas-
cular disease in the world. The incidence and mortality 
rates of cardiovascular diseases, particularly CHD, in 
people living with HIV (PLHIV) have been increasing 
annually. [1]. The mortality rate of myocardial infarction 
is 1.5 to 1.7 times that of the general population, and the 
average age of death is about 48 years old, which is far 
lower than that of the general population [2]. Although 
PLHIV have a very high awareness of traditional risk 
factors for CHD, the incidence of CHD has not been 
reduced in this group, which may be related to the partic-
ularity of PLHIV themselves. Compared with the general 
population, the age of onset of CHD in PLHIV is about 
10 years earlier. With increased age, the risk of CHD 
increases yearly. Many and complex traditional risk fac-
tors influence CHD, including male gender, smoking, and 
high-density lipoprotein Lowered protein cholesterol are 
high-risk factors [3]. Therefore, analyzing the changes in 
clinical characteristics of PLHIV with CHD and explor-
ing the risk factors for patients with comorbidities has 
great significance in the disease prevention and treat-
ment of this special group.

The death rate of AIDS has gradually decreased owing 
to extended application of highly active antiretroviral 
therapy (HAART). In turn, the life expectancy of PLHIV 
has been prolonged even in less-developed areas like sub-
Saharan Africa [4, 5]. However, although AIDS has trans-
formed into a manageable chronic disease [6], the risk of 
basic diseases such as cardiovascular disease (CVD) has 
increased. According to a meta-analysis research, the 
risk of CVD among PLHIV is 2.16 times than that in the 
general population [7]. The mortality rate among people 
living with HIV (PLHIV) is 1.6 per 1000 people and has 
been observed to increase annually [8]. This rise in mor-
tality is primarily attributed to the long-term effects of 
antiretroviral therapy, which include hypercoagulabil-
ity, co-infection, and immune activation, as identified in 
studies [9–12]. Protease inhibitor therapy can also cause 
side effects like hyperlipidemia and insulin resistance, 
which further promote the pathogenesis of CVD [13]. 
Given that CVD has become the first cause of non-AIDS 
death among PLHIV, the management of CVD in PLHIV 
should be given focus to control the death rate.

Risk factors help predict potential negative events in 
advance. In PLHIV, the risk factors are similar but more 
severe than traditional CVD. For example, the prevalence 
of hypertension, diabetes, atherosclerosis, and dyslipid-
emia is significantly higher than in the non-HIV-infected 
population [14, 15]. Unfortunately, few studies have 
reported on risk factors in Chinese PLHIV with CHD. 
Only a retrospective research about that risk factors is 
available. Its results show that CHD does not change in 

HIV-positive patients, except for the body mass index 
being lower than that in HIV-negative patients. Most of 
the clinical characteristics of HIV-positive patients with 
CHD are similar to those of HIV-negative ones. How-
ever, the levels of total cholesterol, high-density lipopro-
tein cholesterol, and low-density lipoprotein cholesterol 
in HIV-positive patients are significantly lower, the heart 
is significantly enlarged, and the incidence of acute cor-
onary syndrome is reduced [16]. Specifically, males and 
young people infected with HIV are more likely to smoke 
than the non-HIV group, which is the most important 
risk factor for acute coronary syndrome [17–19]. How-
ever, a 6-year follow-up study has revealed that in a 
population without CVD risk factors, the probability of 
acute myocardial infarction of PLHIV is twice that of 
non-infected ones. The former group of PLHIV are 7 to 
10 times more likely to have an acute myocardial infarc-
tion than those without HIV. Even after controlling for 
traditional CVD risk factors, people with HIV are twice 
as likely to develop CVD as those without HIV [20]. The 
reason may be that most PLHIV do not have high risk 
factors for conventional CVD at the time of diagnosis. 
Current risk factors fail to assist predicting potential 
CVD risk in PLHIV, so a more accurate predictive indi-
cator is well positioned to be discovered. Yet, traditional 
CVD risk-assessment tools may underestimate the CVD 
risk of PLHIV.

