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Abstract 

Proteomic-based analysis is used to identify biomarkers in blood samples and tissues. Data produced by devices such 
as mass spectrometry requires platforms to identify and quantify proteins (or peptides). Clinical information can be 
related to mass spectrometry data to identify diseases at an early stage. Machine learning techniques can be used 
to support physicians and biologists in studying and classifying pathologies. We present the application of machine 
learning techniques to define a pipeline aimed at studying and classifying proteomics data enriched using clinical 
information. The pipeline allows users to relate established blood biomarkers with clinical parameters and proteom-
ics data. The proposed pipeline entails three main phases: (i) feature selection, (ii) models training, and (iii) models 
ensembling. We report the experience of applying such a pipeline to prostate-related diseases. Models have been 
trained on several biological datasets. We report experimental results about two datasets that result from the integra-
tion of clinical and mass spectrometry-based data in the contexts of serum and urine analysis. The pipeline receives 
input data from blood analytes, tissue samples, proteomic analysis, and urine biomarkers. It then trains different mod-
els for feature selection, classification and voting. The presented pipeline has been applied on two datasets obtained 
in a 2 years research project which aimed to extract hidden information from mass spectrometry, serum, and urine 
samples from hundreds of patients. We report results on analyzing prostate datasets serum with 143 samples, includ-
ing 79 PCa and 84 BPH patients, and an urine dataset with 121 samples, including 67 PCa and 54 BPH patients. As 
results pipeline allowed to identify interesting peptides in the two datasets, 6 for the first one and 2 for the second 
one. The best model for both serum (AUC=0.87, Accuracy=0.83, F1=0.81, Sensitivity=0.84, Specificity=0.81) and urine 
(AUC=0.88, Accuracy=0.83, F1=0.83, Sensitivity=0.85, Specificity=0.80) datasets showed good predictive perfor-
mances. We made the pipeline code available on GitHub and we are confident that it will be successfully adopted 
in similar clinical setups.

Keywords  Machine learning, Prostate cancer, Biological pipeline, Data enhancing

*Correspondence:
Federica Aracri
federica.aracri@unicz.it
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-024-02491-6&domain=pdf


Page 2 of 12Vizza et al. BMC Medical Informatics and Decision Making           (2024) 24:93 

Introduction
Machine learning and artificial intelligence-based tech-
niques can be used to analyze cancer-related data to sup-
port clinicians in biomarker identification. For instance, 
statistical methods such as principal component analy-
sis, as well as hierarchical clustering analysis can be used 
to identify lipid molecules for prostate cancer diagnosis 
[1]. We designed and developed a pipeline, available on 
GitHub1, to analyze a large biological dataset (e.g. mass 
spectrometry data) enriched by clinical information. 
The pipeline aims to discover novel biomarkers by using 
machine learning models. The pipeline, whose architec-
ture is reported in Fig. 1, also uses a voting mechanism 
to obtain the best overall predictions. The architec-
ture includes a mechanism to track experimental pro-
cesses relating biological data with clinical ones. Data 
for the pipeline has been collected from an information 
system that can gather clinical and biological data [2], 
which tracks information about clinical and biological 
samples collected from health structures and biological 
laboratories (e.g., MS laboratories). The tracking system 
contains MS data regarding tissues and blood samples 
from patients affected by cancer-related conditions. The 
pipeline includes LR (Logistic Regression), DT (Deci-
sion Tree), KNN (K-Nearest Neighbors), SVM (Support 

Vector Machine) and RF (Random Forest) machine 
learning models.

We present the structure and the results of applying the 
developed pipeline to a real case. We report the results 
of the application on mass spectrometry data enriched 
with clinical information regarding prostate cancer. Pros-
tate cancer (PCa) is one of the most commonly diagnosed 
types of cancer [3]. Clinical detection uses Prostate-Spe-
cific Antigen (PSA) blood-based indicator as screening 
or diagnostic tests for PCa. Then, PCa diagnosis is based 
on clinical analysis and ultrasound-guided transrectal 
biopsy. Clinical data used to enrich the proteomics analy-
sis regarded prostate gland dimension and gland biopsy 
results (e.g., neoplasms types). Clinical data obtained 
from urology department units (e.g., urine samples, 
serum data, prostate gland information) have been inte-
grated with biological data in a unique framework. The 
tracking system included in the pipeline has been used to 
relate clinical samples with proteomics analysis.

