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Abstract 

This study presents a workflow for identifying and characterizing patients with Heart Failure (HF) and multimorbidity 
utilizing data from Electronic Health Records. Multimorbidity, the co-occurrence of two or more chronic conditions, 
poses a significant challenge on healthcare systems. Nonetheless, understanding of patients with multimorbidity, 
including the most common disease interactions, risk factors, and treatment responses, remains limited, particu-
larly for complex and heterogeneous conditions like HF. We conducted a clustering analysis of 3745 HF patients 
using demographics, comorbidities, laboratory values, and drug prescriptions. Our analysis revealed four distinct 
clusters with significant differences in multimorbidity profiles showing differential prognostic implications regard-
ing unplanned hospital admissions. These findings underscore the considerable disease heterogeneity within HF 
patients and emphasize the potential for improved characterization of patient subgroups for clinical risk stratification 
through the use of EHR data.
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Introduction
As life expectancy increases, the population suffer-
ing from more than one chronic condition is increasing 
dramatically. The co-occurrence of two or more chronic 
conditions, defined as multimorbidity, is estimated to 
affect around 50 million people in the European Union, 
making it one of the most challenging problems faced by 
the health sector at the current time [1]. Multimorbidity 
is a significant healthcare problem, associated with poor 

health outcomes, poorer quality of life, rapid disease pro-
gression, and increased healthcare costs [1, 2].

Heart Failure (HF) is estimated to affect 64.3 million 
people worldwide. In developed countries, its prevalence 
is generally estimated at 1% to 2% of the general adult 
population  [3]. Despite significant improvements over 
the last years, HF prognosis remains poor and patients’ 
quality of life remains low  [4]. The current approach to 
managing HF relies on phenotyping patients according to 
Ejection Fraction (EF), a measure of cardiac function that 
categorizes patients into distinct groups with prognostic 
and therapeutical implications [5]. This is, however, an 
oversimplification of a complex phenomenon. In recent 
years, several attempts were made to better characterize 
HF population regarding etiology, symptoms and comor-
bidities [6, 7].

The Electronic Health Record (EHR) is the tool 
for capturing patients’ medical history, containing 
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structured data, such as laboratory results and diag-
noses, along with unstructured data, such as radiology 
reports, discharge summaries, and other clinical nar-
ratives. EHRs, therefore, present a rich data source of 
patients with complex and heterogeneous conditions, 
such as HF, COPD (Chronic Obstructive Pulmonary 
Disease), Dementia, and Parkinson’s Disease, leading 
to important insights regarding disease pathophysiol-
ogy [7]. The characterization of patient cohorts through 
their phenotypes not only better elucidates individual 
conditions but can also provide a better understand-
ing of the most common associations and interactions 
between diseases, as well as improving clinical risk 
assessment [8, 9]. Disease sub-typing is also important 
for drug development and clinical trial recruitment 
strategies [10].

There are several approaches to phenotyping the EHR. 
In recent years, research has been shifting to machine 
learning methodologies, including unsupervised learning 
methods that require no prior classification and are truly 
data-driven [10]. One of the challenges of applying clus-
ter analysis to EHR data is the mixture of categorical and 
continuous data [11]. Among previous methods to tackle 
mixed-type data is the use of hybrid distance approaches, 
that is, using specific distance functions prepared for 
mixed-type data before applying clustering, such as Gow-
er’s Distance [12]. Other approaches include performing 
data transformations, such as discretization or dimen-
sionality reduction, using Factor Analysis of Mixed Data 
(FAMD) [13].

Cluster interpretation in clinical context is a complex 
task. For instance, clustering data with a high number 
of features turns interpretation and visualization dif-
ficult. Graph visualizations are a simple representation 
of how entities connect and interact with each other 
and several previous works explore clustering over 
graph representations [14–16]. When applied to clini-
cal data, graphs can provide a better understanding of 
patient characteristics. Phenotypic Disease Networks 
(PDNs) are a network representation of comorbidities 
that can be used to study their associations, differences 
in phenotypes between patients, and disease progres-
sion. In a PDN, nodes represent diseases and weighted 
edges represent links between diseases. The weight 
can be quantified using different measures, such as co-
occurrence frequency or Pearson correlation. These 
networks have the ability to reveal non-obvious rela-
tionships between comorbidities that could bring up 
important information to improve patient treatment 
approaches [17].

