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Abstract 

Timely and accurate referral of end-stage heart failure patients for advanced therapies, including heart transplants 
and mechanical circulatory support, plays an important role in improving patient outcomes and saving costs. How-
ever, the decision-making process is complex, nuanced, and time-consuming, requiring cardiologists with specialized 
expertise and training in heart failure and transplantation. 

In this study, we propose two logistic tensor regression-based models to predict patients with heart failure war-
ranting evaluation for advanced heart failure therapies using irregularly spaced sequential electronic health records 
at the population and individual levels. The clinical features were collected at the previous visit and the predictions 
were made at the very beginning of the subsequent visit. Patient-wise ten-fold cross-validation experiments were 
performed. Standard LTR achieved an average F1 score of 0.708, AUC of 0.903, and AUPRC of 0.836. Personalized LTR 
obtained an F1 score of 0.670, an AUC of 0.869 and an AUPRC of 0.839. The two models not only outperformed all 
other machine learning models to which they were compared but also improved the performance and robustness 
of the other models via weight transfer. The AUPRC scores of support vector machine, random forest, and Naive Bayes 
are improved by 8.87%, 7.24%, and 11.38%, respectively. 

The two models can evaluate the importance of clinical features associated with advanced therapy referral. The five 
most important medical codes, including chronic kidney disease, hypotension, pulmonary heart disease, mitral regur-
gitation, and atherosclerotic heart disease, were reviewed and validated with literature and by heart failure cardiolo-
gists. Our proposed models effectively utilize EHRs for potential advanced therapies necessity in heart failure patients 
while explaining the importance of comorbidities and other clinical events. The information learned from trained 
model training could offer further insight into risk factors contributing to the progression of heart failure at both the 
population and individual levels.
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Introduction
Heart failure (HF), a disease with a prevalence as high as 
2% in developed countries, affects an increasing number 
of people each year and is projected to impact 8 million 
worldwide by 2030 [1, 2]. Patients with end-stage heart 
failure are characterized by significant structural change 
in the heart and prominent symptoms of heart failure [3]. 
Statistics show that the 1-year mortality rate for this pop-
ulation could be as high as 50% [4], making it a significant 
public health issue.

Due to the dismal prognosis of end-stage heart fail-
ure, several surgical approaches have been developed 
and demonstrated to improve quality of life and survival 
compared with traditional medical treatments. There 
are two major advanced therapies: heart transplanta-
tion (HT) and mechanical circulatory support (MCS). 
However, both approaches have potential risks and 
limitations, such as the scarcity of organ donors for HT 
and the risk of complications, including infection and 
thrombosis with MCS devices, creating a challenging 
issue for cardiologists, who must carefully evaluate each 
patient’s situation and decide whether and when to refer 
them for surgical intervention. It requires a high level 
of expertise and experience to make informed decisions 
and choose the most appropriate treatment option for 
each patient.

Several score-based models have been developed for 
heart failure patient referral, including the Heart Fail-
ure Survival Score (HFSS) [5] and Seattle Heart Failure 
Model (SHFM) [6]. Both models are multivariate propor-
tional hazard survival models requiring not routinely col-
lected data. In addition, these models are limited in their 
predictive ability for individual patients. Another class of 
popular methods that have been introduced to this field 
are based on machine learning and deep learning. These 
models have been widely used in general healthcare [7–9] 
and cardiovascular disease [10–14] and these have gen-
erated good model performance. However, deep learning 
models have the inherent issue of opacity and lack of jus-
tification for decision-making which has hindered their 
applications in medicine [15], where model interpretabil-
ity allows clinicians to comprehend the rationale behind 
the model’s predictions, thereby facilitating the identifi-
cation of new risk factors [16]. In addition, deep learn-
ing methods typically use a large number of parameters, 
which can be easily overfitted if the training sample is not 
large enough, another common challenge in medicine 
since large annotated training samples may not be avail-
able for rare diseases. Furthermore, the aforementioned 
machine learning methods only utilize numerical values, 
ignoring the rich information available through medical 
codes. The medical codes encode information regard-
ing diagnosis, medications, and comorbidities, which are 

also informative for decision-making. Given the limita-
tions of the aforementioned methods, there is a need for 
interpretable models that can effectively use the informa-
tion contained in medical codes to predict patients war-
ranting timeline referral to a heart failure and transplant 
cardiologist.