Machine learning (ML) algorithms exhibit improved 
discrimination capacity and generalizability in high-
dimensional data, indicating that they are not confined 
by strict exclusion and inclusion criteria. Thus, the actual 
health status of individuals are available to these algo-
rithms [21]. This method addresses limitations in exist-
ing risk-prediction techniques. ML models, leveraging 
electronic medical records (EMRs), can enhance clini-
cal diagnostic accuracy and decision by physicians [22]. 
Therefore, multiple ML algorithms have been extensively 
used to predict CVD [23, 24], including prediction of 
3-year all-cause mortality in patients with heart failure 
caused by CHD [25], and the classification of in-hospital 
mortality in chronic kidney disease patients with coro-
nary artery disease [26]. ML algorithms can be useful in 
the identification of patients with CVD. Often, many ele-
ments contribute to classifying patients who are at risk 
for these common diseases. ML methods can help iden-
tify hidden patterns in these factors that may otherwise 
be missed. Moreover, no predictive models of CHD in 
PLHIV based on EMRs have been constructed yet using 
ML.

Accordingly, the present study aimed to determine 
accurate the predictive risk factors for CHD in PLHIV 
by establishing a risk-prediction model based on ML. 
We compared the predictive performance of seven ML 
algorithms in detail, selected the model with the best 
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comprehensive performance, and visually explained the 
model. This model can assist clinicians to screen HIV 
patients who may experience CHD in the future, dis-
covering the risk factors for CHD among HIV-infected 
patients and provide evidence-based guidance for the 
prevention of CHD among HIV-infected patients in the 
Chinese population.

Materials and methods
Data source
Data were acquired from the EMR database of inpatients 
of Guangxi Chest Hospital, a unique provincial clinical 
center for the prevention and control of HIV/AIDS. The 
EMR database was linked to collect demographic infor-
mation (e.g., age and gender), clinical laboratory mea-
surement records, and clinical diagnoses of inpatients. 
Valid and intact patient data obtained between June 2016 
and October 2021 were included in the study. Further-
more, to maintain privacy, identity-related information of 
all individuals was concealed during data acquisition.

Study population
Individuals were diagnosed with HIV, per the Interna-
tional Classification of Diseases (ICD)-10 codes. The 
inclusion criteria were as follows: (1) age above 18 years; 
(2) patient was confirmed to be HIV-infected accord-
ing to the Guidelines for the Diagnosis and Treatment of 
AIDS in China (2018 Edition); and (3) results of biochem-
ical examination during hospitalization can be queried. 
Meanwhile, patients with incomplete medical histories 
were excluded.

Data imputation
To enhance data utilization, variables exhibiting more 
than 20% missing data were excluded before perform-
ing data interpolation. For others, the missing data were 
imputed with the help of the random forest (RF) method 
and algorithms, which are great for imputing missing 
data. They are desirable because they can handle mixed 
types of missing data. Additionally, they are adaptive 
to nonlinearity and interactions and can potentially be 
scaled to big-data settings [27].

Class-imbalance problem
The ML classifier is generally more biased toward the 
majority class when dealing with datasets having a class 
imbalance, thereby leading to bad classification for the 
minority class. In the case of such issues, the majority is 
labeled as a single class, whereas the minority is labeled 
as the other class [28]. In this dataset, CHD individuals 
accounted for 3.53% of PLHIV. Furthermore, an imbal-
anced distribution of these two classes was observed, 
potentially leading to subpar prediction performance 
of the minority class in the prediction model [28]. A 

cost-sensitive learning method, used in data mining, aims 
to produce accurate results for class-imbalanced datasets 
with minimal cost by re-weighting the cost matrix, allow-
ing the classifier to focus on fewer weight cases and avoid 
predicting high-cost cases [29].

Model development and evaluation
Seven ML algorithms implemented in the Python pack-
age 3.10.9 were as follows: a light gradient-boosting 
machine (LightGBM), lasso-logistic regression, eXtreme 
gradient boosting (XGBoost), adaptive boosting (Ada-
Boost), decision tree, multilayer perceptron (MLP), and 
support vector machine (SVM). They aided the identi-
fication of the most informative variables for CHD risk 
prediction in PLHIV, as well as the development of mod-
els that predicted CHD in PLHIV as a binary outcome 
(absence or presence), per the laboratory and clinical 
diagnosis values of the chosen predictor variables.