Another main challenge of finding patient clusters is 
assessing their clinical implications, including prognos-
tic information. Survival analysis is used for comparing 

the risk for an event of interest for different groups [18]. 
Commonly used statistical tests include the estimation of 
the survival curve using the Kaplan-Meier model, the sta-
tistical comparison of two groups using the log-rank test, 
and the possibility of incorporating additional variables 
through Cox’s hazards model [19].

This study presents a comprehensive workflow for 
the identification and characterization of HF patients 
by harnessing the power of EHR data and employ-
ing advanced machine learning methodologies. Our 
approach seeks to enhance the clinical interpretation of 
derived findings, enabling healthcare professionals to 
better understand disease associations, interactions, and 
progression. By leveraging the rich information con-
tained within EHRs, we aim to uncover novel insights 
into disease pathophysiology and patient phenotypes, 
ultimately contributing to improved risk assessment, 
treatment strategies, and overall patient outcomes. The 
proposed workflow not only holds promise for advanc-
ing our understanding of HF but also serves as a valu-
able framework for investigating other complex and 
heterogeneous conditions, paving the way for more 
personalized and effective healthcare in the face of the 
growing challenge of multimorbidity.

Methods
We developed a workflow for the identification and char-
acterization of HF patient subgroups. The workflow con-
sists of the following steps (see Fig. 1): (1) preprocessing 
of the data and exploratory data analysis to characterize 
the dataset; (2) clustering; (3) statistical analysis for char-
acterization and visualization of the obtained clusters, (4) 
survival analysis to stratify the patient clusters according 
to the risk for a given outcome.

Data
We developed the workflow using real-world data from 
Hospital da Luz Lisboa, Portugal (HLL), the largest pri-
vate hospital in Portugal. HLL is a university hospital 
with availability of all medical specialties. Despite being 
a tertiary hospital, it also has significant primary care 
activity with a Family Medicine department, covering 
the full spectrum of care for patients with multimorbid-
ity. The dataset used to develop the pipeline was gener-
ated from the EHR of HLL. We used an initial population 
of 54 827 patients, with an observation period between 
January 2007 and August 2021. From this initial pool, 
3 745 HF patients with multimorbidity were identified 
using a locally developed phenotyping algorithm that 
used both ICD-9-CM does and free text mentions from 
the field “diagnostics and symptoms” from our EHR sys-
tem (see Table 1). For this algorithm we used keywords 
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that directly refer to HF name, abbreviation or New York 
Heart Association (NYHA) mention, which is a com-
monly used staging scale to classify HF symptoms

For the clustering analysis, relevant features were 
selected based on prior literature review and clinical 
expertise. These features consisted of clinical variables, 
demographics, physical characteristics, laboratory 
data prescriptions, and the most common comorbidi-
ties associated with HF, amounting to a total of 35 fea-
tures (see Table 2). Lifestyle-related features and gender 
were provided as text fields, comorbidities as binary 
variables based on the presence or absence of the dis-
ease, and all others as numeric. In addition to the fea-
tures used for clustering, we also extracted the date 

of HF diagnosis and gathered data on other comor-
bidities, relevant drug prescriptions, and clinical out-
comes. Clinical outcomes evaluated in this study were 
unplanned hospital admissions: hospitalizations and 
emergency department visits. Prescription data spans 
a period of 9 years and 8 months, ranging from Janu-
ary 2012 until August 2021. We grouped drug prescrip-
tions into pharmacological groups that are relevant for 
HF treatment: ACEis/ ARBs, Beta-blockers, Diuretics, 
Digoxin and MRA [20]. We also analyzed other groups 
that are relevant for the most common comorbidities: 
anticoagulants, antiplatelets, statins and bronchodila-
tors. The number of different drugs is relative to the 
observation period for medical prescriptions (9 years 

Fig. 1 Overview of the proposed approach for the identification and characterization of HF patient subgroups using data from Hospital da Luz 
Lisboa (HLL)

Table 1 ICD-9 Codes and keywords used to identify HF patients. ICFEp - Insuficiência Cardíaca com Fração de Ejeção Preservada, ICFEr 
- Insuficiência Cardíaca com Fração de Ejeção Reduzida, IC - Insuficiência Cardíaca, ICC - Insuficiência Cardíaca Congestiva, NYHA - New 
York Heart Association

ICD-9 Codes 428, 398.9.1, 402.0.1, 402.9.1, 404.0.1, 404.0.3, 404.1.1, 404.1.3, 404.9.1, 404.9.3, 425.4, 425.5, 425.6, 425.7, 425.8, 425.9