To overcome these limitations of existing methods, 
we propose two logistic regression (LR)-based mod-
els that could leverage the inherent structural informa-
tion within the data to predict potential candidates for 
advanced therapies. The choice of LR as the base model 
is due to its simple structure, natural interpretability and 
predictive power [17–19]. In order to apply LR to medi-
cal code data, we employ word embedding techniques 
from natural language processing (NLP) to represent the 
individual medical codes as numerical vectors, which 
could be stacked into representation matrices and used 
as input features for LR. Instead of standard LR, we use 
logistic tensor regression (LTR) to utilize the underlying 
multilinear structural information, which could improve 
both model performance and flexibility [20]. Addition-
ally, we adapted the positional encoding (PE) technique 
commonly used in NLP, such as in the transformer model 
[21], to address the irregular temporal information inher-
ent in the dataset. Originally developed to model the 
relative position of words in sentences, the PE technique 
has also been utilized in several studies to capture the 
irregular time intervals between adjacent measurements 
[22–24]. Both of our proposed LTR models can produce 
weights for medical codes which measure their rela-
tive importance. In the first LTR model, the weights are 
defined globally, whereas in the second LTR model, the 
weights can vary at the patient level. Moreover, similar 
to LR, the proposed models are interpretable and allow 
us to evaluate feature importance using the weights. We 
were also able to confirm that the most important medi-
cal codes selected by the models are consistent with clini-
cal expertise.

Overall, we propose two novel interpretable models 
that can integrate both irregular temporal and structural 
information to effectively predict patients warranting 
evaluation for heart failure advanced therapies, provid-
ing a more transparent, comprehensive, and accurate 
approach.

Methods
Overview of the proposed framework
In this study, we propose two LTR models, namely the 
Standard LTR model and the Personalized LTR model, 
to make predictions of the likelihood of HF patients 
requiring advanced therapies at the beginning of a visit 
based on features from their previous visit and the 
time between visits. Electronic health records (EHR) 
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data comprising medical codes and lab test values were 
collected, and the medical codes were represented in 
an embedding space using the word2vec word embed-
ding technique from NLP, which were then aggregated 
into an embedding matrix for each clinical visit. The 
input for both models is the same, which for the ith 
sample in the dataset consists of (1) the code embed-
ding matrix: Xi ∈ R

M×D where M is the number of 
medical codes and D is the dimension of code embed-
ding space, (2) selected important lab values: xi ∈ R

d 
where d is the number of selected lab values, and (3) 
time elapsed measured in days: ti ∈ R between the pre-
vious visit when the EHR data were collected and the 
next visit when the referral decision was made. The 
label is yi ∈ {−1, 1} where 1 means the patient warrants 
evaluation for advanced therapies while -1 means the 
opposite. In the Standard LTR model, code weights 
can be learned directly from the model and evaluated 
globally, while in the Personalized LTR model, code 
weights are learned based on the attention mechanism 
and can be interpreted individually. Subsequently, a 
global context vector can be computed based on the 
code weights, and all medical code representations 
undergo weighted aggregation to form the final visit 
representation in the form of an embedding matrix. 
During model training, we also append the lab values 
to the visit representation and inject the irregular tem-
poral information is using PE. The overall framework 
is illustrated in Fig. 1 and the schematic illustration of 
the two proposed algorithms are depicted in Fig. 2.

Dataset
This study utilized a dataset obtained from Michigan 
Medicine, which was approved by the University of 
Michigan’s Institutional Review Board (IRB) under pro-
tocol number HUM00184418 and the need for informed 
consent was waived. The inclusion criteria for the end-
stage heart failure patients included:

• At least two hospitalization admissions for heart fail-
ure between January 1, 2013 and June 30, 2021

• Adult patients who were ≥ 18 years and ≤ 80 years of 
age at the time of admission

• Most recent ejection fraction was ≤ 35% by echo-
cardiography

• Body mass index (BMI) ≤ 50 kg/m2

Each training sample consisted of a pair of consecutive 
visits. In order to expand the dataset, n consecutive visits of 
the same patient were treated as n− 1 separate pairs of con-
secutive visits. This approach yielded a total of 300 patients 
and 557 paired visit samples. The label yi ∈ {0, 1} for each 
paired visit was determined by the care they received at 
the time of the second visit. The data were then grouped 
into two categories: (1) patients who received advanced 
therapies at the time of their second visit, i.e. yi = 1 and (2) 
patients too well for advanced therapies, defined as those 
who lived at least two years after a heart failure hospitali-
zation without receiving advanced therapies, i.e. yi = 0 . To 
prevent data leakage, we employed patient-wise data split-
ting to train and validate the model.

Fig. 1 The workflow of our analysis: Medical codes such as ICD-10 diagnosis codes (e.g., I50.23), VA drug codes (e.g., CV701), and procedure codes 
(e.g., 80076) were collected along with lab test values to predict whether the patients were potentially in need of heart failure advanced therapies
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Medical code embedding
Medical codes contain crucial information about a 
patient’s medical history that can aid in predicting dis-
ease progression. However, these codes cannot be 
directly analyzed due to their string format. To overcome 
this issue, we utilized word2vec [25, 26], a popular unsu-
pervised word embedding algorithm in NLP, to map each 
medical code to a vector in a user-defined vector space. 
Word2vec is based on shallow neural network models 
that learn word embeddings by either predicting a tar-
get word from its context, i.e. continuous bag of words 
(CBOW), or predicting context words from a target 
word, i.e. skip-gram with negative sampling (SGNS). Each 
code is considered as a medical word, and a hospital visit 
with multiple codes is treated as a medical document.