We show how using the proposed pipeline it is pos-
sible to support clinicians in decisions and strategies. 
In the presented example, we started from clinical con-
sideration regarding the fact that prostate biopsy has an 
appreciable false negative rate, and thus applying the 
pipeline may support in guiding to reduce the recur-
rent use of biopsy. A key issue is the definition of the 
optimal frequency for re-biopsy in men who have had 
a prior negative biopsy based on PSA level, age, and 
other factors [4]. The pipeline applied to the prostate 

Fig. 1  Figure reports the pipeline workflow, consisting of (from left side): (i) Prostate serum and EPS-urine datasets; (ii) the preprocessing phase, 
allowing to remove the inconsistent values and to correct the missing values; (iii) the feature selection phase allows us to keep only the most 
important features to improve the application of the classification algorithms; (iv) the ML phase, consisting in choosing among five different 
classification algorithms; (v) finally, the voting phase, which consists of a soft vote and hard vote, to support disease prediction using two unknown 
datasets (one for serum and one for urine respectively)

1  https://​github.​com/​gtrad​igo/​Innop​rostP​roteo​micPi​peline

https://github.com/gtradigo/InnoprostProteomicPipeline
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cancer dataset, allowed both early detection and reduc-
ing the biopsy rate (allowing the reduction of the 
interventions). The integrated analysis of clinical and 
biochemical data of patients could lead to the deter-
mination of novel biomarkers to monitor the disease. 
Figure 1 shows an instance of the proposed pipeline on 
proteomics data and clinical data associated with the 
prostate cancer disease dataset. Patient data are gath-
ered and used as input to the machine learning models 
to support physicians in making clinical decisions.

The pipeline has been tested on two clinical datasets, 
regarding Prostate Cancer (PCa) and Benign Prostatic 
Hyperplasia (BPH), describing patient prostate condi-
tions which have been enriched with Mass Spectrometry 
data resulting from analyzing clinical samples. The aim of 
using the pipeline is to identify a subset of peptides (from 
blood serum or urine samples), representing biological 
markers significantly correlating with the presence or 
absence of prostate cancer [5, 6].

The two biological use cases adopted here to describe 
the usage of the presented pipeline in real-world sce-
narios are both binary classification problems (i.e. classes 
being PCa and BPH). Nevertheless all of the pipeline 
components, in the feature selection, machine learning, 
and voting compartments, do support multiclass clas-
sification scenarios with minimal adaptation, since all of 
the adopted models can predict more than two classes. 
As we report in the experimental results, the application 
of the pipeline in the two used datasets, allowed users 
to reduce the total number of features for a multivariate 
test, from 37 to 11 features for the Prostate Serum data-
set, and from 1677 to 4 features for the EPS-Urine data-
set (e.g., semaphorin-7A, secreted protein acidic and rich 
in cysteine (SPARC), FT ratio, Prostate Gland Size).

Furthermore, the pipeline is capable of working with 
non-categorical (i.e. continuous) variables, by selecting a 
different set of ML models able to deal with continuous 
clinical variables (e.g. regressors, neural networks, sup-
port vector machines).

The use of machine learning techniques to identify bio-
markers has been widely adopted for knowledge extrac-
tion from biological as well as clinical data [7–10]. The 
aim is to support physicians and biologists in identify-
ing relevant biomarkers that can help in characterizing 
diseases. Moreover, many papers in the literature dis-
cuss about the use of knowledge extraction boosting and 
results enrichment with the help of integrated models 
using voting mechanisms. In [11] ML models have been 
used for data reduction in mass spectrometry datasets. 
In [12] and in [13–15] ML techniques are used to select 
biomarkers from prostate and ovarian cancer datasets 
respectively. Voting has been used in [16, 17] to improve 
protein identification in different use cases.

The use of machine learning-based techniques for 
prostate cancer data analysis is widely represented in the 
literature. For instance in [12, 13, 15] ML techniques have 
been used to select significant biomarkers in prostate 
datasets. Specifically, in [15], the authors used mass spec-
trometry data analysis to discover and validate prostate-
derived proteins in fluids.

