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Abstract
Background Traditionally, existing studies assessing the health associations of accelerometer-measured movement 
behaviors have been performed with few averaged values, mainly representing the duration of physical activities and 
sedentary behaviors. Such averaged values cannot naturally capture the complex interplay between the duration, 
timing, and patterns of accumulation of movement behaviors, that altogether may be codependently related to 
health outcomes in adults. In this study, we introduce a novel approach to visually represent recorded movement 
behaviors as images using original accelerometer outputs. Subsequently, we utilize these images for cluster analysis 
employing deep convolutional autoencoders.

Methods Our method involves converting minute-by-minute accelerometer outputs (activity counts) into a 2D 
image format, capturing the entire spectrum of movement behaviors performed by each participant. By utilizing 
convolutional autoencoders, we enable the learning of these image-based representations. Subsequently, we 
apply the K-means algorithm to cluster these learned representations. We used data from 1812 adult (20–65 years) 
participants in the National Health and Nutrition Examination Survey (NHANES, 2003–2006 cycles) study who worn a 
hip-worn accelerometer for 7 seven consecutive days and provided valid accelerometer data.

Results Deep convolutional autoencoders were able to learn the image representation, encompassing the entire 
spectrum of movement behaviors. The images were encoded into 32 latent variables, and cluster analysis based 
on these learned representations for the movement behavior images resulted in the identification of four distinct 
movement behavior profiles characterized by varying levels, timing, and patterns of accumulation of movement 
behaviors. After adjusting for potential covariates, the movement behavior profile characterized as “Early-morning 
movers” and the profile characterized as “Highest activity” both had lower levels of insulin (P < 0.01 for both), 
triglycerides (P < 0.05 and P < 0.01, respectively), HOMA-IR (P < 0.01 for both), and plasma glucose (P < 0.05 and 
P < 0.1, respectively) compared to the “Lowest activity” profile. No significant differences were observed for the “Least 
sedentary movers” profile compared to the “Lowest activity” profile.

Conclusions Deep learning of movement behavior profiles revealed that, in addition to duration and patterns of 
movement behaviors, the timing of physical activity may also be crucial for gaining additional health benefits.
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Introduction
In recent years, wearable technologies, such as accel-
erometer-based activity monitors, have facilitated the 
collection of extensive and detailed datasets on the full 
spectrum of human movement behaviors in free-living 
environments [1–3]. Due to their feasibility and applica-
bility, many studies have utilized wearable activity moni-
tors as an objective means of monitoring daily activities 
[4–7]. The robust evidence derived from these studies 
suggests human movement behaviors have consider-
able consequences on various health indicators in adults, 
including the risk of cardiometabolic diseases and mor-
tality [7–9].

Adults engage in three types of movement behaviors in 
their daily living during waking hours—moderate-to-vig-
orous physical activity (MVPA), light intensity activities, 
and sedentary behaviors [9]. While the health benefits 
of MVPA are well-documented [10], the availability 
of device-based techniques has provided an unprece-
dented opportunity to explore whether and how the full 
spectrum of movement behaviors are related to health, 
especially when coupled with advanced machine learn-
ing and pattern recognition techniques [1, 4, 11]. Exist-
ing studies, utilizing wearable devices to monitor human 
movement behaviors, provide compelling evidence that 
excessive sedentary time, especially when combined with 
a low physical activity level, have detrimental effects on 
health [9]. Conversely, a higher level of physical activity 
from light intensity upwards is shown to be associated 
with improved cardiometabolic health [12]. Relying on 
such results, current public health guidelines recommend 
adults to accumulate a minimum of at least 150–300 min 
of moderate intensity physical activity each week, while 
minimizing total time spent in sedentary behaviors by 
incorporating any type of active behavior throughout the 
day to maximize health benefits [10].

The emergence of wearable activity monitors have 
facilitated the identification of previously unrecognized 
patterns of movement behaviors and their associa-
tions with health outcomes [2, 3, 13–15], leading to new 
insights and approaches for promoting a more active life-
style. However, the study of relationships between human 
movement behaviors (measured with accelerometry or 
other ways) and health is a challenging task that necessi-
tates using more innovative analytical approaches [1, 16]. 
Most existing studies to date have studied accelerometer 
data using classical statistical approaches such as regres-
sion analyses. However, machine learning approaches 
have the potential to better handle multidimensional 
accelerometer data [1, 4, 11, 15, 17, 18], potentially lead-
ing to identification of new insights and findings.

Recently, a number of analytical approaches have been 
proposed and used for studying the combined and joint 
associations of wearable device-estimated movement 
behaviors with different health indicators, rather than 
assessing them in isolation [4, 11, 12, 19]. Among these, 
statistical approaches like compositional data analysis 
and isotemporal substitution analysis have gained popu-
larity in examining the interconnectedness of move-
ment behaviors and their associations health outcomes 
[19–23]. By considering movement behaviors as compo-
sitional data, these approaches allow for a comprehensive 
understanding of their relative contributions to health 
markers and indicators, and how reallocations within 
these compositions may impact health outcomes [20, 23, 
24]. More recently, machine learning and data-driven 
techniques have also been employed for movement 
behavior profiling and studying the joint associations 
of sedentary behaviors and physical activity with differ-
ent health indicators [9, 25, 26]. For instance, machine-
learned profiles of sedentary and activity behaviors, 
characterized by performing more physical activity at 
light-intensity upwards throughout an entire week, have 
been linked to better cardiometabolic health in adults 
[9]. Altogether, accumulating evidence arising from such 
studies suggests that not only the duration but also the 
timing and pattern of accumulation of sedentary behav-
iors and physical activity intensities could be linked to 
markers of cardiometabolic health [12, 27, 28].

However, there has been relatively little attention given 
to the health impacts of the timing and patterns of accu-
mulation of movement behaviors, compared to the dura-
tion of movement behaviors [29]. This is partly because 
existing analytical approaches are not capable of pro-
cessing accelerometer data in its original form due to 
its voluminous and dynamic nature, making it difficult 
to extract meaningful information using conventional 
statistical approaches. Most existing studies have been 
performed with averaged or aggregated values derived 
from accelerometer data [4, 11, 15, 27], while partly or 
completely ignoring both timing and patterns of accu-
mulation of movement behaviors. Although some studies 
have incorporated variables and descriptors representing 
both levels and patterns of daily activities [4, 12, 15, 27, 
28], new research based on novel analytical approaches 
is required to fully capture the complex dynamics of the 
duration, timing and patterns of accumulation of move-
ment behaviors and assess their impacts on health.