LightGBM and XGBoost are members of the boosting 
algorithm family and utilize the negative gradient of the 
loss function to compute the residual and ascertain the 
ideal solution. LightGBM is a highly efficient and accurate 
implementation of the gradient-boosting decision tree 
(GBDT). Additionally, compared with XGBoost, Light-
GBM trains faster, consumes less memory, has higher 
accuracy, and can handle larger amounts of data [30]. 
Meanwhile, AdaBoost algorithm [31] is a classic Boosting 
algorithm that trains various classifiers (weak classifiers) 
for the same training set. Subsequently, they are assem-
bled to create a stronger final classifier (strong classifier). 
An enhancement of the logistic regression method, MLP 
[32] is a feedforward artificial neural network model that 
maps several datasets of inputs onto datasets of a single 
output. Moreover, SVM [33] is a binary classification 
model that maps data in a high-dimensional space. It also 
finds a hyperplane in the space to maximize the distance 
among various data points and the hyperplane, which 
distinguishes it from MLP. Furthermore, the decision-
tree [34] learning method constitutes a non-parametric 
supervised approach. It summarizes decision rules from 
a series of data with labels and features and subsequently 
illustrates them as a tree graph to resolve regression and 
classification issues. Then, logistic regression converts 
the output results of linear regression into probability 
values via a function to realize sample classifications. 
Lasso regression was used to screen features and elimi-
nate the multicollinearity among them.

Data were segregated randomly into training and 
validation datasets with the help of the Python pack-
age (Scikit-learn). Among these data, 80% aided model 
training, whereas the remaining 20% helped validate 
its predictive performance. In this study, sensitivity, 
accuracy, specificity, negative predictive value, posi-
tive predictive value (PPV), the areas under the receiver 
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operator characteristic curves (ROC-AUC), and F1 score 
(2*((precision*recall)/(precision + recall)) were used to 
compare model performance. Moreover, a 10-fold cross-
validation was performed to compare the AUC of the 
seven ML algorithms and to ascertain the overall best 
performance.

To comprehend the findings of the ML models more 
coherently, the Shapley additive explanation (SHAP) 
method aided the visualization analysis. This method was 
applied to comprehend the findings of the best predic-
tion model in terms of performance. For this purpose, 
the individual contribution of each variable was com-
puted [35]. A SHAP value denotes the contribution of the 
feature to the outcome value. A positive value indicates 
that the feature promotes the likelihood of a positive out-
come, whereas a negative one indicates that the feature 
decreases the likelihood of a positive outcome.

Statistical analyses
Analyses were conducted with the help of SPSS (ver. 
26.0) software (IBM, Chicago, IL, USA). The clinical-
feature analysis of the complete dataset was performed 
in the interpolated dataset. The continuous variables 
were reported as the median (IQR) because the data were 
non-normally distributed. Meanwhile, the categorical 
variables were represented as numbers and percentages. 
Additionally, the continuous and categorical variables 
were compared with the help of the Wilcoxon rank sum 

test and the Chi-square test, respectively. For all tests, 
P < 0.05 was deemed statistically significant. The general 
schema for building this prediction model is also illus-
trated in Fig. 1.

Results
From the data of 6792 PLHIV including 239 CHD 
patients and 6553 non-CHD patients, 75 variables were 
extracted. Twenty patients younger than 18 years of age 
were excluded, leaving 6772 patients. Then, 14 variables 
were removed because more than 20% date were missing, 
ultimately leaving 61 variables. These variables included 
demography, laboratory measurements, and diseases 
besides HIV and CHD (e.g., hypertension). Post-inter-
polation with RF, clinical-feature analysis of datasets was 
performed, and the obtained findings are depicted in 
Table 1. The mean age of the 6772 PLHIV was 54 (IQR: 
43–64) years, including 5152 males (76.08%) and 1620 
females (23.92%). Additionally, a total of 239 individuals 
(3.53%) were diagnosed with CHD, among which 82.43% 
were males and 17.57% were females.

Model performance and evaluation
The training set contained 5417 samples, whereas 
the validation set contained 1355 samples. Moreover, 
XGBoost, decision tree, AdaBoos, LightGBM, SVM, 
MLP, and lasso-logistic regression were built per the 
training set with the aforementioned 61 variables. Model 

Fig. 1 General schema for building and evaluating the prediction model. Positive samples were defined as PLHIV with CHD, whereas negative samples 
were PLHIV without CHD
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Variables All
(n = 6772)

non-CHD
(n = 6533)

CHD
(n = 239)

P-Value

Age, years 54(43–64) 53(43–64) 67(60–74) < 0.001
Sex Male 5152 4955 197 0.019

Female 1620 1578 42
Ethnicity Han 3327 3199 128 0.12

Zhuang 2994 2892 102
Others 451 422 9

Marital status Unmarried 1748 1719 29 < 0.001
Married 3405 3650 155
Divorce
/widowhood