To ensure that no individual medical code was highly 
correlated with whether the patient received advanced 
therapies, we calculated the Pearson correlation coef-
ficient between each medical code which is represented 
as a binary variable and the label yi . The highest correla-
tion coefficient was 0.51, corresponding to the procedure 
for electrocardiogram. As a result, all codes were kept for 
downstream analysis.

To validate the quality of the medical code embeddings, 
Phecode, which was originally developed for phenome-
wide association studies, is adapted for quantitative eval-
uation [27]. Phecode can group similar ICD codes into 

meaningful clinical phenotypes. For example, the ICD 
codes: I50.20 and I50.21 share the same Phecode 428.3. 
Utilizing this mapping relationship, we defined a binary 
classification problem for pairs of medical codes based on 
if the two codes share the same Phecode, and predicted 
the class for each pair or medical codes using the cosine 
similarity of their vector representations. Under our cir-
cumstances, the positive pairs make up less than 1% in all 
pairs, making specificity and sensitivity non-informative. 
By tuning the threshold for categorizing the cosine simi-
larity, specificity and sensitivity change drastically; there-
fore, AUC is used to evaluate medical code embeddings.

In addition to the main features extracted from medi-
cal codes, we also selected a set of d lab features recom-
mended by cardiologists and which are summarized in 
Table  1. The features for each training sample could be 
combined into a code embedding matrix Xi ∈ R

M×D 
where M is the total number of medical codes and D is 
the embedding dimension by stacking the code embed-
ding vectors along the rows and multiplying by row-wise 
one-hot encoding, and a lab value vector xi ∈ R

d.

Temporal information encoding
In EHR data analysis, temporal information is critical 
to modeling patient health trajectories accurately. The 
most common way to incorporate temporal informa-
tion in EHR data is to use Recurrent Neural Networks 

Fig. 2 The proposed two interpretable algorithms. A The left weight in standard logistic regression learns the global weights for every medical 
code; B The dimension-length weight enables the algorithm to learn the weight for medical codes at individual level
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(RNN) or some variant, such as the Long Short Term 
Memory (LSTM) model [28–30]. However, these mod-
els strongly assume that the time intervals between 
adjacent visits are consistent or regularly sampled, 
which does not apply to our research question. In our 
study, we encountered the issue where the patients had 
irregularly spaced visits, making it unsuitable to apply 
these methods to incorporate temporal information. 
Instead, we adapted the PE technique commonly used 
in NLP to deal with temporal irregularity within the 
sampled measurements [21]. The PE technique encodes 
the relative position of words within a sentence in the 
form of the angle of a rotation matrix applied to the 
embedding space. In this study, we adapted the PE 
technique by encoding the elapsed time ti between 
two consecutive visits of the ith sample along the time 
domain with sine and cosine functions. The formula for 
the PE function is detailed below:

where j ranges from 1 to (D + d)/2 and the embedding 
dimension D is chosen such that D + d is even, and we 
multiplied the D columns of the embedding matrix Xi 
and the d entries of the lab vector by the PE function to 
encode a meaningful and robust representation of time 
for downstream analysis.

Standard logistic tensor regression
In this section, we describe the Standard LTR model in 
our study. The sample is represented as {Xi, xi, yi} for 
i = 1, . . . ,N  , where Xi ∈ R

M×D , xi ∈ R
d , N is the number 

of samples, and yi ∈ {−1, 1} is the corresponding label.

PE(ti, 2j − 1) = sin
ti

100002j/(D+d)

PE(ti, 2j) = cos
ti

100002j/(D+d)

Generalizing the standard LR classifier

for a vector-valued testing sample x where v denotes the 
vector of coefficients and b denotes the scalar intercept 
of the model, the LTR classifier adapted to our training 
samples could be represented as:

where u ∈ R
M is the weights for the M medical codes, 

v ∈ R
D+d is the vector of coefficients in the regression 

model and b ∈ R is the intercept. The LTR classifier is an 
extension of the standard LR classifier to higher-dimen-
sional feature arrays.

The parameters u , v and b can be estimated by solv-
ing the optimization problem

where the loss function

is the negative log-likelihood function.