In [18] machine learning-based models have been used 
to assess the potential role of the inflammation biomark-
ers in the prediction of myocardial infarction. The pro-
posed approach is based on a set of interpretable rules 
supported by clinical evidence and selected for a given 
patient by using a machine learning classifier to estimate 
cardiovascular risk. Battista et al. in [19] proposed a pre-
dictive system based on serum biomarkers and ensem-
ble learning to predict colorectal cancer presence and its 
stage. Authors in [20] used machine learning to identify 
the optimal diagnostic biomarkers for non-small cell 
lung cancer by using least absolute shrinkage, selection 
operator logistic regression, support vector machine, and 
recursive feature elimination. In [21] a hybrid machine 
learning systems strategy has been proposed to obtain 
a transcriptome profile linked with classification proce-
dures aiming to support the early detection of breast can-
cer. This strategy includes feature selection algorithms, a 
feature extraction algorithm, and classifiers for diagnos-
ing breast cancer. Authors in [22] presented a non-inva-
sive breast cancer classification system for the diagnosis 
of cancer metastases based on machine learning models 
extracting information from blood profile data. This sys-
tem may assist physicians in selecting intensive care for 
patients with metastatic breast cancer to enhance the 
overall survival outcome.

The use of ML-based prediction tools in biological 
pipelines is present in the literature. In [23] authors treat 
early detection of type 2 diabetes mellitus using machine 
learning-based prediction models. Pattern recognition, 
disease prediction, and classification using various data 
mining techniques have been used to analyze biomedical 
datasets [24, 25].

The here proposed pipeline uses ML models to support 
physicians and biologists in studying peptides and bio-
markers extracted during biological experiments, inte-
grated via voting mechanisms [26]. Experimental results 
have been useful for biological and clinical interpretation 
[27, 28] in the context of early predictions of diseases.

The paper is organized as follows. In “Methods” section 
we describe the methods and tools used to design the 
pipeline’s modules for the preprocessing, feature selec-
tion and training of the machine learning models used 
for the classification task. In “Results”  section we pre-
sent the application of the pipeline to process two data-
sets and the prediction results obtained by the trained 
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machine learning models and finally give some details 
about the system implementation. In “Discussion”  sec-
tion we explore and discuss the implications of the results 
of the work.

Methods
The pipeline architecture is reported in Fig. 1. It is com-
posed by the following modules: (i) Data acquisition, 
which acquires data from databases and tracking sys-
tems (i.e., the mechanisms able to track samples that 
are analyzed and treated in different laboratories [2]); 
(ii) Preprocessing module, in charge of performing data 
preparation; (iii) Feature selection, which is in charge of 
identifying interesting features; (iv) ML models training, 
which is in charge of selecting machine learning mod-
els; (v) Voting module, used to support models selection. 
The pipeline has been implemented by using the Jupyter 
programming environment [29], which allows the user 
to write an interactive notebook containing executable 
scientific experiments in the Python programming lan-
guage. We report in the following the principle phases, 
starting from preprocessing one.

Preprocessing phase
We performed data preprocessing by taking into con-
sideration: (i) missing values, (ii) values expressed in 
different scales or measurement units, (iii) null values, 
(iv) outlier values. In case of input file with missing val-
ues, represented by NaN (Not a Number) literals, cor-
responding records are dropped in case of large number, 
otherwise the missing value are corrected by using the 
average of all values. For instance, for the PCa and BPH 
we calculated the average of each subset and we replaced 
the mean value of the subset corresponding to the miss-
ing value in the Prostate Gland Size column. Similarly, 
the missing values were inserted: age of patient, PSA free, 
PSA ratio, total PSA, and some proteins. Also, at the pre-
processing step, the pipeline eliminates the columns with 
data considered irrelevant (e.g., the columns containing 
information about previous surgery and previous pros-
tate biopsy). Moreover, a normalization function has 
been applied by converting the categorical values into 
numeric classes and normalizing all numeric values in 
the range from 0 to 1.

Feature selection
The pipeline feature selection module (see “Feature Selec-
tion” box in Fig. 1) implements the following models: (i) 
Pearson correlation coefficient [30], (ii) Chi-Square Test 
[31], (iii) RFE (Recursive Feature Elimination) [32], (iv) 
Random Forest [33] and (v) Logistic Regression [34]. 
The feature selection module has been implemented in 
Python (see first part of Algorithm 1).