1119 1164 55

Hypertention Yes 451 391 60 < 0.001
Diabetes Yes 262 235 27 < 0.001
COPD Yes 152 131 21 < 0.001
Heart failer Yes 323 244 79 < 0.001
CD4 count, cell/µL 72(16–215) 69(15–212) 137(35–255) < 0.001
CD45count, cell/µL 786.25(412-1284.75) 784(407-1280.50) 891(501–1359) 0.022
CD8 count, cell/µL 379(202–639) 379(202–638) 379(232–665) 0.517
D-Dimer, mg/L 1.79(0.6–5.2) 1.81(0.60–5.24) 1.50(0.57–3.78) 0.047
CD3 count, cell/µL 520(259-886.75) 517(256–880) 607(321–958) 0.030
ALB, U/L 32.60(27.37–37.20) 32.60(27.30–37.20) 32.20(27.80–36.70) 0.763
WBC, 10^9/L 4.89(3.31–6.92) 4.87(3.29–6.90) 5.22(3.70–7.08) 0.033
APTT, s 30.20(25-41.40) 30.20(25-41.80) 28.90(23.70–35.70) 0.003
MONO, 10^9/L 0.47(0.31–0.66) 0.47(0.31–0.65) 0.52(0.35–0.70) 0.019
LDL-c, mmol/L 2.01(1.52–2.57) 2.01(1.52–2.56) 2.05(1.60–2.63) 0.156
AMY, U/L 90.77(69–117) 90.75(69-117.41) 91.74(67–112) 0.304
Ca, mmol/L 2.06(1.93–2.17) 2.06(1.93–2.17) 2.05(1.92–2.15) 0.646
TG, mmol/L 1.42(1.04–2.02) 1.42(1.04–2.03) 1.34(1.03–1.84) 0.057
HDL-c, mmol/L 0.85(0.60–1.11) 0.84(0.59–1.11) 0.91(0.69–1.13) 0.006
GGT, U/L 63(35–121) 63(35–121) 61(33–121) 0.508
ALT, U/L 22(13–37) 22(13–37) 20(14–37) 0.842
AST/ALT 1.38(0.94–2.09) 1.39(0.93–2.09) 1.33(1-1.93) 0.847
AST, U/L 27(20–44) 27(20–44) 27(20–46) 0.721
Cys-C, mg/L 1.17(0.98–1.54) 1.17(0.98–1.54) 1.27(1.01–1.72) 0.010
RBC, 10^12/L 3.41(2.77–4.02) 3.40(2.77–4.02) 3.47(2.79–4.03) 0.554
RDW-CV 15(13.97-18) 15.25(13.96-18) 15(14–17) 0.031
RDW-SD 49(44–57) 49(44–57) 49(44–55) 0.369
HCT 31(25.70–35.50) 30.90(25.70–35.50) 31.80(26.60–35.80) 0.217
Scr, µmol/L 70(58–88) 70(57–88) 78(66–106) < 0.001
Ccr, mL/min 64.36(47.86–77.67) 64.36(47.86–77.67) 58.95(42.40-75.23) 0.010
CK, U/L 65(39-110.90) 65(39-110.66) 67.70(42–115) 0.169
K, mmol/L 3.7(3.30–4.10) 3.70(3.30–4.10) 3.70(3.40–4.18) 0.143
I-Bil, µmol/L 3.72(2.50–5.79) 3.73(2.50–5.80) 3.59(2.50–5.43) 0.375
LYM, 10^9/L 0.98(0.56–1.53) 0.97(0.56–1.52) 1.13(0.67–1.56) 0.015
Cl, mmol/L 102.90(100–106) 102.90(100–106) 102.90(100–106) 0.274
Mg, mmol/L 0.78(0.71–0.87) 0.78(0.71–0.86) 0.78(0.71–0.85) 0.788
Na, mmol/L 137(133–139) 137(133–139) 136(132–140) 0.377
UREA, mmol/L 4.15(3.10–5.90) 4.10(3.10–5.90) 4.70(3.60–6.90) < 0.001
SUA, µmol/L 300(221–398) 300(221–396) 319(233–443) 0.005
TT, s 19.60(18.20–22.30) 19.60(18.20–22.30) 19.60(18.30–21.60) 0.566
PT, s 12.20(11.10–15) 12.20(11.10–15.10) 11.90(10.80–13.60) 0.021
MCV, fL 90.10(83.70–96.40) 90(83.70–96.30) 90.60(84-98.80) 0.064
MCH, pg 29.90(27.40–32.30) 29.90(27.40–32.20) 30.40(27.40–33) 0.052
MCHC, g/L 331(319–342) 331(319–342) 331(319–341) 0.865