Keywords Insuficiência cardíaca, Insuficiência cardiaca, Insuficiencia cardiaca, Insuficiencia cardíaca, ICFEp, ICFEr, IC, ICC, NYHA

Table 2 Feature summary of the HF dataset

Phenotypic Domain Phenotypes Notes

Demographics Age, Gender Value refers to the last year of observation

Physical Characteristics Body mass index (BMI) Values are the average of all observations

Lifestyle Drug use, Alcohol use, Smoking habits Value refers to the last year of observation

Laboratory Sodium, Potassium, Bicarbonate, Urea, Creatinine, GFR, Fasting Glucose, Hemo-
globin, Platelet count, RDW, NT-proBNP, Ferritin, Uric Acid, Sedimentation Rate

Values are the average of all observations.

Comorbidities Ischemic Cardiomyopathy, Hypertension, Diabetes, Atrial Fibrillation, Cer-
ebrovascular Disease, Valvular Disease, Chronic Kidney Disease, Anaemia, 
Chronic Obstructive Pulmonary Disease, Obesity

Value refers to the last year of observation

Patient complexity Number of non-chronic diseases, Number of chronic diseases, Number of 
ICD-9 codes, Number of consultations

Value refers to the last year of observation
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and 8 months). Percentages of drug groups represent 
the percentage of patients that had at least one pre-
scription of the relevant medication group during the 
period analyzed.

Preprocessing
Prior to the clustering, it was necessary to preprocess 
the dataset obtained from the EHRs extraction. Cat-
egorical features were converted into numeric binary 
features and features with a prevalence lower than 2% 
in the cohort were removed. Features with a percent-
age of missing values higher than 40% were deleted. 
We utilized the age of patients as recorded in their final 
observation. Regarding BMI and laboratory results we 
compiled the mean value for data analysis purposes. 
This decision was made to mitigate the risk of bias that 
might arise from relying solely on recent values, which 
could potentially be anomalous or not reflective of the 
patient’s typical health status. We employed two impu-
tation methods that were previously shown to have the 
least imputation error and prediction difference when 
applied to laboratory data: missForest and multivariate 
imputation by chained equations (MICE) [21]. Miss-
ing values were imputed using Python’s function Iter-
ative Imputer, which is based on the MICE method. 
The MICE method models the missing values of each 
feature as a function of other features [22]. To do that, 
at each step, one of the feature columns is designated 
output y and the rest of the feature columns are desig-
nated as inputs x. Comorbidities were identified using 
ICD-9 codes. Additionally, we used laboratory data and 
BMI to increase the sensitivity of anemia and obesity 
phenotyping, respectively. Continuous features were 
normalised to have a mean of 0 and a standard devia-
tion of 1. Categorical binary features were scaled from 
{0, 1} → {−0.5, 0.5} . After preprocessing, the total num-
ber of features used for clustering was 25. The features 
are identified in Table 2 in bold.

Patient clustering
To apply clustering to the HF dataset, it was first nec-
essary to determine which clustering algorithm and 
possible complementary techniques to use, and how 
to evaluate the clustering. It also was necessary to 
take into account that the dataset was composed of 
both numerical and categorical data. Several cluster-
ing algorithms were tested to understand which one 
would be more suitable for the HF data. Based on the 
literature regarding clustering mixed-type data and on 
HF clustering, we tested the following combinations of 
methods: 

1 Gower’s distance matrix  [12] together with Ward’s 
Agglomerative Hierarchical Clustering [23],

2 dimensionality reduction followed by Ward’s 
Agglomerative Hierarchical Clustering [23];

3 dimensionality reduction followed by K-Means [24].

Gowers distance is a metric that measures the similarity 
of two items with mixed numeric and non-numeric data 
[12]. The Gower distance for instances x and y is given by:

with

where m is the number of features, wj is the feature 
weight and I is the indicator function, that is, I is 1 if xj 
and yj are equal and 0 otherwise. The weights wj were 
considered 1 for all features.

The dimensionality reduction method chosen was Fac-
tor Analysis of Mixed Data (FAMD), a principal com-
ponent method specific to analyse quantitative and 
qualitative variables  [13]. The FAMD algorithm can be 
seen as a mix between Princiapl Componente Analysis 
(PCA) and Mulitple Correspondence Anaoysis (MCA), 
as it acts as PCA quantitative variables and as MCA for 
qualitative variables [25].