Algorithm 1 Feature Selection and Machine Learning 
phases of the pipeline

Feature selection identifies the most statistically sig-
nificant features (i.e. columns of the dataset) according 
to each model’s metrics, and ranks them according to 
a relevance score (i.e. how many models agreed on its 
relevance). After evaluating different features (e.g. con-
sidering the ones with a total consensus of 5 models, 
considering the ones higher than 4, etc.) the pipeline 
selects the best predictive performances achieved by 
considering all models. Pearson correlation coefficient 
[35] measures the linear correlation between two fea-
tures. Let X and Y be a pair of random variables, the 
Pearson correlation coefficient is the ratio between 
their covariance and the product of the standard devia-
tions of the two variables. The relationship between the 
correlation coefficient matrix, R, and the covariance 
matrix, C, built from X and Y values (in our case two 
of the features), is Ri,j = Ci,j/ Ci,iCj,j  . The values of R 
are between -1 and 1, inclusive. The correlation coeffi-
cient formula is used to find relationships between cou-
ples of features. It returns continuous values between 
-1 and 1, where 1 indicates a full correlation (total posi-
tive linear correlation), while -1 indicates a missing cor-
relation (total negative linear correlation) between the 
two features (values near 0 indicate no correlation). At 
the end of the process, only features with low Pearson 
correlation coefficients are kept. Moreover, the pipeline 
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includes Chi-square which here is used to test the inde-
pendence of two features [36]. Given two variables, the 
test measures how the observed count and expected 
count deviate from each other. When two variables 
are independent, the observed count is close to the 
expected count, resulting in a smaller Chi-square value 
(high Chi-square values indicate that the hypothesis of 
independence is incorrect).

We then include, in the feature selection module, the 
Recursive Feature Elimination (RFE) [37], to fit the model 
and remove the weakest features. The RFE allows the user 
to reduce existing colinearity in input data by recursively 
eliminating features. In a nutshell, RFE allows the user to 
recursively prune features by looking at data, which rep-
resent their relative relevance.

Random Forest (RF) ensures good data abstraction 
results also because it is easy to calculate the relative 
importance of each feature on the generated decision tree 
[38]. RF generates a number (often hundreds) of random 
decision trees, consisting of a set of nodes with binary 
questions based on a single or combination of features. 
At each node, the tree divides the dataset into 2 subsets. 
The importance of each feature (or set of features) is then 
calculated by considering how well the feature splits 
(hence describes) the dataset. Finally, the feature selec-
tion module (Fig.  1) includes Logistic Regression (LR), 
which is a method to remove redundant features from a 
dataset.

Machine learning
The pipeline architecture (see “Machine Learning” box in 
Fig. 1) includes a module training the Machine Learning 
models, which includes: Logistic Regression (LR), Sup-
port Vector Machine (SVM), Decision Tree Classifier 
(DTC), K-Nearest Neighbors (KNN) and Random Forest 
(RF) [39].

In order to evaluate the performance of the ML models 
and minimizing the bias introduced by a simplistic data 
splitting into training and test sets, we adopted an k-fold 
cross-validation method. In particular we chose the 
10-fold cross-validation approach since evidence shows 
that k=10 is the best number of splits on average in a 
large number of experiments, hence it is widely adopted 
by the scientific community. Logistic Regression (LR) is 
chosen for its ability to generalize a multivariate dataset. 
Decision Tree Classifier (DTC) is used both as a predic-
tive model or as a guide to conclude a set of observations. 
K-Nearest Neighbors (KNN) uses a distance function 
where instances are assigned to a class according to the 
most common class among its nearest neighbors. Sup-
port Vector Machine (SVM), widely used to solve clas-
sification and regression problems in bioinformatics 
and computational biology, uses a cost parameter for 

measuring misclassification during data training and a 
Gaussian radial basis function Gamma ( γ ). Random For-
est (RF) is used for its efficiency in estimating the relative 
importance of features.

The ML process steps is reported in the second part of 
Algorithm 1.

Evaluation is performed based on the following meas-
ures: (i) AUC (Area Under the Curve), (ii) Accuracy, (iii) 
F1-score, (iv) Sensitivity and (v) Specificity.