Existing studies based on device-measured daily activi-
ties have consistently shown that any amount of physical 
activity could confer substantial cardiometabolic health 
benefits for adults [21]. Still, the patterns, variations, and 
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timing of movement behaviors appear to be important 
and linked to a number of health markers in adults [4, 
12, 27, 30, 31]. Although the findings of existing studies 
remain to be mixed, the timing and regularity of move-
ment behavior (i.e., evening actives and morning actives) 
have also been found to be associated with cardiometa-
bolic health markers [27, 30] and risk of mortality [30, 32, 
33]. However, detailed guidelines about the timing and 
patterns of accumulation of sedentary and activity behav-
iors are still lacking [10], as it remains unclear whether 
timing and patterns of accumulation are as important as 
total durations of these behaviors in terms of health ben-
efits [29].

In recent years, the field of machine learning has 
witnessed remarkable advances, with deep learning 
approaches excelling in various applications such as 
human activity recognition [34] and medical image anal-
ysis [35, 36]. Unlike traditional machine learning tech-
niques [37–39], the most unique aspect of deep learning 
lies in its ability to automatically identify and learn rep-
resentations from real-world data in their original form, 
without the need for hand-crafted feature engineering 
[36, 40]. These approaches can evaluate complex and 
high-dimensional data, enabling the identification of pre-
viously unrecognized patterns hidden in vast amounts of 
data [41]. This makes deep learning an excellent option 
for profiling accelerometer-measured daily movement 
behaviors without the need to reduce the accelerometer 
signal to averaged or aggregated values. Among the exist-
ing deep learning approaches, deep clustering based on 
convolutional autoencoders have recently gained inter-
est due to their ability to learn data representations auto-
matically with no or little supervision [42, 43]. Here, we 
generated image representations from the entire acceler-
ometer outputs recorded during wear time, encompass-
ing the duration, timing, and patterns of accumulation of 
movement behaviors. These movement behavior images 
were generated in such a way to encapsulate the entire 
waking movement behavior profile across seven mea-
surement days from each participant into a single image. 
We then employed a novel deep learning clustering 
approach based on convolutional autoencoders to create 
profiles of accelerometer-estimated movement behav-
iors using these images, and examined whether and how 
these deep-learning-identified profiles of movement 
behaviors are associated with markers of cardiometabolic 
health.

Methods
Data for this study were drawn from the National 
Health and Nutrition Examination Survey (NHANES). 
NHANES is a cross-sectional study that uses a com-
plex, multistage probability design to obtain a represen-
tative sample of the USA civilian non-institutionalized 

population. For this study, data were drawn from the 
2003/04 and 2005/06 NHANES cycles. The data collected 
in these cycles included completion of household inter-
views and surveys, an examination conducted in a mobile 
examination center, and wearing a hip worn acceler-
ometer for the measurement waking activity behav-
iors. Further information about the NHANES study and 
recruitment process is detailed elsewhere [44].

Study sample
All adult participants (20–65 years) who wore an accel-
erometer were considered eligible for inclusion in the 
present study. Participants with missing values for the 
biomarkers data or with insufficient valid accelerometer 
data were excluded. In total, there were 3688 adults eligi-
ble to wear an accelerometer in the total cycle sample of 
10,348 participants of all ages. Of these, data from valid 
accelerometer and cardiometabolic outcomes for 1812 
adults were available for the analyses.

Accelerometer data collection and processing
All ambulatory participants attending the medical exami-
nation center were eligible for measurement of daily 
activities with a hip-worn accelerometer (Actigraph 7164; 
Actigraph, LLC, Fort Walton Beach, FLA). The Actigraph 
accelerometer is a small (5.1 × 4.1 × 1.5  cm), lightweight 
(0.4  kg) instrument that records integrated acceleration 
information as an activity count in counts per minute 
(cpm), providing an estimate of the intensity of bodily 
movement [45]. The activity counts are time and date 
stamped, so detailed data on the time, volume, and inten-
sity of movement can be derived [45]. The accelerometer 
was worn on the right hip during waking hours (except 
for water-based activities) for 7 consecutive days.

Movement intensity categories
Accelerometry data were processed and cleaned using 
‘rnhanesdata’ package in R [46]. Non-wear time intervals, 
defined as intervals of at least 60 consecutive minutes of 
0 cpm with allowance for up to 2 min of observations of 
some limited movement (< 50  cpm) within these peri-
ods, were identified and flagged [45]. We conducted a 
visual inspection of all movement behavior images and 
identified that some wear time intervals lasting less than 
120 min might have been non-wear periods, and incor-
rectly misclassified by the wear time detection method 
as wear time [45]. We therefore only included those wear 
time intervals that lasted more than 120  min to obtain 
better movement behavior images. This threshold was 
established through empirical analysis and visual inspec-
tion of the final movement behavior images. On average, 
the number of excluded bouts lasting less than 120 min 
among those who had accelerometry data was 3.1 per 
participant. The average duration of these bouts was 
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28.5 min. Participants with four or more valid days were 
considered eligible for inclusion in our study with each 
valid day was defined as ≥ 10 h of monitor wear time [45]. 
Accelerometer counts were used to mark all minute-by-
minute activity counts using previously validated cut-
points as either sedentary (< 100  cpm), light-intensity 
physical activity (100–1951 cpm), or MVPA (≥ 1952 cpm) 
[45, 47].