Table 1 Demographic and clinical characteristics of the included patients
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performance evaluation was aided by the seven ML algo-
rithms, as depicted in Table  2; Fig.  2. The LightGBM 
model demonstrated superior performance, achieving 
the highest AUC of 0.849 (95% CI, 0.814–0.883), whereas 
the decision tree exhibited the lowest AUC one (0.753; 
95% CI, 0.704–0.803). Given that the LightGBM model 
exhibited the ideal performance across the four ML algo-
rithms, it was deemed the best model.

Explanation of risk factor
SHAP aided the interpretation of the LightGBM model 
findings by computing the individual contribution of 
each variable. The importance matrix and SHAP sum-
mary plots for LightGBM are depicted in Fig. 3, whereas 
the SHAP dependence plot for the same is depicted in 
Fig.  4. Additionally, the importance matrix plot ranked 
variables contributing to CHD risk prediction among 
PLHIV from highest to lowest contribution per the base-
line age, heart failure, hypertension, glucose (Glu), serum 

creatinine (Scr), indirect bilirubin (I-Bil), amylase (AMY), 
and serum uric acid (SUA) of the individuals (Fig.  3A). 
The SHAP summary (Fig.  3B) and SHAP dependence 
(Fig. 4) plots ascertained the influence of each variable on 
the CHD outcome.

As illustrated in the SHAP summary plot, higher fea-
ture values corresponded with a higher likelihood of 
CHD occurrence in PLHIV. The red and blue dots 
depicted higher and lower feature values, respectively. 
The high values of age, heart failure, hypertension, Glu, 
Scr, and SUA corresponded with a value of SHAP > 0, 
indicating that these features were vital risk factors for 
CHD in PLHIV. Generally, older PLHIV individuals 
(Fig.  4A) with heart failure and hypertension (Fig.  4B 
and C), high Glu (Fig. 4D), high Scr (Fig. 4E), poor I-Bil 
(Fig.  4F), low AMY(Fig.  4G), and high SUA (Fig.  4H) 
exhibited an elevated CHD risk.

Table 2 Performance of prediction models generated by the seven ML algorithms
Models AUC AUC 95% CI Recall SP ACC F1 PPV NPV

Lower bound Upper bound
LightGBM 0.849 0.814 0.883 0.721 0.858 0.757 0.238 0.143 0.989
XGBoost 0.819 0.779 0.859 0.698 0.796 0.784 0.176 0.101 0.988
AdaBoost 0.787 0.742 0.832 0.558 0.889 0.961 0.225 0.141 0.984
Multilayer Perceptron 0.840 0.804 0.876 0.744 0.822 0.967 0.207 0.120 0.990
Decision Tree 0.753 0.704 0.803 0.953 0.389 0.407 0.093 0.049 0.996
Support Vector Machine 0.828 0.790 0.866 0.744 0.793 0.675 0.185 0.106 0.990
Lasso-Logistic 0.843 0.807 0.878 0.884 0.682 0.744 0.153 0.084 0.994

Variables All
(n = 6772)

non-CHD
(n = 6533)

CHD
(n = 239)