Voting
After the training phase, we performed a model ensem-
ble phase in which different models were integrated 
in order to increase the accuracy of the prediction (see 
“Voting” box in Fig. 1). The motivation for such a phase is 
that the ensemble model will show better prediction per-
formances on average with respect to each single model 
from which it is composed. We adopted two voting 
mechanisms, based on the following strategies: (i) hard 
voting, which considers the count of models which are in 
agreement on the classes predicted by each model as a 
majority consensus; and (ii) soft voting, in which model 
predictions are weighted based on the predictive accu-
racy achieved by each model on the test set.

Without a lack of generality, an instance of the pipe-
line is reported in Fig. 1 for a prostate cancer dataset. It 
performs the steps for the general purpose architecture 
reported above, i.e., i preprocessing; ii feature selection; 
iii model training phase and assessment; iv ensembling of 
the models through soft and hard voting.

Results
The proposed pipeline has been implemented and it is 
available for general purpose ML-based analysis of clini-
cal and biological data. We tested the proposed pipe-
line on prostate cancer datasets obtained during a 2 
years research project called INNOPROST, involving 
companies, research centers, and a clinical focused on 
prostate cancer analysis. During the two-year projects, 
several datasets have been tested employing the prot-
eomics laboratory of the University of Catanzaro, as well 
as a computer science-based platform aiming to analyze 
biomedical data. Moreover, datasets imported from a 
tracking database coupling clinical samples and biologi-
cal samples processed by the MS analysis laboratory at 
Magna Græcia University, were analyzed to relate data 
and peptides as possible biomarkers in prostate cancer 
diagnosis.

Figure  2 reports the web-based graphical interface 
of the system used to store the biological samples, 
which has been queried to extract the experimental 
datasets. In prostate cancer analysis, Fig. 2 shows bio-
logical information with a set of features: e.g. Medical 
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Record Number, Recruitment Date, Age of patient, 
and Prostate Gland Size. Sample column reports the 
type of biological sample: it can be blood, urine or both 
(i.e. blood_urine column). Biopsy Outcome column 
expresses the Gleason score of the histology exam.

We used the following two datasets to perform exper-
imental results: 

1.	 Prostate Serum dataset - in which the combination 
of mass spectrometry data from clinical serum and 
prostate information are analyzed;

2.	 EPS-Urine dataset - in which mass spectrometry data 
from EPS-Urine proteins are analyzed after clinical 
analysis.

Both above reported datasets have been used to iden-
tify features and thus distinguish PCa from BPH. The 
first dataset contains a total of 143 samples, including 
69 patients affected by PCa and 74 by BPH. The 143 
samples have been divided according to the 10-fold 
cross-validation approach into 10 subgroups and the 
model accuracies (e.g. F1, AUC), collected at each, iter-
ation have been averaged at the end of the cycles.

The second dataset contains a total of 121 patients, 
including 67 patients affected by PCa and 54 by BPH. 
The 121 samples have been divided according to the 
10-fold cross-validation approach into 10 subgroups 
and the model accuracies (e.g., F1, AUC), collected at 
each iteration, have been averaged at the end of the 
cycles.

Clinical information was extracted from the data track-
ing clinical information system described above. Table 1 
reports the statistics of the main features including age, 
the size of the prostate gland (expressed as volume in ml) 
obtained by trans-rectal prostate ultrasound, the value 
of Total PSA and Free PSA (both expressed in mg/l), and 
the ratio between Total and Free PSA (F/T Ratio). For 
each patient, a set of 1670 peptides was processed. Once 
data was acquired, the pipeline carried out the following 
steps, as described in “Methods” section: (i) preprocess-
ing; (ii) feature selection; (iii) ML models training; and 
(iv) voting.

Data preprocessing tackled missing values for the gland 
size imputing them by using the average value of the cor-
responding dataset (i.e. Prostate serum and EPS-Urine). 
Similarly, missing values for the age of the patient, PSA 
free, PSA ratio, and total PSA have been treated. Also, at 
the preprocessing step, the pipeline eliminates the col-
umns with too many missing values or data considered 
irrelevant (e.g., the columns containing information 
about previous surgery and previous prostate biopsy).