Personalized logistic tensor regression
The limitation of the LTR model formulated above is 
that the interpretation of medical codes is at the pop-
ulation level. In order to evaluate the importance of 
medical codes at the sample level, in this section we 
propose a Personalized LTR model based on sample-
wise inner-product matrices of size D × D instead.

f (x) =
1

1+ exp
(
−x⊤v − b

)

ftensor(X, x) =
1

1+ exp
(
−
[
u⊤X | x⊤

]
v − b

)

(
û, v̂, b̂

)
= arg min

u,v,b
L(u, v, b)

L(u, v, b) = −

N∑

i=1

log
(
1+ exp

(
−yi

([
u
⊤
Xi

∣∣ x⊤i
]
v + b

)))

Table 1 Clinical characteristics of heart failure patients included in the model

Clinical characteristics of patients requiring HT/LVAD evaluation (“Positive”) and those too well for HF advanced therapies (“Negative”). Displayed are the mean 
(standard deviation) for continuous variables and N (%) for comorbidities

Features Units Positive Negative

Demographics Ages years 53(14) 58 (14)

Male Gender % 81.3 70.3

Vital signs Systolic blood pressure mmHg 102.74± 14.95 121.68± 22.74

Heart rate bpm 86.09± 18.85 86.15± 16.68

Lab metabolites Chloride mmol/L 100.62± 4.88 101.60± 5.79

Sodium mmol/L 137.48± 3.58 138.06± 4.35

Cormorbidity Diabetes % 43.00 62.10

Hypertension % 67.40 89.30
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To this end, define the ith sample-wise inner-product 
matrix Si ∈ R

D×D by the formula

and consider the samples represented as {Si, xi, yi} 
instead of {Xi, xi, yi} for i = 1, . . . ,N  . Working with the 
matrices Si rather than the embedding matrices Xi allows 
us to drastically reduce the model dimensionality from 
M × D to D × D without losing too much information. 
The reduction in dimensionality is possible since the 
matrices Xi only contain non-zero rows corresponding to 
the medical codes from the ith paired visit sample, which 
could be recovered from the matrices Si if the number of 
non-zero rows (i.e. medical codes) is much smaller than 
the embedding dimension D. The more naive approach 
of simply deleting the zero rows from the matrix Xi does 
not work since the number of rows is different across the 
training sample.

Applying the same LTR model to the sample matri-
ces Si instead of Xi leads to a different set of parameters 
w ∈ R

D , v ∈ R
D+d and b ∈ R with loss function

where w is the D-dimensional vector consisting of the 
weights for the word embedding space RD . Another way 
to understand the new weight vector w is to note that the 
loss function could be equivalently written as

where

is the weight for the M medical codes as in the previ-
ous model. Therefore the new weight vector w leads to 
weight vectors ui in the Standard LTR model which are 
allowed to vary on an individual level while depending on 
a much smaller number of parameters.

From another perspective, the proposed algorithm 
can be explained and computationally implemented 
with an attention mechanism. The attention mecha-
nism is now widely used in EHR data analysis [24, 31, 
32]. It allows the network to prioritize the information 
on specific inputs by assigning different weights, which 
not only helps to improve the model accuracy but also 
facilitates the interpretation of complex inputs. In the 
framework of the global attention mechanism [33], our 
proposed algorithm could be formulated as follows:

Si = X
⊤
i Xi,

L(w, v, b) = −

N∑

i=1

log
(
1+ exp

(
−yi

([
w

⊤
Si

∣∣ x⊤i
]
v + b

)))

L(w, v, b) = −

N∑

i=1

log
(
1+ exp

(
−yi

([
w

⊤
X
⊤
i Xi

∣∣ x⊤i
]
v + b

)))

= −

N∑

i=1

log
(
1+ exp

(
−yi

([
u
⊤
i Xi

∣∣ x⊤i
]
v + b

)))

ui = Xiw ∈ R
M

To learn different weights for medical codes, the variable-
length vector u and a tanh function is applied. The formula 
to calculate weight is illustrated below:

Given the patient matrix Xi and the learned weights αi , 
a patient-wise representation ci could be constructed as

Provided with a patient-wise vector, predicted prob-
ability can be computed as

Model solving and model training
Gradient descent optimization algorithms were used to 
solve both models. The algorithm for Personalized LTR 
can be found in Algorithm 1, from which the algorithm 
for Standard LTR can also be easily adapted by replacing 
wi by ui and removing line 2.

Algorithm  1 Personalized logistic tensor regression – 
solving with gradient descent optimization

Besides the regular cross-entropy loss function, an l1 
norm-based regularization on the weights for medical 
codes is also added to induce sparsity. The loss function 
is written as:

where � controls the regularization effect. This penaliza-
tion encourages the model to focus on a small number of 
important codes. lossce is calculated as below:

where N is the total number of samples, yi is a binary 
response and ŷi is a real-valued number ranging from 

[u1,u2, ...uM] = Xiw.

ci = [u1,u2, ...uM]Xi.

ŷi = tanh
([

ci

∣∣x⊤i
]
v + b

)
.

losstotal = lossce + ��u�1

lossce = −
1

N

N∑

n=1

yi log
(
ŷi
)
+

(
1− yi

)
log

(
1− ŷi

)
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zero to one representing the probabilities of the sample 
assigned to each class.