Duration of movement behaviors, uninterrupted sedentary 
bouts, and number of sedentary interruptions
Total duration of each activity category (min/day) was 
obtained by dividing time spent in each activity by the 
number of valid days. In addition to duration of move-
ment behaviors, patterns of accumulation of sedentary 
time and number of sedentary interruptions are shown 
to be related to cardiometabolic health [12, 48]. A sub-
stantial body of literature indicates that excessive sed-
entary time is a health risk [49, 50]. Nevertheless, the 
exact threshold at which sedentary behavior becomes 
detrimental to health remains unclear. Yet, accumulat-
ing evidence from both randomized controlled trials and 
observational studies suggests that limiting sedentary 
time to 15–30 min may be beneficial for cardiometabolic 
health [12, 51]. Following consensus definition [52], all 
uninterrupted sedentary bouts lasting > 1 min were iden-
tified [52], and prolonged sedentary bouts were identi-
fied (15–30 min and ≥ 30-minutes sedentary bouts). Our 
rationale for selecting these two specific categories stems 
from accumulating evidence suggesting that sedentary 
time accumulated in bouts lasting more than 15–30 min 
may be considered prolonged and detrimental to cardio-
metabolic health [12, 51]. The percentage of sedentary 
time spent in each category (15–30  min and ≥ 30  min) 
was calculated by dividing the time spent in each seden-
tary bout category by the sum of the durations of all sed-
entary behaviors on valid days. Additionally, the number 
of transitions between sedentary bouts lasting > 1  min 
and active behaviors was identified, and divided by the 
sum of total time spend in sedentary behaviors on valid 
days to obtain the number of sedentary interruptions per 
sedentary hour. Sedentary break per hour is shown to be 
an appropriate metric specifically relevant to free-living 
behavior, reflecting the patterns of sedentary behaviors 
[53].

Cardiometabolic markers
Participants’ height and weight were measured in the 
mobile examination center for the calculation of body 
mass index (BMI), and waist circumference was mea-
sured to the nearest 0.1 cm at the level of the iliac crest. 
Blood samples from the participants were analyzed for 
non-fasting high-density lipoprotein (HDL) choles-
terol and C-reactive protein (CRP). The ratio of total to 

HDL cholesterol level (total/HDL cholesterol ratio) was 
derived as it provides a better prediction of cardiovascu-
lar disease risk than isolated lipid and lipoprotein levels 
[54]. One-half of the participants were sampled to attend 
the morning session [44]. Those participants attending 
the morning session were instructed to fast at least 9  h 
prior to their appointment time. Fasting blood samples 
were taken and analyzed for plasma glucose, insulin, low-
density lipoprotein (LDL) cholesterol, and triglycerides. 
The homeostasis model assessment of insulin resistance 
(HOMA-IR) was calculated from fasting plasma glucose 
and insulin levels [55].

Covariates
Participant self-reported their age, gender, marital sta-
tus, ethnicity, and education level. Serum cotinine was 
measured to estimate the extent of active smoking and 
exposure to environmental tobacco smoke. The ratio 
of income to poverty was calculated based on family 
income values. Participant also completed two 24-hour 
diet-recall coupled with US Department of Agriculture 
food composition data to measure dietary intakes of total 
energy, saturated fat, and caffeine and alcohol consump-
tion. Dichotomous variables were generated from self-
reported medical history for diabetes, cardiovascular 
disease, and cancer.

Deep learning of movement behavior for profile analysis
Profile analysis was conducted in three primary steps. 
Firstly, we used minute-by-minute activity counts to 
generate an image representing the full spectrum of 
movement behaviors for each participant who had valid 
accelerometry data. After creating one movement behav-
ior image for each participant, profile analysis was per-
formed using a Convolutional Autoencoder (CAE) and 
the K-means clustering algorithm. The CAE was trained 
on the movement behavior images to learn the image 
representation (i.e., latent variables), which were then fed 
to the K-means clustering to group the participants in 
such a way that participants in the same group exhibited 
the most similar movement behaviors, while demonstrat-
ing the most dissimilarity in terms of movement behav-
iors from the participants in other groups. These three 
steps are explained in more detail below.

Representation of movement behaviors as images
Considering that the accelerometer outputs activ-
ity counts each minute, up to 10,080 (7  day × 24  h × 
60  min = 10,080) date- and time-stamped data points, 
categorized as MVPA, light intensity activity, or seden-
tary time were available for each participant. We sorted 
these data points by day of the week, from Monday to 
Sunday, and represented them as a 2D matrix with 168 
rows (7 days × 24 h) and 60 columns (minutes per hour). 
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Recorded MVPA, light intensity activity, and sedentary 
minutes were color-coded and non-wear time intervals 
were represented with in black. Figure  1 depicts two 
examples of movement behavior images created based on 
minute-by-minute accelerometer data.

Convolutional autoencoders
We utilized CAE for deep learning of movement behav-
ior profiles. CAEs are a type of deep neural network 
with an encoder and a decoder layer [42, 56, 57]. The 
encoder converts input data into a compressed rep-
resentation, called latent variables, while the decoder 
reconstructs the original input data from these latent 
variables. The network is trained to compress the data 

into a low-dimensional vector at the bottleneck and 
reconstruct the input data. Deep clustering with convo-
lutional autoencoders leverages convolutional layers to 
effectively generate low-dimensional representations of 
high-dimensional data [42, 56]. This approach allows for 
unsupervised learning of data representations. The com-
pressed representations are then used for clustering algo-
rithms, such as K-means clustering [56].

Figure  2 shows the architecture of the CAE used for 
deep learning of movement behaviors profiles from the 
generated images. This network represents a variation of 
the CAE introduced by Gue et al. [56], that is widely uti-
lized in the existing literature due its efficiency in feature 
learning. In this architecture, only convolutional layers 

Fig. 1 Examples of movement behavior images used as input for convolutional autoencoders. Panel (A) displays the movement behavior profile images 
created from accelerometer activity counts per minute during valid measurement periods over the course of 7 measurement. Panel (B) displays the re-
constructed movement behavior profile images from the learned latent variable using convolutional autoencoders. Participants with four or more valid 
days were considered eligible for inclusion in our study with each valid day was defined as ≥ 10 h of monitor wear time. Accelerometer outputs (counts 
per minute [cpm]) were classified using previously validated cut-points as either sedentary (< 100 cpm), light-intensity physical activity (100–1951 cpm), 
or moderate-to-vigorous physical activity (MVPA, ≥ 1952 cpm). Note that all the axes’ labels and grid lines were removed from the images when creating 
movement behavior images for training the convolutional autoencoders. One movement behavior image was created for each participant
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are layered on the input images to extract hierarchical 
features [56]. There is a fully connected autoencoder 
with an embedded layer composed of user-specified neu-
rons. The rest are convolutional layers and convolutional 
transpose layers (some work refers to as Deconvolu-
tional layer). In our study, the CAE comprised four con-
volutional layers and four deconvolutional layers, which 
encoded the images into 32 latent variables.