The feature selection phase for the Prostate Serum 
dataset consisted of selecting features having the high-
est score (i.e. score of 5). For instance, ProPsa indicates 
the prostate PSA concentration, the Prostate Gland Size 
value indicates the prostate gland dimension and 6 pep-
tides referring to relevant proteins were included in the 
results. Similarly, for the EPS-Urine experiment, fea-
tures with a score of 5 were adopted, which gave results 
regarding clinical information (e.g., Protein Gland Size) 

Fig. 2  User interface of the sample data tracking. The view shows a list of biological samples and their features (e.g. medical record, recruitment 
date, age, size of prostate gland)
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or proteins (e.g., Semaphorin-7A). In particular, the fol-
lowing peptides or groups of peptides were taken into 
consideration by domain experts as potentially relevant: 
(i) Prostate Serum dataset - VQPFNVTQGK (LAMP2), 
NINYTER, LSDTTSQSNSTAK (LAMB1), LHINHNN-
LTESVGPLPK (LUM), DGQLLPSSNYSNIK (NCAM1), 
DFEDLYTPVDGSIVIVR (TFRC); (ii) EPS-Urine dataset 
- Semaphorin-7A, SPARC.

Following the pipeline phases, the ML models training 
and assessment on both datasets were performed. In the 
first experimental scenario (Prostate serum), after train-
ing, the best performing model was Random Forest [27, 
28]. According to the domain experts, the best perform-
ing model was chosen by considering the AUC (Area 
Under Curve) measure. As an example, the Random 
Forest model was able to discriminate between PCa and 
BPH with an AUC of 0.87 and F1 of 0.81 [27]. Also, in 
this case, RF shows high scores in terms of Accuracy and 
Sensitivity. In general, they are much less likely to over-
fit than other models since they are composed of many 
weak classifiers, which are trained independently on 
completely different subsets of the training data, which 
ensures low overfitting tendencies.

The proposed computational pipeline has been 
tested using both serum and urine datasets, through 
an assessment of performance metrics. Assessment of 
the Machine Learning algorithms in terms of precision 
measures for EPS-Urine and Serum datasets allowed us 
to select the best model and to rank models in terms of 
various precision metrics: AUC, F1, Accuracy, Specificity, 
and Sensitivity. In particular, for the cited experiments, 
Logistic regression, Decision Tree, KNN, SVM and Ran-
dom Forest, models have been trained on the available 
datasets (i.e., urine and serum) and validated according 
to the above mentioned accuracy metrics. Training, tests, 
and biological details on the performed experiments 
are reported in [27] and [40], where the here proposed 
framework has been used with useful results in terms of 
identified peptides and sample classification.

Finally, the pipeline provides a voting strategy to obtain 
more reliable predictions on average. In our experiments, 
the majority (hard) voting strategy allows us to achieve 
the highest classification performance. For instance, in 
Table  2 we report two ensembling approaches used on 
the EPS-Urine dataset. The Patient Id column (same as Id 
column of Table 3) stores the information needed to iden-
tify the patient and to find its clinical data in the data-
base. The Diagnosed disease column (same as the Disease 
column in Table 3) stores the disease code (classes of the 
machine learning task). Finally, the SoftVoting and Hard-
Voting columns contain: (i) 0 if the majority (Hard Vot-
ing) or the best performing (Soft Voting) models agree on 
the BPH class; (ii) 1 if the majority (Hard Voting) or the 
best performing (Soft Voting) models agree on the PCa 
class. For instance, for patient 39, affected by BPH, both 
voting strategies correctly predict the class. For patient 
141, affected by PCa, Soft Voting wrongly predicted the 
BPH class, while Hard Voting correctly predicted PCa.

Overall, for the EPS-Urine dataset, both the hard and 
soft voting strategies correctly classifies 10 out of 12 
examples from the validation set (see Table  2). For the 
Serum dataset, the soft voting scored 16 out 20 and hard 
voting scored 17 out of 20.

Both results are reported in Fig.  3, which reports the 
implementation of the pipeline (also described as a 
general architecture in Fig.  1) as applied to the above 
described experiments. Moreover, Figs.  4 and 5 report 
the accuracies of the methods in the Serum experiment, 
ROC-AUC curves and metrics of the five ML algo-
rithms respectively, showing the efficacy of the proposed 
pipeline.