The two proposed algorithms are trained by back-prop-
agation with an adaptive moment estimation (Adam) 
optimizer. All the trainable parameters in our proposed 
algorithms were initialized with Kaiming uniform distri-
butions and the optimal hyperparameter combinations 
were generated using an exhaustive grid search.

Baseline models and inputs
During our analysis, we determined that M equals 8438, 
while D was selected as 100, and d was set to 4. For com-
parison, we built models as follows:

• Logistic Regression, support vector machine (SVM) 
with linear kernel, gaussian Naive Bayes (NB) 
and random forest (RF) were chosen as the base-
line for comparison. For the training tensor of size 
N ×M × D , a global pooling is performed along 
the medical codes axis, taking the average over the 
M medical codes. In this way, every sample is repre-
sented by a D-dimensional vector. Besides, lab val-
ues were also considered and concatenated. Hence, 
the input is a 104-dimensional vector representing a 
patient’s medical history and lab test results.

• Standard Logistic Tensor Regression: The input is 
an N ×M × D tensor and a N × d-dimensional lab 
matrix. In addition, positional encoding is utilized to 
incorporate irregular temporal information into the 
tensor.

• Personalized Logistic Tensor Regression: The input is 
the same as the one for Standard LTR.

Evaluation metrics
Accuracy, F1 score, Area under the receiver operating 
characteristic Curve (AUC) and Area Under the Preci-
sion-Recall Curve (AUPRC) were computed for model 
evaluation. Accuracy and F1 score are defined as:

where TP = true positive, TN = true negative, FP = false 
positive and FN = false negative.

Experiments and results
Embedding qualities
Word2vec was applied to 8438 unique medical codes, 
including 5970 diagnosis codes (ICD-10), 2229 procedure 
codes (CPT-4), and 239 drug codes (VA Drug Class), to 
generate code embeddings. Figure  3A displays all the 

Accuracy =
TP+ TN

TP+ TN + FP+ FN

F1 =
2× TP

FN + 2× TP+ FP

medical codes, while Fig. 3B depicts only subsets of ICD 
diagnosis codes colored by the system. Notably, the codes 
from the same category or system were observed to clus-
ter together, and different clusters were clearly separated 
in both figures. The co-localization of diagnosis codes in 
the figure qualitatively validated our assumption that the 
word representation learned from the word2vec algo-
rithm can capture meaningful latent information.

The results of our embedding performance are listed in 
Table  2. Based on our analysis, we determined that the 
embeddings obtained from SGNS, with a dimension of 
100, were the most suitable inputs for our model.

Heart failure patients prediction
In order to evaluate the performance of the proposed 
model, we utilized a patient-wise stratified ten-fold cross-
validation technique. The entire dataset was first parti-
tioned into training and test datasets, with a test ratio of 
0.2. The training dataset was further divided into ten folds 
of approximately equal size. During each iteration of the 
ten-fold cross-validation process, one fold was designated 
as the test dataset, while the other nine folds served as the 
training dataset. This process was repeated ten times, and 
the model’s performance and robustness were evaluated by 
calculating the average and standard deviation. We then 
compared the predictive performance of the proposed 
model with that of the baseline approaches.

The comparative results are shown in Table  3. From 
Table 3, Standard LTR achieves an F1 score of 0.708, AUC 
of 0.903 and AUPRC of 0.836, while Personalized LTR 
had an F1 score of 0.670, AUC of 0.869 and AUPRC at 
0.839. These two models showed much higher F1 scores, 
AUC and AUPRC compared to all the other traditional 
machine learning methods which do not take structural 
information into account. In terms of other metrics, the 
models also showed superior results. Additionally, Stand-
ard LTR showed strong model robustness concerning the 
F1 score and AUC. In particular, when compared against 
LR, two LTR-based models improved the performance 
by a large margin, demonstrating the benefits of taking 
structural information into account.

We also performed a comparison of the effectiveness 
of various machine learning methods against Standard 
LTR and Personalized LTR, using Cohen’s D as a metric 
[34]. Cohen’s D is a standardized effect size measure that 
is commonly used in statistical analysis to express the 
magnitude of a difference or effect between two groups. 
Empirically, a Cohen’s D value above 0.8 is interpreted as 
indicating a large effect, while values between 0.5 and 0.8 
suggest a moderate effect. This comparison is detailed in 
Table  3. It was observed that Standard LTR significantly 
outperformed other models, showing a large effect, while 
Personalized LTR demonstrated a moderate to large effect.
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Besides, both models converged and Personalized LTR 
converged in fewer iterations than Standard LTR, as illus-
trated in Fig. 4.