P-Value

MPV, fL 9.90(9.20–10.60) 9.90(9.20–10.60) 9.80(9.30–10.60) 0.769
Glu, mmol/L 6.70(5.41-8) 6.70(5.40-8) 7.30(5.80–9.30) < 0.001
PA, mg/L 168(101–235) 168(101–235) 169(123–226) 0.426
Glb, g/L 35.90(30.40–42.30) 35.90(30.40–42.40) 32.60(30.42–40.90) 0.657
LDH, U/L 228(180-313.65) 228(180–314) 224(185–296) 0.892
BASO, 10^9/L 0.02(0.01–0.03) 0.02(0.01–0.03) 0.02(0.01–0.03) 0.353
EOS, 10^9/L 0.10(0.02–0.24) 0.10(0.02–0.24) 0.10(0.02–0.23) 0.474
Fbg, g/L 3.02(1.84–4.11) 3.01(1.84–4.11) 3.10(2.12–4.26) 0.143
Hb, g/L 102(84–119) 102(83.31-118.63) 105(87.60–120) 0.103
D-Bil, µmol/L 2.89(1.75–5.31) 2.89(1.74–5.30) 2.88(1.89–5.50) 0.771
NEUT, 10^9/L 2.93(1.85–4.69) 2.93(1.84–4.69) 3.14(2.05–4.77) 0.110
TC, mmol/L 3.62(2.88–4.42) 3.62(2.87–4.42) 3.61(2.98–4.41) 0.468
T-Bil, µmol/L 6.90(4.60–11) 6.90(4.60-11.03) 7.14(4.63–10.46) 0.821
TP, g/L 68.90(62.40–75.40) 69(62.40–75.40) 68(62.30–74.60) 0.175
The continuous variables were expressed as median the median (IQR) after the normality distribution test. The categorical variables were expressed as number 
(percentage). ALB, albumin; WBC, white blood cell; APTT, activated partial prothrombin time; MONO, monocyte count; LDL-c, low density lipoprotein cholesterol; 
AMY, amylase; Ca, calcium; TG, triglyceride; HDL-c, high density lipoprotein cholesterol; GGT, γ-Glutamyl Transferase; ALT, alaninetransaminase; AST, aspartate 
aminotransferase; Cys-C, Cystatin C; RBC, red blood cell; RDW-CV, red blood cell distribution width CV; RDW-SD, red blood cell distribution width SD; HCT, hematocrit; 
Scr, serum creatinine; Ccr, creatinine clearance rate; CK, creatine kinase; K, kalium; I-Bil, indirect bilirubin; LYM, Lymphocyte count; Cl, chlorine; Mg, magnesium; 
Na, sodium; SUA, serum uric acid; TT, thrombin time; PT, prothrombin time; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean 
corpuscular hemoglobin concentration; MPV, mean platelet volume; Glu, blood glucose; PA, prealbumin; Glb, globulin; LDH, lactate dehydrogenase; BASO, basophil 
count; EOS, eosinophil count; Fbg, fibrinogen; Hb, hemoglobin; D-Bil, direct bilirubin; NEUT, neutrophil count; TC, total cholesterol; T-Bil, total bilirubin; TP, total 
Protein

Table 1 (continued) 
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Fig. 3 A an importance matrix plot of the LightGBM model depicting the significance of each variable in anticipating CHD risk in PLHIV. B SHAP summary 
plot of the top eight clinical attributes of the LightGBM model. Each point represents the SHAP value of a specific feature on a data point, indicating the 
magnitude and direction of that feature’s impact on the model’s predictive outcome. Red points denote high feature values with a positive incremental 
effect on the prediction; blue points denote low feature values with a negative decremental effect. Features are ranked from top to bottom by their aver-
age impact, highlighting their relative importance in the model’s decision-making process. Glu, glucose; Scr, serum creatinine; I-Bil, indirect bilirubin; AMY, 
amylase; SUA, serum uric acid

 

Fig. 2 Assessment of the seven ML algorithms per the AUC of the ROC curve. AUC, area under the curve; ROC, receiver operating characteristic
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Applying the prediction model
The actual application of the model is illustrated in Fig. 5. 
Red means the feature value elevates CHD probability, 
whereas blue denotes a reduction in CHD probability 
owing to the feature; f(x) represents the comprehensive 
value of SHAP for each individual. The base value depicts 
the mean value of SHAP for all samples. Hence, if f(x) 
was higher than the base value, the model would declare 
the individual as having CHD. Figure 5A illustrates that 
a PLHIV was accurately predicted to suffer from CHD, 
and Fig.  5B illustrates that a PLHIV without CHD was 
distinguished accurately. Therefore, the LightGBM model 
produced a sufficient distinction between CHD and non-
CHD individuals and can denote different risk prob-
abilities based on the individual circumstances of each 
patient. Figure  5C illustrates the values of SHAP pre-
dicted for each patient in the training set, with more red 
indicating a higher overall risk.