To train the CAE network, all the generated move-
ment behavior images were normalized and resized to 
224 × 224 pixels, and then were fed into the CAE. We 
empirically determined the optimal input size by pro-
gressively training the network, starting from 8 × 8 pixels 
and doubling the input dimensions up to 2048 × 2048 pix-
els. In each repetition, we systematically tested encoding 
images into various numbers of latent variables, ranging 
from 8 to 2048 latent variables, with each iteration dou-
bling the size of the latent variable. These empirical tests 
indicated that the input size of 224 × 224 pixels with 32 
latent variables sufficed for the CAE to learn the image 
representation appropriately, as shown in Fig.  1 (panel 
(B)), preserving the temporal distribution of sedentary 
and physical activity bouts. We used an Adam optimizer 
with a mini-batch size of 32 and fixed the number of 
epochs to 200.

K-means clustering with the learned latent variables
Clustering analysis was performed with the K-means 
clustering algorithm. K-means partitions the data into 
a user-defined number (K) of disjoint clusters based on 
the input variables (features) [58]. The cost function 

is optimized such that objects within the same cluster 
have maximized similarity to each other and minimized 
similarity to objects assigned to other clusters [58]. We 
included the learned 32 latent variables from the CAE 
as input to the K-means clustering analysis, using the 
K-means + + strategy for centroid initialization [59]. 
Unlike random selection of centroids, K-means + + selects 
the initial cluster centers that are as far apart as possible 
[59]. This approach reduces the risk of converging to a 
local minimum and enhances the algorithm’s ability to 
discover meaningful clusters in the data [59]. To deter-
mine the optimal number of clusters for our analysis, 
we employed the “elbow method” [60] and silhouette 
analysis [61], which are two commonly-used approaches 
for cluster quality analysis. The elbow method involves 
selecting the optimal number of clusters based on a 
trade-off between a reasonable number of clusters and 
the minimization of within-cluster differences [60]. 
Meanwhile, silhouette analysis allows us to examine the 
separation distance between the resulting clusters [61]. 
This measure spans from − 1 to 1, with values closer to 
1 indicating that the sample is more distant from the 
neighboring clusters. We visualized silhouette scores for 
all data points to assess the appropriateness of the num-
ber of clusters.

Statistical analysis
Characteristics of movement behavior profiles
Descriptive statistics were calculated for the sample 
population as well as for each movement behavior pro-
file. After identifying the movement behavior profiles, 

Fig. 2 The structure of convolutional autoencoders employed for deep clustering of movement behavior images. The encoder network converts the 
input data into a compressed representation, and the decoder network reconstructs the original input data from the learned compressed representation. 
The encoder network comprises convolutional layers, and the decoder network comprises deconvolutional layers (or convolutional transpose layers). 
In the middle lies a fully connected autoencoder, whose embedded layer consists of 32 neurons, creating the latent representation. The network was 
trained in an end-to-end manner. The clustering layer received the latent representations as input and employed K-means clustering to divide the data 
into non-overlapping clusters
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significance of difference in mean time spent in MVPA, 
light intensity activities, and sedentary time among the 
identified profiles were examined with one-way analysis 
of covariance (ANCOVA) with adjustment for the effects 
of age, gender, ethnicity, marital status, and income to 
poverty ratio. Comparisons were also made for the per-
centage of time spent in 15–30 min and ≥ 30-minute sed-
entary bouts, and the number of sedentary interruptions 
per hour. When the differences between profiles were 
found to be statistically significant (p < 0.05) in ANCOVA 
tests, pairwise comparison was performed with Tukey 
post-hoc tests.

To capture the temporal distribution of movement 
behaviors, we calculated and visually represented the 
percentage of participants within each profile who spent 
their time engaged in MVPA, light intensity activities, 
and sedentary time for each minute from Monday to 
Sunday. This approach allowed us to effectively demon-
strate the temporal distribution of movement behaviors 
in each identified profile and compare the differences 
among the profiles.

Associations with markers of cardiometabolic health
Multiple linear regression models were used to assess the 
association between profile membership with each of the 
cardiometabolic health markers. All non-normally dis-
tributed cardiometabolic markers were log-transformed 
prior to inclusion in the regression analyses to meet the 
assumption of normal distribution. We defined the pro-
file with lowest activity levels (both MVPA and light 
intensity activities) as the referent profile, and then com-
pared the differences in cardiometabolic health markers 
among the profiles to the reference profile. The regression 
models for each cardiometabolic marker were adjusted 
for significant confounders identified through outcome-
specific backward elimination(retained at P < 0.2 [62]).

Results
Participants
A total of 1812 NHANES participants aged 20–65 years 
provided valid acceleration data, along with all the car-
diometabolic markers required for the present study. 
Descriptive statistics for the participants included in 
the analysis, both overall and by the four waking activ-
ity behavior profiles identified, are presented in Table 1. 
The mean age of participants was 43.1 (14.3) years, and 
53.5% were female. The average daily wear time (SD) of 
the accelerometer was 14.2 (1.5) hours per day.

Deep clustering of waking activity behaviors and the 
optimal number of clusters
All movement behavior profile images were used to train 
the CAE network, and the learning curve for the CAE 
encoding the images into 32 latent variables is shown in 

Supplementary material, Figure S1. The cluster analy-
sis was performed with the learnt latent variables. The 
within-cluster sums for K-means cluster analysis with the 
32 learned latent variables from CAE and the number of 
clusters ranging from 1 to 50 are shown in Supplemen-
tary material, Figure S2.