Weight transferring from LTR models
In addition to achieving better results in themselves, the 
weights obtained through Standard and Personalized 
LTR for visit representation can be transferred to other 
machine-learning models. To examine the effectiveness 
of the weight transfer, we collected the ten sets of weights 

Fig. 3 Embeddings for medical codes: Fig. 3A visualizes the embeddings of medical codes of three main categories (CPT, VA, ICD). Figure 3B 
visualizes the embeddings of ICD codes extracted from the red rectangular box from Fig. 3A

Table 2 Embedding performance (AUC) varies with dimensions 
and algorithms

Methods dim = 80 dim = 100 dim = 150 dim = 200

SGNS 0.72 0.72 0.72 0.71

CBOW 0.65 0.65 0.65 0.65

Table 3 Comparison of 10-fold Cross-validation Model Performance (mean±std)

* S-LTR Standard LTR, P-LTR Personalized LTR, Cohen’s D ( S|P ): Cohen’s D is computed by comparing the AUC values of various models with those of S-LTR and P-LTR 
model

Accuracy F1 AUC AUPRC Cohen’s D ( S|P)

S-LTR 0.832 (0.044) 0.708 (0.086) 0.903 (0.047) 0.836 (0.11)

P-LTR 0.826 (0.055) 0.670 (0.12) 0.869 (0.087) 0.839 (0.11)
LR 0.828 (0.049) 0.642 (0.15) 0.841 (0.11) 0.811 (0.13) 0.733 | 0.282

SVM 0.837 (0.052) 0.657 (0.15) 0.823 (0.091) 0.792 (0.13) 1.104 | 0.517

Gaussian NB 0.744 (0.066) 0.603 (0.13) 0.795 (0.10) 0.747 (0.15) 1.382 | 0.790

RF 0.844 (0.041) 0.656 (0.14) 0.829 (0.096) 0.803 (0.13) 0.979 | 0.437
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for the medical code in our previous ten-fold cross-vali-
dation experiments and then utilized them to aggregate 
the medical codes. Mean and standard deviations were 
calculated to compare with the original model, which was 
trained without weight transfer. As shown in Table  4, all 
model performances were improved compared to the 
original model. The improvement is significant, as evi-
denced by the large effect sizes calculated using Cohen’s 
D. Specifically, the F1 score, AUC, and AUCPR for SVM 
models increased by 4.57%, 8.87%, and 8.33%, respectively, 
while the F1 score, AUC and AUPRC for RF increased by 
4.57%, 7.24%, and 5.85%, respectively. Although the AUC 
decreased by 12.58% for Gaussian NB, the F1 score and 
AUPRC increased by 15.26% and 11.38%, respectively. 
Notably, using the learned weights for training reduced the 
standard deviation, indicating improved model stability.

Model interpretation
Besides achieving superior model performance, LTR can 
also facilitate the interpretation of the medical codes in 
the dataset. The Standard LTR model can provide infor-
mation on the population-level importance of the codes, 
while the Personalized LTR model can capture individ-
ual-level weights. To evaluate the weights extracted from 
the two models, we retrained them using the entire train-
ing dataset and visualized the weights obtained from the 
models.

The weights obtained from both models range from -1 
to 1 with signs indicating their positive or negative associ-
ation with the outcome. A positive sign suggests that the 
presence of the medical code is associated with receiv-
ing advanced therapies, while a negative sign indicates 
the opposite. Regarding population-level interpretation, 
our study specifically focused on the diagnosis codes. 
Out of a total of 8438 codes, 2336 had a positive effect 
greater than 0.1. To avoid the influence of coincidental 

Fig. 4 The objective value of two proposed models: The two proposed models converges after around 2000 steps

Table 4 Comparison of model performances incorporating weight transfer(mean±std)

*S-weighted The weights learned from Standard LTR were used to generate visit representation, P-weighted The weights learned from Personalized LTR were used to 
generate visit representation; Cohen’s D is calculated by comparing the AUC values of the standard model to its weight transferred models

Methods Accuracy F1 AUC AUPRC Cohen’s D

SVM standard 0.837 (0.052) 0.657 (0.15) 0.823 (0.091) 0.792 (0.13)

S-weighted 0.839 (0.038) 0.687 (0.042) 0.896 (0.021) 0.858 (0.052) 1.05

P-weighted 0.853 (0.051) 0.698 (0.10) 0.882 (0.041) 0.874 (0.046) 0.836

Gaussian NB standard 0.744 (0.066) 0.603 (0.13) 0.795 (0.10) 0.747 (0.15)

S-weighted 0.839 (0.034) 0.695 (0.046) 0.695 (0.046) 0.832 (0.083) 1.274

P-weighted 0.829 (0.025) 0.715 (0.043) 0.871 (0.037) 0.794 (0.077) 1.008

RF standard 0.844 (0.041) 0.656 (0.14) 0.829 (0.096) 0.803 (0.13)