Given that we were conducting an exploratory analysis 
without ground truth labels, we could rely solely on the 
data being clustered and compute internal validity indices 
for the resulting labels. The used indices were Silhouette 
Score, Calinski-Harabasz and Davies-Bouldin [26–28]. 
After computing the three indices for the different clus-
tering algorithms and different values of k, we chose the 
best method using a majority vote (i.e. the algorithm 
and k that performed best in at least two of the indices). 
Additionally, a minimum of N > 375 was also defined to 
promote stability and ensure that none of the clusters had 
less than 10% of the total population, an approach that 
was previously employed by others [7].

Statistical analysis and characterization of obtained 
clusters
Clusters were characterized according to age, gender, 
and comorbidities. Demographic, clinical, and labora-
tory characteristics were compared using Chi-squared 
tests for categorical variables and Kruskal-Wallis test for 
continuous variables. Differences were considered statis-
tically significant whenever p-value was inferior to 0.05.

(1)dG(x, y) =

m
j=1 wj · fj(xj , yj)

m
j=1 wj

fj(xj , yj) =

{

|xj−yj |

rj
, if xj and yj are interval scales

1 if xj �= yj , if xj and yj are categorical scales
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To enhance the interpretation and clinical meaning 
of the derived findings, we developed a visualization 
of the clusters’ comorbidities prevalence and associa-
tions through graph representation of each cluster. Each 
graph’s node represents a disease in the cluster and an 
edge represents a co-occurrence of the two nodes (dis-
eases) connected by that edge. The graphs were created 
with Python’s NetworkX package and Gephi for visu-
alization. The settings were adjusted so that node size 
was proportional to the number of connections to other 
nodes (node degree) and edge thickness was proportional 
to disease co-occurrence prevalence (edge weight). Co-
occurrences (edges) with a co-occurrence prevalence 
lower than 2% were discarded to declutter the visualisa-
tion. Graph representation of comorbidities provides a 
better understanding of which diseases co-occur more 
frequently and which diseases have the most connections 
with other diseases.

Survival analysis
We conducted a survival analysis to assess outcome 
differences among the derived clusters. Survival curves 
and Hazards Ratio (HR) were computed for unplanned 
hospital admissions (hospitalizations and emergency 
department visits), for each cluster  [18]. To achieve 
this, patients were temporally aligned at the starting 
point t0 , the moment of HF diagnosis. Time inter-
vals between HF diagnosis and outcomes were sub-
sequently derived. Patients who did not experience 
the outcome were censored. Analysis was performed 
using Python’s package Lifelines, to create Kaplan-
Meier curves and Cox proportional regression models. 
Kaplan-Meier curves were computed for each out-
come individually and were stratified per cluster, with 
differences between groups tested using the log-rank 

test. For Cox proportional regression we adopted a 
previously reported strategy by using three different 
models for each outcome  [29]: an unadjusted model 
that only took into account the clusters, a second 
model adjusted for age and gender, and a third model 
adjusted for age, gender and the laboratory value NT-
proBNP, which is a risk marker for HF prognosis. HR 
from Cox regression models are presented in relation 
to the lowest risk cluster (determined by the lowest 
percentage of outcomes).

Results
Description of heart failure population
The studied population included 3,745 patients who had 
HF and at least another comorbidity (i.e. multimorbid-
ity patients with HF). The median age was 82 years (IQR 
73-88), and 52.84% were women (Fig.  2). The median 
number of chronic diseases was 5 (IQR 3-7) with approx-
imately 40% of the population having between 3 and 
5 comorbidities and approximately 30% having 6 to 8 
comorbidities.

The most common comorbidity in the dataset was 
Hypertension (56.58%), followed by Anaemia (53.75%) 
and Atrial fibrillation (33.78%). Other highly prevalent 
conditions were Chronic kidney disease (24.94%) and 
Coronary artery disease (24.09%) (Fig. 3). In addition to 
assessing the prevalence of each comorbidity, a graph 
representation of the comorbidities was also computed 
(see Fig. 4). In this analysis, Hypertension, Atrial fibrilla-
tion and Coronary artery disease are the conditions with 
the highest prevalence and that co-occur most frequently 
with other diseases.

Clustering algorithm and choice of k
Taking into account the mixed-type nature of the data 
(containing both binary an continuous variables), we 

Fig. 2 Gender and age distribution of the dataset of HF patients with multimorbidity
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explored three different clustering approaches and results 
are summarized in Table 3. We found that the combina-
tion of Gower’s distance matrix and Ward’s Hierarchi-
cal Agglomerative Clustering was the one that produced 
clusters with higher scores in all clustering metrics 
analyzed.