According to both the “elbow method”, three or four 
clusters seemed to be appropriate (see Supplementary 
material, Figure S2). Similarly, the visualization of sil-
houette scores within each cluster suggested that three 
or four clusters were appropriate, as they demonstrated 
a more balanced size and acceptable separation (see 
Supplementary material, Figures S3–S11). To determine 
the optimal number of clusters, we repeated the cluster-
ing process with both three and four clusters. During 
each repetition, we analyzed the number of participants 
assigned to each cluster. We also assessed which cluster-
ing solution resulted in more apparent differences in the 
average time spent in MVPA, light intensity activities, 
and sedentary time. Additionally, we also examined the 
differences in the percentage of time spent in 15–30 min 
and ≥ 30-minute sedentary bouts, along with the number 
of sedentary interruptions per hour. We selected four as 
the optimal number of clusters (or profiles) because of 
the balanced distribution of participants across clusters 
and to maximize the differences in between them.

Comparison of movement behavior profiles/clusters
The durations of MVPA, light intensity activities, and 
sedentary time, along with the percentage of sedentary 
time spent in different bout length and the number of 
sedentary interruptions for these clusters are presented 
in Fig. 3. The identified profiles exhibited varying and sta-
tistically different levels of MVPA, light intensity activi-
ties, and sedentary time. Differences were also observed 
in the percentage of sedentary behaviors spent in differ-
ent bout length and the number of sedentary interrup-
tions between the identified profiles.

Figure  4 displays the temporal distribution of MVPA, 
light intensity activities, and sedentary time, represented 
by minute-by-minute percentage distributions. Overall, 
all movement behavior profiles tended spend more time 
sedentary during the evening hours after ~ 17 pm, and 
less time in MVPA and light-intensity activities.

Cluster 1: “Lowest activity” (N = 351)
This profile showed the lowest level of MVPA and light-
intensity activities among all the profiles (P < 0.02 for all 
pairwise comparisons). Additionally, they spent a higher 
amount of time engaged in sedentary bouts lasting 
30 min or more (P < 0.05 for all pairwise comparisons). In 
comparison to all other movement behavior profiles, the 
temporal distribution of MVPA, light intensity activities, 
and sedentary time appeared to be relatively more varied.
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Cluster 2: “Early-morning movers” (N = 595)
This cluster, on average, had slightly higher duration of 
MVPA (P < 0.02), light intensity activities (P < 0.001), 
and sedentary time (P < 0.001) than “Lowest activity”. 
However, there were no statistically significant differ-
ences in the number of sedentary interruptions and 

the percentage of time spent in sedentary bouts lasting 
15–30 min and ≥ 30-minute sedentary bouts. In terms of 
timing of movement behaviors, “Early-morning movers” 
consistently displayed a tendency to engage in MVPA 
and light-intensity activities during the early morning 
hours, specifically between approximately 6–8 am, from 

Table 1 Characteristics of the study population overall, and by the four identified movement behavior profiles
Variable Full sample

(N = 1812)
Lowest activity
(N = 351)

Early-morning movers
(N = 595)

Least sedentary movers
(N = 552)

Highest activity
(N = 314)

Demographics
Age, years 43.1(12.5) 40.4 (13.0) 44.8 (12.3) 41.4 (12.7) 45.8 (11.0)
Sex
 Male 842 (46.5%) 154 (43.9%) 265 (44.5%) 229 (41.5%) 194 (61.8%)
 Female 970 (53.5%) 197 (56.1%) 330 (55.5%) 323 (58.5%) 120 (38.2%)
Race/Ethnicity
 Non-Hispanic white 907 (50.1%) 152 (43.3%) 344 (57.8%) 249 (45.1%) 162 (51.6%)
 Non-Hispanic black 332 (18.3%) 79 (22.5%) 102 (17.1%) 94 (17.0%) 57 (18.2%)
 Mexican American 423 (22.3%) 76 (21.7%) 114 (19.2%) 158 (28.6%) 75 (23.9%)
 Other 150 (8.3%) 44 (12.5%) 35 (5.9%) 51 (9.2%) 20 (6.4%)
Education
 Less than 12 years 396 (21.9%) 86 (24.5%) 104 (17.5%) 140 (25.4%) 66 (21.0%)
 12 years 427 (23.6%) 88 (25.1%) 112 (18.8%) 136 (24.6%) 91 (29.0%)
 Over high school 989 (54.6%) 177 (50.4%) 379 (63.7%) 276 (50.0%) 157 (50.0%)
Marital status
 Married/cohabiting 1271 (70.2%) 202 (57.7%) 439 (73.8%) 385 (69.7%) 245 (78.0%)
 Divorced/Widowed 284 (15.7%) 65 (18.6%) 86 (14.5%) 86 (15.6%) 47 (15.0%)
 Never married 256 (14.1%) 83 (23.7%) 70 (11.8%) 81 (14.7%) 22 (7.0%)
Income to poverty ratio 3.0 (1.6) 2.6 (1.6) 3.2 (1.6) 2.8 (1.6) 3.2 (1.5)
Lifestyle factors, dietary, and diseases
Smoking status (serum cotinine)
 Non-smoker, < 10 ng/dL 1372 (75.7) 240 (68.4) 483 (81.2) 415 (75.2) 234 (74.5)
 Light smoker, 10-<100 ng/dL 108 (6.0) 25 (7.1) 24 (4.0) 37 (6.7) 22 (7.0)
 Moderate smoker, 100-<300 ng/
dL

213 (11.8) 59 (16.8) 56 (9.4) 62 (11.2) 36 (11.5)