All experiments were executed in an experimental 
setup composed of computational resources from the 
Google Colab cloud environment on which the default 
Python 3 Runtime was used. For the Prostate serum data-
set, the preprocessing phase was performed in 0.36 s, the 
feature selection phase in 0.4 s and the ML models train-
ing in 1.8 s. For the EPS-Urine dataset, the preprocessing 

Table 1  Statistic differences between the two classes (PCa and BPH) for the clinical features

Age ProstateGlandSize Total PSA Free PSA F/T Ratio

PCa BPH PCa BPH PCa BPH PCa BPH PCa BPH

mean 66 69 39.78 71.67 10.33 4.02 18.41 39.22 1.73 1.49

std 6.23 6.49 14.26 35.86 11.47 5.09 10.88 19.83 1.36 1.95

min 47 56 20.00 30.00 3.01 0.07 1.00 0.10 0.52 0.05

25% 63 66 30.00 50.00 6.11 0.91 14.00 23.50 0.98 0.20

50% 67 71 36.00 66.50 6.75 2.73 16.00 40.00 1.21 0.93

75% 72 73 48.25 83.25 8.35 4.49 21.00 54.50 1.68 2.10

max 77 81 75.00 173.00 58.40 21.86 62.00 79.00 5.65 9.43
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phase was executed in 0.28 s, the feature selection phase 
in 8.43 s and the ML models training in 3.7 s. The higher 
execution time of the feature selection phase for the 

EPS-Urine dataset is due to the larger number of col-
umns (1600 vs 39) in the training set.

Discussion
The use of machine learning techniques to identify bio-
markers has been widely applied to biological as well as 
clinical data [7–10], to support physicians and biologists 
in searching for relevant biomarkers. Deep learning tech-
niques as well as voting mechanisms can also be used to 
enrich data results [24, 25]. E.g., voting mechanisms have 
been used in [16, 17] in order to improve proteins identi-
fication results in different contexts. Thus, using machine 
learning pipelines is not new in the field. For instance, in 
[11] ML techniques for mass spectrometry data reduc-
tion have been reported, whereas in [12, 13, 15, 41] ML 
techniques have been used to filter out biomarkers from 
prostate datasets. In [15], the authors used mass spec-
trometry data analysis to discover and validate prostate-
derived proteins in fluids. ML models have also been 
used to support chronic disease-related studies. In [18] 
ML models have been trained to assess the potential of 
inflammation biomarkers in the prediction of myocardial 

infarction, where data has been enriched with clinical 
patient information. Colon cancer data classification and 
information extraction has been tackled in [19], by using 
an ensemble of ML models trained on serum biomarkers. 

Table 2  Voting results for EPS-Urine dataset. In the prediction 
columns (SoftVoting and HardVoting), 0 is a prediction for the 
BPH class, and 1 stands for PCa. E.g. for Patient Id 141, affected 
by PCa (Diagnosed disease), SoftVoting predicted the BPH class 
(wrong prediction) and also HardVoting predicted BPH (wrong 
prediction)

Patient Id Diagnosed disease 
(real class)

SoftVoting 
prediction

HardVoting 
prediction

121 BPH 0 0

133 BPH 0 0

39 BPH 0 0

68 BPH 0 0

84 BPH 0 0

91 BPH 1 1

1 PCa 1 1

125 PCa 1 1

126 PCa 1 1

141 PCa 0 0

17 PCa 1 1

87 PCa 1 1

Fig. 3  Pipeline application and description with data samples used to test the pipeline. Numerical information about data and results (i.e. peptides) 
are reported in the tables
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Similarly, [20] uses ML models to identify optimal diag-
nostic biomarkers for non-small cell lung cancer. ML has 
also been used in [21] and in [22] for transcriptome pro-
file identification related to early detection of breast can-
cer. Diabetes-related diseases have been studied in [23] 
with early detection techniques based on ML prediction 
models.

In this work, we present an experience of a developed 
and applied pipeline including ML modules which can 
be used to analyze biological and clinical information 

related to chronic diseases. We applied this pipeline for 
a funded research project aimed to support clinicians 
in studying datasets of interest for prostate related dis-
eases. The general purpose pipeline has been applied 
to enrich a biological dataset with clinical data such as 
gland prostate dimension as an additional feature, for 
a large available set of patient-related data acquired 
during the development of the 2 years research pro-
ject. Without loss of generalization, the pipeline trains 
ML models on the dataset proving the efficacy of the 

Table 3  Example of input dataset showing a sample per row. Missing values have been represented by the NaN (Not a Number) 
literal. An excessive number of missing values will cause the elimination of the sample, while the remaining data will be statistically 
imputed in the preprocessing phase. Each sample is identified by its Id, and other relevant features are reported, e.g. the Age of the 
patient. The Disease feature holds the class information for each tuple (sample). The features on the right of the Disease column are 
protein expression values related to each sample