After defining the clustering method, the choice of the 
number of clusters (k) was performed by applying Sil-
houette Score, Calinski-Harabasz, and Davies-Bouldin. 
We used a minimum of 375 patients to promote stability 
and performed metrics scores for each value of k so that 
a majority vote (i.e. the best value of k with the high-
est score in the majority of the metrics) is considered. 
Table 4 shows the clustering evaluation metrics for clus-
ters with k ∈ [2, 12] . We found that k = 4 was the best 
value across clustering metrics and clinical interpreta-
bility. Although k = 2 had a slighter better score, it pro-
duced two asymmetric clusters where one cluster had 
the majority of the patients and the other a minority 
(under 375) that also did not differ significantly in most 
measured attributes. Therefore, the value chosen for the 
analysis was k = 4.

Multimorbidity characterization
Figure  5 shows a tileplot of cluster-specific percent-
ages of comorbidities that allows to easily find the 
most prevalent comorbidities in each cluster while 

comparing the prevalence of diseases among clusters. 
Table  5 shows the detailed characterization of each 
cluster and of the HF dataset. Cluster1 included older 
male patients with more chronic conditions. Anemia, 
CKD, and Hypertension were particularly prevalent. In 
addition, this was the group with the highest values of 
NT-proBNP. Differently, Cluster2 was characterized by 
elder women, had highly prevalent Hypertension, AF, 
and Obesity, and the median NT-proBNP value was the 
lowest among the four clusters. Cluster3 was the larg-
est one (n=1 231), had male predominance (59.46%), 
and was characterized by an almost universal preva-
lence of Anemia (99.35%), despite the lower number 
of prevalent comorbidities compared to the other clus-
ters. Cluster4 had the lowest median age and a female 
preponderance (73.92%). This cluster was also the clus-
ter with the lowest number of comorbidities.

Network analysis provides additional insight regard-
ing multimorbidity and cluster complexity in HF 
patients, both through visual inspection of graphs and 
by comparing average degree (average number of other 
diseases that are connected to one disease) and average 

Fig. 3 Prevalence of comorbidities used for clustering the HF 
population. Abbreviations: HT for Hypertension, AFIB for Atrial 
Fibrillation, CKD for Chronic Kidney Disease, ICM for Ischemic Heart 
Disease, VD for Valvular Heart Disease, CVD for Cerebrovascular 
Disease, COPD for Chronic Obstructive Pulmonary Disease, and CM 
for Other Cardiomyopathies

Fig. 4 Graph representation of comorbidities used for clustering. 
In the graph a node represents a disease and its size is proportional 
to the node degree. An edge represents a co-occurrence 
of two diseases and its width is proportional to the prevalence 
of the co-occurrence in the dataset. Using this visualisation, 
it is possible to obtain extra insights into the relationship 
between comorbidities, as it is possible to observe which diseases 
tend to co-occur more frequently. The thickness of the edges makes 
it possible to verify that HT and Anaemia, and HT and AFIB occur 
frequently together. CKD and ICM also show a high co-occurrence 
with HT and Anaemia. ICM–Ischaemic Cardiomyopathy, HT–
Hypertension, AFIB–Atrial Fibrillation, CVD–Cerebrovascular Disease, 
VD-Valvular Disease, CKD–Chronic Kidney Disease, COPD–Chronic 
Obstructive Pulmonary Disease, CM–Other Cardiomyopathies
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clustering (measure of density that indicates the degree 
to which nodes in a graph tend to cluster together) 
coefficients. The clustering coefficient is a measure 
that quantifies the tendency of nodes in a graph to 
form clusters or groups of interconnected neighbors. It 
helps us understand the local structure of the network 
by assessing how likely it is for neighboring nodes to 
also be connected to each other [14]. Figure  6 shows 
the graph representation of each cluster’s comorbidi-
ties. We can see that Cluster1 has the highest num-
ber of nodes (11) and edges (55), while Cluster4 has 
the lowest (7), therefore indicating that patients from 
the first cluster have higher complexity than patients 
from the former. The most common comorbidity asso-
ciations are also depicted. For instance, Cluster1 has 
a high average degree of 10, meaning that all diseases 
are connected to each other, while also having strong 
associations between diseases. Cluster2 also has a high 
average degree of 8.9, whereas Cluster3 and Cluster4 