 Heavy smoker, ≥ 300 ng/dL 119 (6.6) 27 (7.7) 32 (5.4) 38 (6.9) 22 (7.0)
Alcohol consumption, grams/day 8.6 (21.9) 7.2 (18.9) 9.0 (24.1) 8.9 (22.3) 9.0 (19.8)
Dietary energy intake, kcal 2198.3 (797.2) 2215.2 (836.7) 2215.4 (777.0) 2088.5 (758.7) 2336.3 (833.8)
Total saturated fat, gram 27.4 (13.1) 27.6 (14.0) 27.6 (12.8) 25.9 (12.4) 29.3 (13.7)
Total caffeine intake, milligram 163.3 (192.9) 154.6 (208.6) 161.9 (180.4) 154.6 (186.2) 190.1 (207.5)
Diseases
 Cardiovascular diseases 94 (5.2%) 23 (6.6%) 26 (4.4%) 28 (5.1%) 17 (5.4%)
 Diabetes 138 (7.6%) 34 (9.7%) 33 (5.5%) 49 (8.9%) 22 (7.0%)
 Ever had cancer or malignancy 89 (4.9%) 18 (5.1%) 24 (4.0%) 25 (4.5%) 22 (7.0%)
Cardiometabolic markers
Insulin, pmol/L 47.8 (29.5, 81.1) 54.2 (34.4, 90.8) 42.5 (25.9, 72.5) 49.9 (31.6, 83.0) 47.5 (29.4, 77.1)
Triglycerides, mmol/L 1.3 (0.9, 1.9) 1.3 (0.9, 2.0) 1.2 (0.9, 1.8) 1.3 (0.9, 2.0) 1.2 (0.8, 1.8)
HOMA-IR 11.5 (6.7, 21.0) 13.5 (8.0, 23.5) 10.2 (5.8, 18.7) 11.8 (7.2, 21.4) 11.7 (7.1, 20.5)
Plasma glucose, mmol/L 5.3 (4.9, 5.8) 5.4 (5.0, 5.8) 5.3 (4.9, 5.7) 5.3 (4.9, 5.7) 5.4 (5.1, 5.8)
CRP, mg/dL 0.2 (0.1, 0.5) 0.2 (0.1, 0.6) 0.2 (0.1, 0.6) 0.2 (0.1, 0.5) 0.2 (0.1, 0.4)
Total/HDL cholesterol ratio 3.6 (2.9, 4.5) 3.7 (2.9, 4.5) 3.6 (2.9, 4.6) 3.6 (3.0, 4.5) 3.7 (2.9, 4.6)
LDL, mmol/L 3.0 (0.9) 3.0 (1.0) 3.1 (0.9) 3.1 (0.9) 3.1 (0.9)
Waist circumference, cm 96.2 (86.7, 107.0) 96.4 (87.3, 108.2) 95.6 (86.2, 105.0) 96.3 (87.0, 107.2) 97.8 (87.0, 108.7)
BMI, kg/m2 27.8 (24.2, 32.0) 28.0 (24.1, 32.9) 27.4 (24.1, 31.3) 28.0 (24.4, 32.1) 27.8 (24.4, 31.9)
Values are mean (SD) or count (%), and median (interquartile range) for the cardiometabolic markers. BMI = body mass index, CRP = C-reactive protein, LDL = low-
density lipoprotein, HDL = high-density lipoprotein, HOMA-IR = Homeostasis insulin resistance (HOMA-IR)
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Monday to Friday. On Saturdays, their engagement in 
MVPA and light intensity activities was higher between 
approximately 7–12 am.

Cluster 3: “Least sedentary movers” (N = 552)
This profile had, on average, the least time spent in sed-
entary behavior compared to other identified profiles 

(P < 0.05). In comparison to the “Lowest activity” and 
“Early-morning movers” profiles, the “Least sedentary 
movers” profile had a higher number of sedentary inter-
ruptions (P < 0.001 and P = 0.001, respectively) and spent 
relatively less time in sedentary bouts lasting ≥ 30  min 
(P < 0.001 and P = 0.032, respectively). Regarding the tim-
ing of movement behaviors, the “Least sedentary movers” 

Fig. 3 Total duration of (A) moderate-to-vigorous physical activity (MVPA), (B) light intensity activities, and (C) sedentary time, and percent of time spent 
in 15–30 min (D) and ≥30-minute (E) sedentary bout length, and number of sedentary breaks per sedentary hour (F) in the four identified movement 
behavior profiles. The bars represent the mean, and error bars indicate 95% confidence intervals. Differences were examined with analysis of covariance 
(ANCOVA) with adjustment for the effects of age, gender, ethnicity, marital status, and income to poverty ratio, and only significant pairwise comparison 
with p-values < 0.05 are shown on the graphs
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Fig. 4 Temporal distribution of (A) moderate-to-vigorous physical activity (MVPA), (B) light intensity activities, and (C) sedentary time among the four 
identified profiles. The heatmaps illustrate the percentage of participants within each profile engaged in MVPA, light intensity activities, and sedentariness 
for each minute from Monday to Sunday. Warmer colors indicate a higher percentage of participants engaging in the specific movement behavior during 
those time intervals, while colder colors indicate lower participation rates. The values are interpolated for better interpretation
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consistently displayed a tendency to be relatively more 
sedentary during the morning hours (6–12 am) com-
pared to the afternoon hours (12–18 pm). Conversely, 
they engaged in more MVPA and light-intensity activities 
in the morning (6–12 am) than in the afternoon (12–18 
pm).

Cluster 4: “Highest activity” (N = 314)
This profile exhibited the highest level of MVPA and 
light intensity activities compared to all other profiles 
(P < 0.001 for all pairwise comparisons). Additionally, 
they had a comparable level of sedentary behaviors when 
compared to the “Lowest activity” and “Early-morning 
movers” profiles but higher (P < 0.001) than the “Least 
sedentary movers” profile. The “Highest activity” profile 
did not show any statistically significant differences in 
the percentage of time spent in sedentary bouts lasting 
15–30 min and ≥ 30 min sedentary bouts, as well as the 
number of sedentary interruptions, in comparison to the 
“Least sedentary movers” profile. However, when com-
pared to the “Lowest activity” and “Early-morning mov-
ers” profiles, they spent relatively less time in sedentary 
bouts lasting ≥ 30 min (P = 0.02). Regarding the timing of 
movement behaviors, the “Highest activity” performed 
their MVPA and light intensity activities mostly in day-
time between ~6 am-16 pm. They were also relatively less 

sedentary during those hours. The only difference was 
on Sunday when the “Highest activity” profile tended to 
remain mostly sedentary.

Association analysis
Figure 5 illustrates the results of the association analysis 
between the four distinct movement behavior profiles 
and markers of cardiometabolic health. After adjusting 
for potential covariates, “Early-morning movers” and the 
“Highest activity” profiles both had lower levels of insu-
lin (P < 0.01 for both), triglycerides (P < 0.05 and P < 0.01, 
respectively), HOMA-IR (P < 0.01 for both), and plasma 
glucose (P < 0.05 and P < 0.1, respectively) compared to 
the “Lowest activity” profile. “Early-morning movers” 
profile had also lower waist circumference (P < 0.1), while 
the “Highest activity” profile had lower CRP (P < 0.05) 
and total/HDL cholesterol ratio (P < 0.05) compared to 
the “Lowest activity” profile.