S-weighted 0.839 (0.034) 0.686 (0.046) 0.889 (0.032) 0.850 (0.054) 0.839

P-weighted 0.852 (0.051) 0.701 (0.10) 0.888 (0.030) 0.867 (0.042) 0.830
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cases in our relatively small dataset, we only considered 
codes that were associated with at least thirty patients. 
This reduced the number of codes to 17, and the top 5 
most essential codes are presented in Table  5. Accord-
ing to Table 5, the most predictive codes of the need for 
heart failure advanced therapies at a subsequent visit 
included chronic kidney disease, hypotension, pulmo-
nary heart disease, and mitral regurgitation, and athero-
sclerotic heart disease. Chronic kidney disease is one of 
the most common comorbidities in end-stage heart fail-
ure patients [35, 36]. In addition, hypotension and mitral 
regurgitation are vital clinical clues of advanced heart 
failure [35]. The presence of pulmonary hypertension has 
been linked to poor clinical outcomes in patients with 
end-stage heart failure [37]. Furthermore, atherosclerotic 
heart disease has a known association with heart failure-
related death [38]. The top codes and their rankings are 

consistent with the expertise of clinicians and the litera-
ture review.

To obtain a more nuanced understanding of how 
medical decisions differ among patients in a popula-
tion, we utilized the Personalized LTR model to evalu-
ate the significance of medical codes at the individual 
patient level. This approach is similar to the Standard 
LTR model and enables us to measure how much each 
medical code positively or negatively contributes to 
the prediction outcome. To demonstrate the effective-
ness of this approach, we selected one patient from the 
testing dataset and presented a corresponding bar plot 
in Fig.  5, which shows the importance of the medical 
codes. The weights in the accompanying figure indi-
cate the relative importance of different medical codes, 
with their signs indicating the direction and magnitude 
of their impact. In this specific case, the patient had 
been diagnosed with cardiomyopathy, hyponatremia, 
and pulmonary heart disease and was experiencing 
symptoms of chronic pain and shortness of breath. The 
comorbidities and symptoms listed above are asso-
ciated with end-stage heart failure [35, 39, 40]. Addi-
tionally, the patient had undergone various medical 
procedures, including oxygen saturation measurements 
and renal function tests. Although they are screening 
tests for admitted patients, it indicates the results come 
from these procedures need more attention [41, 42]. 

Table 5 Top 5 diagnosis groups with high weights in HF patients

Index Diagnosis groups Weights

1 Chronic kidney disease 0.954

2 Hypotension 0.943

3 Pulmonary heart disease 0.607

4 Mitral regurgitation 0.312

5 Atherosclerotic heart disease 0.281

Fig. 5 Example Personal Interpretation of Medical codes: The X-axis extends from -1 to 1, indicating the extent and direction of influence 
on the result. Positive contributions are signified by yellow, while negative influences are denoted by blue. The Y-axis lists medical codes in order 
of significance
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Our analysis also identified intolerance to beta-blockers 
of angiotensin-converting enzyme (ACE) inhibitors as 
a marker of advanced heart failure, which has known 
associations with advanced heart failure in the pub-
lished literature [35]. Overall, these diagnoses and pro-
cedures were highly positively correlated with advanced 
heart failure management, whereas the medications 
had the opposite effect, providing valuable insights into 
the patient’s condition.

For another illustration of the interpretability prop-
erty of the weights associated with the medical codes, 
we undertook two simulations to identify the quan-
titative contributions of the chronic kidney disease 
code toward the risk of receiving advanced therapies. 
Specifically, we investigated the impact of (1) adding 
the risk code to patients who did not possess it origi-
nally and (2) deleting the risk code from patients who 
already had it. Figure  6 illustrates the outcomes of 
these simulations. We observed that the Standard LTR 
model’s predicted risk decreased from 0.898 to 0.865, 
while the Personalized LTR model’s predicted risk 
decreased from 0.865 to 0.861 when the risk code was 
removed from patients deemed urgent for advanced 
heart failure therapies. In contrast, when the risk code 
was added to patients considered too well for advanced 
therapies, the Standard LTR model’s predicted risk 
increased from 0.370 to 0.432, while the Personalized 
LTR model’s predicted risk increased from 0.315 to 
0.322. The observed behavior of both models indicates 
a positive correlation between chronic kidney disease 
and worsening heart failure, thereby validating the effi-
cacy of our proposed LTR models.