have much lower average degrees (5 and 2, respec-
tively). The fact that all nodes are of similar size means 
that every disease co-occurs at least once with almost 
all other diseases. The width of the edges is what allows 
us to understand which of these co-occurrences, also 
known as dyads, are more common in each cluster. We 
can witness that not only comorbidity prevalence dif-
fers between clusters, but also dyads exist differently 
between clusters. For instance, while in Cluster1 the 
strongest dyads are CKD/Anemia and Hypertension/
Anemia, in Cluster2 the most significant dyads are 
Obesity/AF and Hypertension/AF. Cluster3 has a high 
number of patients with Hypertension and Anemia, 
some of them also showing AF, Coronary artery dis-
ease, and Valvular heart disease. Cluster4 has a com-
mon association between Hypertension and AF, while 
Obesity is connected to several diseases in the graph 
but with a lower co-occurrence. The average cluster-
ing coefficient is also highest for Cluster1 and lowest 

Table 3 Values obtained for clustering metrics Silhouette Score. Calinski-Harabasz Index and Davies-Bouldin Score for the different 
clustering algorithms, namely, Gower’s Distance and Hierarchical Clustering, FAMD and Hierarchical Clustering, and FAMD and 
K-Means. For Silhouette Score and Calinski-Harabasz a higher value indicates a better performance, for Davies-Bouldin a lower value is 
best

Clustering Algorithm k Silhouette Score Calinski-Harabasz Davies-Bouldin

Gower Distance + Hierarchical Clustering 3 0.153 918.620 1.859

4 0.155 910.162 1.751

5 0.153 810.238 1.797

FAMD + Hierarchical Clustering 3 0.080 221.906 2.267

4 0.082 225.429 2.325

5 0.075 227.625 2.332

FAMD + K-Means 3 0.073 217.615 2.374

4 0.078 201.213 2.420

5 0.068 191.439 2.537

Table 4 Values obtained for clustering metrics Silhouette Score. Calinski-Harabasz Index and Davies-Bouldin Score for Hierarchical 
Clustering with Gower’s Distance using k=[4]. For Silhouette Score and Calinski-Harabasz a higher value indicates a better 
performance, for Davies-Bouldin a lower value is best

Clusters Silhouette Score Calinski-Harabasz Davies-Bouldin

2 0.273 1147.505 1.494

3 0.153 918.620 1.859

4 0.155 910.162 1.751
5 0.153 810.238 1.797

6 0.147 746.957 1.739

7 0.141 673.593 1.983

8 0.127 615.439 2.005

9 0.125 571.963 2.041

10 0.130 538.409 1.939

11 0.132 512.288 1.961

12 0.140 491.961 1.914
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for Cluster4 (1 vs. 0.48), which suggests patients from 
Cluster1 have higher order interactions of diseases 
than patients from Cluster4.

Drug prescription analysis
Table  6 shows the mean drug prescriptions of specific 
pharmacological groups in each cluster. As expected, 
patients show prescription profiles that are concordant 
with HF severity and comorbidity profiles. Among all 
clusters, anticoagulants are the most frequent drug pre-
scription group (47.42%). Cluster1 shows the highest per-
centage of utilization of all drug groups, including drugs 
used for treating comorbidities (bronchodilators and 
hematinic factors), which is both consistent with it being 
the cluster with most advanced disease stages and the 
highest number of comorbidities. Patients from Clusters 
3 and 4 have a lower percentage of all drug groups when 
compared to Cluster1 and Cluster2. In Cluster4, despite 
the high prevalence of Anemia, only 16.37% of patients 
were prescribed hematinic factors.

Unplanned hospital admissions
Overall, 60.91% of the patients had at least 1 hospitaliza-
tion and 83.71% had at least one emergency admission 
during the observation period (see Table 7). Cluster1 had 
the highest rate of unplanned hospital admissions, both 
aggregated and number of admissions per year. Cluster2 
and Cluster3 had lower percentages of unplanned hospi-
tal admissions, while Cluster4 had the lowest rate among 
the four clusters.

Figure  7 shows univariate Kaplan-Meier curves for 
the outcomes of hospitalisation and emergency admis-
sion, stratified by clusters, for a time period of 2 years 
post HF diagnosis. Cluster1 appears as the highest risk 
cluster, having the highest rate of unplanned hospital 
admissions at all times. Contrarily, Cluster4 shows the 
lowest rate of unplanned hospital admissions during 
the study period, while Cluster2 and Cluster3 have in-
between values.