The average differences between the “Early-morning 
movers” and “Highest activity” profiles and the “Lowest 
activity” profile were clinically meaningful [63] for insu-
lin (11.0 and 10.4 pmol/L, respectively), triglycerides 
(0.12 and 0.2 mmol/L, respectively), and HOMA-IR (3.6 
and 3.5, respectively). No significant differences in any 
of the examined cardiometabolic markers were observed 

Fig. 5 Association between the four identified profiles of movement behaviors with cardiometabolic biomarkers (A–I) with “Lowest activity” profile se-
lected as the referent group. The values and error bars are estimated means and 95% confidence interval from linear regression models. All the markers 
except LDL (G) were back-transformed from the log scale. The models were adjusted for significant demographic, lifestyle, dietary, and medical history 
covariates identified through outcome-specific backward elimination (retained at P < 0.2: see Supplementary material, Table S1). ***P < 0.01; **P < 0.05; 
*P < 0.1. Abbreviations: BMI = body mass index, CRP = C-reactive protein, LDL = low-density lipoprotein, HDL = high-density lipoprotein, HOMA-IR = Ho-
meostasis insulin resistance (HOMA-IR).
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for the “Least sedentary movers” profile compared to the 
“Lowest activity” profile.

Discussion
In this study, the profiling of movement behaviors was 
performed using a novel approach employing a deep 
learning method applied on image representation of the 
entire accelerometer outputs recorded during wear time. 
Deep convolutional autoencoders were able to learn the 
image representation, encompassing the entire spec-
trum of movement behaviors. Cluster analysis based on 
the learned representations for the movement behavior 
images, resulted in identification of four distinct move-
ment behavior profiles characterized by varying lev-
els, timing, and patterns of accumulation of movement 
behaviors. These identified profiles were associated with 
the markers of cardiometabolic health.

To our knowledge, our study is the first to employ 
a deep learning approach to profile accelerometer-
estimated movement behaviors, providing additional 
insights into the interplay between levels, timing and 
patterns of accumulation of movement behaviors and 
their relationship to cardiometabolic health. Our study 
has two main novelties. Firstly, we generated move-
ment behavior images that encapsulate the entire waking 
movement behavior profile across seven measurement 
days from each participant into a single image. Secondly, 
we applied a deep clustering approach (i.e., convolutional 
autoencoder) on these images to obtain the movement 
behavior profiles. Compared to previous studies that have 
typically relied on predefined variables and thresholds for 
machine learning of movement behaviors [4, 11, 15, 17, 
27], the deep learning-based profiles that were identified 
in our study are likely to more accurately represent natu-
ral patterns and timing of movement behaviors.

The deep learning-based profiles identified in our study 
not only exhibit diverse and varying durations of move-
ment behaviors, but also had evident differences in pat-
terns and temporality of accumulation of movement 
behaviors. These differences were found to be associated 
with the markers of cardiometabolic health, after adjust-
ment for other potential confounders. These findings fur-
ther strengthen the emerging evidence that underscores 
the multidimensional nature of movement behaviors [4, 
9], highlighting the significance of considering the dura-
tion, timing, and patterns of accumulation of movement 
behaviors collectively, as they may all be related to the 
cardiometabolic health in adults.

It is currently well-documented that regular physi-
cal activity, even in small doses, is strongly associated 
with a reduction in cardiometabolic mortality and the 
risk of developing various chronic diseases [7]. How-
ever, large-scale population-based studies indicate that 
MVPA, on average, accounts for only 3–5% of adults’ 

movement behavior time throughout a 24-hour cycle, 
while sedentary and light-intensity activities constitute 
the major parts [64]. Recent research indicates all move-
ment behaviors within waking hours may be interrelated, 
and codependently related to cardiometabolic health 
[21]. The identification of movement behavior profiles 
with differing duration of movement behaviors implicitly 
supports the findings of existing literature [21, 65], sug-
gesting that all movement behaviors during the day are 
important and may be linked to cardiometabolic health.

Evident differences in the temporality of movement 
behaviors were observed among the identified move-
ment behavior profiles. Currently, little is known about 
the underlying biological mechanisms by which timing of 
movement behaviors may influence health benefits, and 
even less about whether and how the timing and tempo-
rality light-intensity activities and sedentary behaviors 
could be related to different health indictors in adults. 
Still, epidemiological studies have continued to find that 
timing of movement behaviors, particularly exercise 
behaviors, may be related to cardiometabolic health and 
risk of mortality [27, 30, 32, 33]. However, most of previ-
ous studies have primarily focused on the timing of exer-
cise, while neglecting the potential effects of timing other 
movement behaviors.

Deep learning of movement behavior profiles reveals 
that low sedentary time combined with a higher level 
of physical activity may not necessarily result in a bet-
ter cardiometabolic health, which is the most advocated 
approach for improving health in adults [10]. Overall, 
the “Least sedentary movers” exhibited more favorable 
patterns and durations of movement behaviors than the 
“Early-morning movers”. However, when comparing 
them to the “Lowest activity” profile, “Least sedentary 
movers” with a midday pattern of physical activity did 
not show any significant differences in the examined car-
diometabolic health markers. On the other hand, “Early-
morning movers” who were engaged in the highest daily 
physical activity during the early morning had lower insu-
lin level, triglycerides, HOMA-IR, plasma glucose, and 
waist circumference than the “Lowest activity” profile. 
The existing literature on the optimal timing for physical 
activity presents somewhat mixed results [66], although 
most studies utilizing device-based methods support the 
notion that morning physical activity may provide greater 
health benefits than afternoon, evening, or midday activ-
ity [30, 33]. For instance, a recent study involving over 
85,000 individuals in the UK Biobank found that morn-
ing physical activity was linked to lower risks of incident 
cardiovascular diseases compared to participants with a 
midday pattern of physical activity [30]. These findings 
contribute to the current knowledge in the literature by 
emphasizing that, in addition to considering the volume 
and patterns of movement behaviors [30, 67], the timing 



Page 13 of 16Farrahi et al. BMC Medical Informatics and Decision Making           (2024) 24:74 

of movement behaviors may also play a role in achieving 
maximal cardiometabolic health benefits.