Discussion
This study identified predictive risk factors for CHD 
among PLHIV and subsequently developed a CHD risk-
prediction model using ML and easily retrieved clinical 
variables from EMR. Earlier studies have demonstrated 
that existing cardiovascular disease prediction models for 
HIV patients primarily include the D: A:D model (2010) 
for 5-year risk [36], the D: A:D model (2010) for 10-year 
risk [37, 38] the full D: A:D (2016) model for 5-year risk 
[39], the reduced D: A:D (2016) model for 5-years risk 
[39], the HIV MI-1 model [40] and the HIV MI-2 model 

[40]. These models are primarily based on Cox propor-
tional risk models, Poisson regression models, and lasso 
and ridge regressions [41]. However, significant hetero-
geneity exists in the definition of cardiovascular disease 
among these models [41], and the prediction of CHD risk 
in HIV patients is susceptible to other confounding fac-
tors. To the best of our knowledge, this work is the first 
predictive model for HIV patient-specific CHD devel-
oped based on ML algorithms. Furthermore, we com-
pared the predictive model performance of seven ML 
algorithms to establish the best model. Then, predictive 
model performance was compared across the seven ML 
algorithms. The observations revealed that the Light-
GBM model had the highest AUC, F1, and PPVs. More-
over, LightGBM is an effective implementation of the 
gradient-boosting learning algorithm, which is based 
on the decision-tree algorithm and uses n-lifting trees. 
It is superior to other algorithms in cases of prediction 
problems [42]. Furthermore, the algorithm is extensively 
used in regression and classification research with good 
detection results [42]. Accordingly, the SHAP method 
aided the explanation of the decision-making process 
adopted by the LightGBM algorithm and helped doctors 
intuitively understand its prediction process. The SHAP 
summary and dependency maps displayed heart failure, 
age, hypertension, Glu, I-Bil, Scr, AMY, and SUA to dis-
tinguish patients with HIV who were at low or high risk 
of CHD. Older PLHIV with high Glu, Scr, and SUA and 
with low I-Bil and AMY, combined with heart failure and 
hypertension, were at a higher risk of developing CHD. 

Fig. 4 SHAP dependence plot of the LightGBM model, illustrating the influence of a single variable on the prediction. The blue points in the plot rep-
resent the SHAP values for this feature across different data points, with the horizontal position indicating the feature’s contribution to the predictive 
outcome. SHAP values greater than zero suggest an increased risk of CHD in PLHIV. The vertical axis represents the actual values of the feature, and the 
distribution of points reveals the relationship between the feature values and the risk of CHD. Glu, glucose; Scr, serum creatinine; I-Bil, indirect bilirubin; 
AMY, amylase; SUA, serum uric acid
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Additionally, both elevated glucose and hypertension 
were also risk factors for CHD in PLHIV, consistent with 
literature [8, 43].

In an investigation of the proteomic compositions of 
CD4 cells infected by HIV-1, Chan et al. [44] established 
that an elevation in fatty acid synthase (FASN) concen-
tration post-infection and serum levels of inflamma-
tory cytokines and insulin were positively correlated 
with FASN levels. This finding suggests that disrupt-
ing the lipid metabolism within HIV-infected cells of 
the immune system can cause systemic lipid metabolic 
disorders and inflammatory whole-body insulin resis-
tance (IR), ultimately progressing to dysglycemia [45]. 
Additionally, the possible mechanisms of CHD include 
inflammation, endothelial-cell injury, thrombosis, oxida-
tive stress, and glucose and lipid metabolism disorders 
[46]. Recent studies have demonstrated that IR con-
tributes to coronary plaque formation and remodeling 
independent of traditional risk factors such as smoking, 
age, and hypertension [47]. Furthermore, certain stud-
ies have established that vascular stiffness is increased 

by endothelial-cell injury directly related to HIV infec-
tion or the activation of endothelial-cell proliferation by 
HIV proteins and cytokines, in association with ongo-
ing hypertension-related endothelial damage. It may also 
contribute to the elevated incidence of CVD in individu-
als with HIV and hypertension [48].

Yue et al. [49] conducted a cohort study in Taiwan. 
They established robust relations between HIV infection 
and incident heart failure post-stratification of individu-
als by sex, age, and comorbidities. They also found that 
an HIV infection increases the risk of heart failure [50]. 
Growing evidence indicates that the severity of the HIV 
infection and the degree of HIV control may be key fac-
tors influencing heart failure risk [51]. In patients with 
CHD, coronary artery blood supply is insufficient, caus-
ing myocardial ischemia. Long-term ischemia cannot 
be effectively improved and in turn causes myocardial 
degeneration and even necrosis. It easily leads to com-
plications, the most common being heart failure. Heart 
failure induces a decline in heart contractility and output 
reduction, thereby resulting in insufficient blood supply 

Fig. 5 SHAP force plot for individuals in the dataset at high (A) or low (B) risk of CHD with PLHIV. C Values of SHAP (global interpretation) for the training 
set. The abscissa denotes each individual, and the ordinate depicts the value of SHAP. A greater appearance of red denotes a higher overall risk, conversely, 
a more pronounced blue indicates a comparatively lower risk of CHD
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to important organs. This insufficient blood supply to 
the heart can further aggravate myocardial ischemia and 
even increase the severity of CHD.