Table 8 shows the hazard ratios for three different Cox 
proportional hazard models computed: Model 1 is an 
unadjusted model, Model 2 is adjusted for age and gen-
der only and Model 3 is adjusted for age, gender and NT-
pro-BNP level. Hazard ratio (HR) is computed in relation 
to the lowest risk cluster (Cluster4). Cluster 1 shows the 
highest HR for both emergency department visit (5.86; 
CI 4.80 - 7.15) and hospital admission (2.73; CI 2.38 - 
3.14). Even after adjusting for age, gender, and NT-pro-
BNP, differences (Models 2 and 3) in HR among clusters 
remain significant.

Discussion
The results of this study add to the increasing evidence 
that HF is a complex syndrome with diverse pheno-
types that are partly explained by patterns of multimor-
bidity. By utilizing clustering and network analysis on 
a real-world dataset, we identified four distinct clus-
ters of HF patients with differing comorbidity profiles. 
These clusters exhibited varying disease prevalences 
and co-occurrence patterns, as well as differences in 

Fig. 5 Cluster-specific percentages of comorbidities. A darker color indicates a higher percentage of the comorbidity in the cluster. ICM-Ischaemic 
Cardiomyopathy, HT-Hypertension, AFIB-Atrial Fibrillation, CVD-Cerebrovascular Disease, VD-Valvular Disease, CKD-Chronic Kidney Disease, 
COPD-Chronic Obstructive Pulmonary Disease
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demographic characteristics and clinical severity, as 
measured by the risk of unplanned hospital admissions.

We encounter similarities between our findings 
and previous works. For example, a prior study using 
model-based clustering on 12 comorbidities of an HF 
cohort identified five clusters that differed in comor-
bidities, sociodemographic factors, and prognosis [4]. 
This study also found a cluster with a worse prognosis 
and the highest percentage of comorbidities, a cluster 
with anemia predominance, and lower-burden clusters. 
Another recent study specifically evaluated multimor-
bidity profiles in the HF population and identified six 
different profiles of multimorbidity using exploratory 

factor analysis, which also had prognostic implica-
tions  [30]. In our study, Cluster1 had the highest risk 
profile, with older patients and a greater number of 
comorbidities. It represents what we call as the Cardio-
renal-metabolic syndrome where patients are more 
likely to be men, have more advanced HF, higher lev-
els of NT-pro-BNP, more severe CKD, and a longer 
history of Diabetes mellitus. These patients frequently 
have HF with reduced EF. Cluster2, on the other hand, 
was slightly younger, had a high prevalence of AF, Obe-
sity, and HT, and showed the second highest risk for 
the outcome. This pattern clearly resembles one found 
in the literature with female predominance, obesity, 

Fig. 6 Prevalence and graph representation of comorbidities used for clustering in the HF dataset. In the graph a node represents a disease 
and its size is proportional to the node degree. An edge represents a co-occurrence of two diseases and its width is proportional to the prevalence 
of the co-occurrence in the dataset. ICM-Ischaemic Cardiomyopathy, HT-Hypertension, AFIB-Atrial Fibrillation, CVD-Cerebrovascular Disease, 
VD-Valvular Disease, CKD-Chronic Kidney Disease, COPD-Chronic Obstructive Pulmonary Disease, CM-Other Cardiomyopathies
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Pulmonary Hypertension, lower levels of NT-pro-BNP 
and preserved ejection fraction [31]. Cluster3 and Clus-
ter4 showed a better prognosis but differed in the age of 
patients and the prevalence of conditions.

This study has several strengths, including a novel 
workflow for phenotyping HF patients through EHR 
that can be replicated in different settings. We uti-
lized Ward’s Hierarchical Clustering with Gower’s 
distance, an underexplored clustering algorithm that 
has advantages on multimodal data such as EHR [12]. 
Additionally, we employed network analysis metrics, 
which we believe are highly intuitive for understand-
ing not only the prevalence of comorbidities but also 
the co-occurrence under different clusters. We utilized 
a real-world longitudinal database, which allowed us 
to conduct a survival analysis, presenting advantages 
over most similar clustering studies that often discre-
tize time and do not account for censoring on outcome 
measurement [19].