Discussion
General
In this study, we proposed two LTR models that aim to 
predict the potential eligibility of advanced therapies for 
heart failure patients and to evaluate the importance of 
medical events at both the population and individual lev-
els. These models were trained and validated using data 
collected from an academic medical center. To bench-
mark our models, we compared them with other machine 
learning methods. Our Standard LTR algorithm reported 
an F1 score of 0.667, an AUC of 0.904 and an AUPRC 
of 0.873, while the proposed Personalized LTR achieved 
an F1 score of 0.670, an AUC of 0.869 and an AUPRC of 
0.839, outperforming all the baseline methods. Moreo-
ver, the weights learned from our two LTR models can be 
transferred to other machine-learning models, improving 
the performance of these models. Additionally, the mag-
nitude of the weights can be interpreted as their relative 
importance while the sign imposes directionality on the 
weights. To our knowledge, this is the first model that 
employs the medical codes for HF advanced therapies eli-
gibility prediction.

Taking into account structural information not only 
enhances the model’s performance but also increases its 
robustness. Both LTR models consider the importance of 
medical codes and employ code weights to construct the 
visit representation. Compared to standard vector-based 
LR, which averages all medical code embeddings as the 
visit representation, our proposed tensor-based models 
effectively utilize the multilinear structure to achieve per-
formance significantly surpassing that of ensemble meth-
ods and other traditional machine-learning techniques. 

Fig. 6 Simulations on patients with weights learned from Standard LTR: (1) We randomly selected a patient in cohort 2 and added the medical 
code N18.2 for chronic kidney disease; (2) The randomly selected patient in cohort 1 deleted N18.2
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Although the weights are learned under the LTR frame-
work, they can also be transferred to other models to 
enhance performance. Whether the weights come from 
Standard LTR or Personalized LTR, they facilitate model 
training and significantly improve performance, sup-
porting our claim that modeling the internal structural 
information of medical codes is beneficial [20, 43, 44]. 
Machine learning models with weights transferred from 
Personalized LTR generally performed better than those 
with weights from Standard LTR, possibly because Per-
sonalized LTR evaluates medical events individually, 
allowing for more flexibility.

Our two models complement each other regarding 
interpretability. Standard LTR provides insights into the 
population-level importance of medical codes. It can 
identify associated symptoms and diseases that may 
impact the heart failure population, serving as an inspi-
ration for finding potential risk factors. This can help 
cardiologists recognize their illness severity and poten-
tially initiate an evaluation for advanced HF therapies as 
appropriate. From a patient-level perspective, personal-
ized interpretation creates an individualized heart failure 
profile, providing basis for finding patient-specific risk 
factors. Overall, our proposed models exhibit superior 
performance and enhanced interpretability compared to 
traditional machine learning methods, thus represent-
ing a promising avenue for identifying patients in need of 
advanced HF therapies.

Limitations
It is important to acknowledge that our study has several 
limitations. First, our dataset was relatively small com-
pared to the vast number of medical codes, resulting in 
high standard deviations across models. Despite the fact 
that our model has a simpler structure while maintaining 
structural information, the standard deviations remain 
relatively high. In addition, our models heavily relied on 
the quality of the medical codes, which may be inaccu-
rately recorded or undetected. Errors in medical codes 
can impact results as differences between patients who 
are too well for HT/MCS and those who require urgent 
treatment are subtle. Therefore, it would be important in 
the future to investigate how to incorporate more clini-
cal measurements in conjunction with medical codes 
to enhance model performance and validity. Further-
more, the data was collected from only one institution, 
which may decrease the generalizability of our findings 
and future studies are needed using data from multiple 
institutions.

Apart from the potential issues related to the data, 
our models still have the potential to improve by 
accounting for further structural information within 
the data. Currently, we only utilized two visits for 

modeling: features were extracted from a single hos-
pitalization and used to predict the need for advanced 
therapies in a subsequent hospitalization. Since heart 
failure is a chronic disease, incorporating additional 
longitudinal data would be clinically advantageous. 
Furthermore, the relationships among codes of differ-
ent categories are also important but have not been 
studied in our work. There have been several works 
using graphical models to account for the interaction 
among different medical codes [44–46]. Therefore, 
other more powerful methods incorporating these 
additional structures could be applied to the advanced 
heart failure population.

Conclusion
Our study proposed two LTR models: Standard and Per-
sonalized versions for predicting potential eligibility for 
advanced therapies for HF patients based on the previ-
ous clinical features and irregular temporal information. 
These models incorporated both structural and temporal 
information present in EHR medical codes while main-
taining a simple learning structure to assess the impor-
tance of clinical events both globally and individually. 
Our results demonstrated that our methods outper-
formed existing models, indicating that the inclusion of 
structural information can improve predictive perfor-
mance and provide additional useful insights to enhance 
interpretability. Furthermore, the weight importance 
learned by our models aligns well with clinical practice 
and literature, highlighting their potential value for future 
research in the field of heart failure. In the future, we will 
further explore the application of this model in other 
healthcare areas, not limited to heart failure. In addition, 
since determining who should be referred to advanced 
therapies is challenging, physicians’ confidence in their 
labels should possibly be incorporated into the model as 
privileged information for better clinical diagnosis.
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