This study also demonstrated that Scr, I-Bil, AMY, and 
SUA were risk factors for CHD in PLHIV. Bagheri et al. 
[52] explored the link between serum creatinine and the 
possibility and severity of CHD. They established that 
serum creatinine is significantly related to CHD. Mean-
while, other studies have revealed that creatinine lev-
els in early HIV patients are higher than those in other 
groups [53]. Therefore, the Scr levels of PLHIV must be 
thoroughly monitored during hospitalization. These find-
ings depicted that elevated I-Bil levels were protective 
for CHD with PLHIV. Marconi et al. [54]. conducted a 
veterans aging cohort study. The participants (regardless 
of HIV status) with elevated bilirubin levels are found to 
have a lower risk of incident total CVD, acute myocardial 
infarction, heart failure, and ischemic stroke events post-
adjustment for known risk factors. Amylase also report-
edly increases in individuals with acute HIV infection 
[55]. Hence, the serum amylase level of newly diagnosed 
PLHIV is related to CD4 cell count [56], i.e., CD4 cell 
count decreases with increased serum amylase.

Anti-retroviral therapy may also be the main cause of 
increased serum amylase in human immunodeficiency 
virus patients [56]. Park et al. [57] reported that coronary 
artery disease history (1.7, 1.01–2.87, P = 0.046) is related 
to heightened serum amylase or lipase when considering 
the prognosis, morbidity, and predisposition factors of 
individuals with elevated pancreatic enzyme levels post-
cardiac arrest outside the institute. Serum amylase is a 
direct indicator of pancreatic injury [56], and studies have 
demonstrated that individuals with chronic pancreatitis 
have an elevated risk of atherosclerotic cardiovascular 
disease [58, 59]. Therefore, monitoring amylase altera-
tions during PLHIV therapy positively influences the pre-
vention or early detection of cardiovascular diseases.

Olaniyi et al. [60] established that uric acid content is 
significantly elevated in PLHIV relative to healthy con-
trols. Uric acid, the end-product of purine metabolism 
in humans, is a cause of gout. However, it may also lead 
to the onset and progression of cardiovascular diseases, 
including atrial fibrillation, hypertension, chronic kidney 
disease, coronary artery disease, heart failure, and cardio-
vascular death. Thus, it can be used to predict cardiovas-
cular prognosis [61]. Nicholson et al. [62] demonstrated 
that hyperuricemia and gout should be considered bio-
markers of cardiovascular disease in PLHIV. Uric acid is 
elevated in PLHIV, and it contributes to cardiovascular 
disease onset and progression. Thus, alterations in blood 
uric acid levels should not be ignored when treating hos-
pitalized PLHIV.

The present study had several strengths. For instance, 
it was real-world research pertaining to risk assessment 

utilizing 6772 samples, which was performed by com-
paring seven ML algorithms. The optimal prediction 
model, i.e., the LightGBM model, was found to have an 
improved generalizability advantage. It was a highly opti-
mized GBDT algorithm that can incorporate several clin-
ical variables. Furthermore, leveraging the benefits of an 
ML algorithm meant that the analysis can include various 
indicators, for example, kidney function, blood glucose, 
coagulation function, and liver function. Thus, it can aid 
the thorough assessment of the influencing factors. Fur-
thermore, SHAP was a reliable technique to enhance the 
clinical interpretability of the LightGBM model output. 
Doctors can initiate reasonable referral recommenda-
tions and individualized CHD health-management sug-
gestions to PLHIV.

This study also had several limitations. It was per-
formed at a single institute, wherein the small sample and 
missing data derived from EMRs can produce a potential 
bias. Moreover, we focused on a single center, so only 
internal validation was conducted. External validation 
must be established using another dataset to demonstrate 
stability in the performance of the prediction model. 
Hence, more effort is needed to conduct multi-center 
prospective research with more opportunities for multi-
center cooperation and better data-mining capabilities.

In summary, demographic and clinical variables were 
identified as predictive risk factors for CHD among 
PLHIV. Additionally, a CHD risk-prediction model was 
constructed for PLHIV using ML and EMR, which can 
support clinical management techniques for PLHIV in 
the EMR era.
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