We must acknowledge several limitations in this 
work. From a methodological perspective, although we 

chose the optimal number of clusters according to sev-
eral described metrics, we acknowledge that they are 
not data-agnostic, and therefore, it may be difficult to 
compare what constitutes ’good’ clustering across stud-
ies [32]. Additionally, as with other studies that make 
secondary use of EHR data, there are important implicit 
biases that warrant further validation of findings in dif-
ferent datasets. For example, we make the assumption 
that the absence of prescribed medications implies that 
these patients are not currently undergoing any drug 
treatment. However, it should be noted that we can-
not guarantee that they may not have prescriptions 
for the same drugs at other healthcare facilities, which 
could potentially impact our conclusions. Although we 
developed and internally validated a phenotyping algo-
rithm for HF using ICD-9 codes and free text from the 
field “diagnostics and symptoms”, we understand both 
false positive and false negative cases might occur, due 
to wrong data entry under-reporting and and a lack 
of comprehensiveness in keywords. Using more data 
modalities and possibly statistical learning methods 

Table 6 Average presciptions per year and prevalence of prescribed drugs per cluster. p-values for the comparison of the 
characteristics across clusters. ACEi - angiotensin-converting enzyme inhibitor; MRA - Aldosterone receptor antagonists; DPP4i - 
Dipeptidyl peptidase-4 inhibitor

Medications Cluster1 Cluster2 Cluster3 Cluster4 p-value

Patients with drugs prescribed (%) 87.58 84.41 68.97 66.0 <0.01

Avg prescriptions/year 6.6 4.15 2.53 2.00 <0.01

Anticoagulants (%) 42.98 37.76 26.5 19.58 <0.01

Statins (%) 39.94 33.52 21.91 18.34 <0.01

Beta-Blockers (%) 35.31 35.16 22.38 17.28 <0.01

Antiplatelets (%) 34.88 24.62 21.08 10.76 <0.01

Inhalers Bronchodilator (%) 32.27 23.53 16.49 13.76 <0.01

Diuretics (%) 29.52 26.54 15.19 10.58 <0.01

ACEi \ARBs (%) 40.96 28.32 21.29 17.11 <0.01

Hematinic factors (%) 27.79 15.18 16.37 8.47 <0.01

Anticholinergics (%) 23.59 15.73 11.9 8.64 <0.01

MRA (%) 16.06 14.5 12.25 7.58 <0.01

Table 7 Characterisations of outcomes related variables per cluster and in the entire dataset. Continuous variables are described as 
median (inter-quartile range) and categorical variables as %. p-values for the comparison of the characteristics across clusters

Characteristics Cluster1 Cluster2 Cluster3 Cluster4 p-value

Number of Hospitalisations/year 0.2(0.1-0.4) 0.1(0.0-0.2) 0.1(0.0-0.2) 0.0(0.0-0.1) <0.05

Hospitalisations within 1 year of HF diagnosis, % 35.23 23.78 27.86 21.18 <0.01

Hospitalisations within time period analysed, % 86.06 68.13 59.46 32.6 <0.01

Number of Emergency Admissions/year 0.6(0.2-1.2) 0.4(0.1-0.8) 0.2(0.1-0.5) 0.1(0.1-0.4) <0.05

Emergency admissions within 1 year of HF diagnosis, % 52.47 44.34 39.48 36.20 <0.01

Emergency admissions within time period analysed, % 94.55 88.45 79.45 75.09 <0.01
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for phenotyping may improve case detection accuracy. 
While we measured unplanned hospital admissions as 
a surrogate for clinical severity and healthcare resource 
utilization, different outcomes of interest should also be 
considered, such as mortality and patient-reported out-
comes. We also did not include EF information in our 
data analysis, an essential parameter for establishing 
the diagnosis and classifying HF. The patients included 
in this study were identified as having the diagnosis of 
HF already established but we strongly believe that it 
would be insightful to analyze EF range of our derived 

clusters in future work. We intend to develop future 
work to tackle these limitations.

Conclusions
This study developed a data workflow to identify 
and phenotype subgroups of HF patients with mul-
timorbidity, using real-world data from a hospi-
tal’s EHR. We identified four clusters that differed in 
clinical and demographic characteristics, as well as 
in risk for unplanned hospital admissions. Our find-
ings strengthen the conviction that HF is a complex 

Fig. 7 Kaplan-Meier survival curves for the outcomes Hospitalisation and Emergency admission for each cluster (within 2-years after HF diagnosis)
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syndrome with different phenotypes, and that cur-
rently available EHR can be utilized to find subgroups 
with prognostic implications that may be clinically 
useful for tailoring management. Future work should 
clarify the relevance of these findings on datasets from 
other hospitals and through the incorporation of other 
features extracted from clinical notes and medical 
imaging (e.g. EF).
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