Id Age Prostate 
GlandSize

TotalPsa FTratio PsaFree Disease ... sema7a

id100 57 95.00 8.94 24.0 2.14 BPH ... 15300

id19 73 NaN 0.07 71.0 0.05 BPH ... 29200

id7 47 20.0 6.97 8.0 0.59 PCA ... 31800

id30 62 50.0 19.71 10.0 1.97 PCa ... 9230

id144 73 NaN 1.83 16.0 0.29 PCa ... 28300

id142 72 NaN 8.05 21.0 1.71 PCa ... 22800

... ... ... ... ... ... ... ... ...

Fig. 4  Results about accuracy metrics of the Serum experiment are reported in the figure with the ROC-AUC curve showing the different 
performances of the ML models
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proposed method, thus that the proposed implemented 
pipeline can be used and integrated in different applica-
tion scenarios. Thus, the pipeline goes in the direction 
of using ML techniques to support physicians and biol-
ogists in studying peptides and biomarkers extracted 
from biological samples. A voting mechanism has also 
been defined to choose the most suitable ML algorithm 
to be used on biological dataset [26]. Best model as well 
as ensembling model prediction results are obtained 
with hard (majority consensus) and soft (consensus 
weighted by model performance) voting approaches. 
The feature selection approach is used, as in several 
contexts in bioinformatics and health informatics, to 
reduce the number of features and increase the qual-
ity of the resulting models [42–45]. Feature selection 
methods allow the users to implement the identifica-
tion of features allowing prediction performance, and 
a better understanding of data in machine learning or 
pattern recognition applications [46]. The proposed 
pipeline allows to include of, in the data analysis, clini-
cal information used in the ML methods. By applying 
the pipeline to a real prostate cancer use case, we prove 
that by integrating sample clinical information (such as 
gland prostate size) in the analyzed biological sample 
the results are enriched for better clinical interpreta-
tion [27], allowing to achieve disease early predictions 

performance or guiding clinical procedures (such as 
biopsy).

Pipelines for analyzing mass spectrometry data and to 
identify biomarkers have been reported in many studies. 
In [47] a pipeline is proposed which uses multiple open-
access tools, able to only process mass spectrometry data. 
In Weber et  al. [48] a pipeline for mass spectrometry 
analysis dedicated to vitreous proteomics is presented, 
used for studying proliferative diabetic retinopathy. In 
[49], a data analysis pipeline for proteomics and pepti-
domics called DIAproteomics has been presented, able 
to acquire protein and peptide data from different data 
sources and formats, but does not consider clinical data. 
In [50] an open-source software suite for analysis of mass 
spectrometry data dedicated to translational proteomics 
is reported, while in [51] the IP4M platform is presented, 
as a modular scientific environment framework which 
allows biologists and domain experts in setting up com-
plex data analysis experiments.

The here presented pipeline has a different focus con-
cerning the above mentioned scientific environments 
since it is more programmer oriented. In fact, in addi-
tion to highlighting the most significant feature set 
for the particular task, it is able to return the trained 
machine learning model as a: (i) best model, which is 
the model showing the highest predictive performance 

Fig. 5  Results about accuracy metrics of the Urine experiment are reported in the figure with the ROC-AUC curve showing the different 
performances of the ML models
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for the task, and (ii) the integrated model, which is the 
ensembled model which performs better than each sin-
gular model on average. These extracted models can be 
used by programmers and system integrators to imple-
ment their software or even a novel pipeline or could 
be handy for a population-wide screening, especially in 
places where specialists may not be readily available.

Conclusions
Biomarker discovery represents an important task for 
the automatic discrimination of biological evidence. 
This paper describes a software pipeline for the analy-
sis of clinical and mass spectrometry data. The pipeline 
has been developed in a general purpose research pro-
ject for tracking and analyzing clinical and biological 
datasets. We report the experience of applying it to a 
prostate cancer dataset, proving its efficacy in finding 
interesting peptides which can be considered signifi-
cant features for disease prediction through biological 
interpretation by domain experts. The pipeline is also 
able to make the trained ML models available to pro-
grammers and system integrators, who can use them to 
build novel software platforms and pipelines for more 
specific tasks or domains.
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