Like “Early-morning movers” profile, the “Highest 
activity” profile had also lower levels of insulin, triglycer-
ides, and plasma glucose compared to the “Lowest activ-
ity” profile. Our findings align with existing literature, 
which consistently shows that a higher level of physical 
activity is associated greater health benefits, even after 
accounting for the duration and patterns of accumula-
tion of sedentary behaviors [12, 68]. Currently, it is still 
unclear whether optimal timing of movement behav-
iors combined with a relatively higher physical activity 
level can confer additional health benefits [32]. Further 
research is needed to fully understand the potential 
synergistic effects of timing and activity level on health 
outcomes. Nonetheless, our findings suggest that both a 
relatively higher level of physical activity and engaging in 
morning physical activity may potentially confer compa-
rable cardiometabolic health benefits.

Our study has several notable strengths. Although 
advantageous, the proliferation of accelerometers has 
also been associated with several considerable challenges 
regarding how to address the complex underlying inter-
dependencies between physical activity and sedentary 
behaviors to fully understand their health implications. 
A significant limitation of previous research on move-
ment behaviors is that conventional measurement meth-
ods have not been sufficiently enriched to investigate 
all aspects of movement behaviors, including duration, 
patterns, and timing. Traditionally, only few averaged 
and aggregated values have been extracted from accel-
erometer signals [4, 9, 11, 17, 27]. The most common 
summary statistics calculated from accelerometer sig-
nals include mean time spent in different intensity cat-
egories, although other variables such as the number of 
sedentary interruptions have been also computed and 
studied [12, 28]. Nonetheless, such variables do not natu-
rally depict the temporality and patterns of accumulation 
of movement behaviors, which have been demonstrated 
to be associated with health outcomes [27, 30, 32]. In 
our study, we employed a novel image representation 
of original accelerometer outputs to visually display the 
entire recorded movement behaviors, and used an inno-
vative deep learning approach for profiling movement 
behaviors. Most importantly, image representation has 
transformed our problem from a signal processing chal-
lenge into a machine vision problem, allowing us to use 
advanced deep learning techniques. These techniques 
have consistently demonstrated excellent performance 
when applied to image data [36, 41]. Another notable 
benefit of representing accelerometer data as images was 
the ability to address the problem of non-wear periods. 
This issue can be particularly challenging when dealing 
with wearable data using machine learning approaches. 

By visually representing non-wear periods as areas with 
no color (represented as black), we were able to create 
images of the same size for everyone and deal with miss-
ing values. Our approach can be expanded to also incor-
porate participant characteristics and other potentially 
relevant data alongside latent variables for clustering 
analysis. Future studies may examine whether the addi-
tion of other types of data and participant characteristics 
could lead to better identification of movement behavior 
profiles.

Our study is not without limitations. The study design 
is observational and cross-sectional, which restricts the 
ability to establish causality for the observed associations. 
Therefore, further verification of our findings is war-
ranted through prospective study designs. While simi-
lar profiles, such as low activity and movers [9, 12, 28], 
have been previously theorized and identified, additional 
studies with different populations are necessary to deter-
mine if similar profiles can be observed and if they are 
similarly associated with cardiometabolic health mark-
ers. It is important to note that the accelerometer used 
in this study was worn only during waking hours, and 
we did not consider the potential impact of sleep behav-
iors on cardiometabolic health. We employed a previ-
ously established method to distinguish between wear 
time and non-wear time [45]. To date, a number of algo-
rithms have been proposed and validated for detecting 
non-wear time [69]. To the best of our knowledge, there 
is no universally accepted standard method for detect-
ing non-wear time from accelerometer data. It is likely 
that employing a different algorithm for non-wear time 
detection could possibly generate different clusters from 
those identified. In recent years, the wearable accelerom-
eters have also advanced significantly, providing the pos-
sibility of collecting high-resolution raw accelerometry 
signals around the clock [64], and subsequently a better 
data source for movement behavior research [64]. How-
ever, the NHANES accelerometry data utilized in the 
present study (2003/04 and 2005/06) were uniaxial activ-
ity counts, which can be considered as a limitation. In 
addition, although our data was limited to waking hours, 
our approach remains applicable to studies that gather 
24-hour raw accelerometry data, a method increas-
ingly used in recent research [64]. Activity images could 
potentially be generated from segmented raw accelera-
tion data. This highlights the need for future studies to 
explore and apply deep learning methods in studies uti-
lizing 24-hour raw accelerometer data. Given that sleep 
behavior may also be related to cardiometabolic health 
and waking movement behaviors, future studies utilizing 
24-hour accelerometry data are needed to gain a deeper 
understanding of the role of sleep behavior as a compo-
nent of the entire 24-hour day. Although deep learning 
structures have demonstrated the capability to learn data 
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representations [41] even from incomplete images [70], it 
is likely that the incomplete parts in movement behavior 
images (i.e., shown in black) had a negative impact on the 
ability of convolutional autoencoders to accurately cap-
ture the image representations. While employing deep 
learning approaches have certain benefits, the inherent 
“black box” nature of these methods [41, 71] does not 
allow to realize the significance of duration, patterns, 
and timing in forming the movement behavior profiles. 
Exploring the relative importance of these aspects, possi-
bly with explainable deep learning methods [71], requires 
further investigation in future studies.

In conclusion, our study utilized a novel deep learn-
ing approach to analyze movement behavior profiles and 
found four profiles that are representative of the natural 
patterns and timing of movement behaviors in everyday 
life. Our results highlight that the duration, timing, and 
patterns of accumulation of movement behaviors alto-
gether may be related to cardiometabolic health markers 
in adults. Most importantly, deep learning of movement 
behaviors revealed that in addition to considering the 
duration and patterns of movement behaviors, the timing 
of physical activity may also be crucial for gaining addi-
tional health benefits.
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