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Abstract 

In recent years, corneal refractive surgery has been widely used in clinics as an effective means to restore vision 
and improve the quality of life. When choosing myopia-refractive surgery, it is necessary to comprehensively consider 
the differences in equipment and technology as well as the specificity of individual patients, which heavily depend 
on the experience of ophthalmologists. In our study, we took advantage of machine learning to learn about the expe-
rience of ophthalmologists in decision-making and assist them in the choice of corneal refractive surgery in a new 
case. Our study was based on the clinical data of 7,081 patients who underwent corneal refractive surgery 
between 2000 and 2017 at the Department of Ophthalmology, Peking Union Medical College Hospital, Chinese 
Academy of Medical Sciences. Due to the long data period, there were data losses and errors in this dataset. First, we 
cleaned the data and deleted the samples of key data loss. Then, patients were divided into three groups according 
to the type of surgery, after which we used SMOTE technology to eliminate imbalance between groups. Six statisti-
cal machine learning models, including NBM, RF, AdaBoost, XGBoost, BP neural network, and DBN were selected, 
and a ten-fold cross-validation and grid search were used to determine the optimal hyperparameters for better 
performance. When tested on the dataset, the multi-class RF model showed the best performance, with agreement 
with ophthalmologist decisions as high as 0.8775 and Macro F1 as high as 0.8019. Furthermore, the results of the fea-
ture importance analysis based on the SHAP technique were consistent with an ophthalmologist’s practical experi-
ence. Our research will assist ophthalmologists in choosing appropriate types of refractive surgery and will have 
beneficial clinical effects.
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Introduction
Myopia is characterised by high prevalence, low age, and 
rapid progression, making it a global public health prob-
lem. In recent years, corneal refractive surgery has been 
widely used in clinics as an effective means to restore 
vision and improve the quality of life. Many clinical and 
basic experimental studies confirmed its safety [1], effec-
tiveness, stability, and predictability [2].

Currently, frame lenses, contact lenses, corneal refrac-
tive surgery, and intraocular lens implant surgery are the 
main methods to correct refractive errors. The principle 
is to correct the light entering the human eye by diverging 
it and focusing it on the retina. For teenagers whose eye-
balls are not fully developed and whose refractive power 
is unstable, or for patients who cannot undergo surgery, 
refractive correction is mainly done by wearing glasses, 
contact lenses, phakic IOL implantation [3], or vision 
rehabilitation training. For adults who meet the crite-
ria for laser vision correction surgery, correction can be 
achieved through corneal refractive surgery or intraocu-
lar lens surgery. At present, the corneal refractive sur-
geries clinically used in my country include laser in situ 
keratectomy (LASIK), laser photo keratectomy (PRK), 
and SMall Incision Lenticule Extraction (SMILE). The 
diversification of surgical methods has brought new sur-
gical techniques, outcomes, and options to patients and 
operators, as well as improved surgical outcomes, safer 
surgical procedures, and fewer surgical complications.

Since the first reported case of corneal dilatation after 
refractive surgery [4], the safety of refractive surgery has 
attracted the attention of physicians. Because the opera-
tion changes the normal anatomical structure of the 
cornea, there may be complications such as epithelial or 
corneal stroma opaque bubbles, difficulty in opening the 
corneal flap, postoperative transient photosensitivity syn-
drome, and incomplete lens removal during femtosecond 
laser surgery [5]. Corneal flap abnormality, displacement, 
folds, postoperative epithelial implantation, and other 
special circumstances may occur during and after sur-
gery [6]. Complications of postoperative myopia itself, 
such as fundus hemorrhage, retinal degeneration, retinal 
detachment, and glaucoma, may still occur [7]; Postoper-
ative complications may also occur, such as refractory dry 
eye, decreased scotopic vision, phantom vision, ghosting, 
glare [8]. It is also possible that reoperation is required 
because of deviations in the surgical type or param-
eters. Therefore, ophthalmologists must be cautious in 
screening patients reasonably, scientifically, and ration-
ally before surgery and choose the most suitable surgical 
method for patients to achieve ideal surgical results and 
reduce surgical risks.

Some studies have used artificial intelligence to 
assist decision-making in myopia corneal refractive 

surgery [9–13]. Among them, Balidis M et al. [12] uti-
lized neural networks to predict the need for retreat-
ment after refractive surgery for myopia, achieving 
statistically significant predictions with good sensitiv-
ity (0.8756) and specificity (0.9286). Melles RB et  al. 
[13] proved that artificial intelligence is more helpful 
in the calculation of the refractive IOL degree and the 
quantification of the position in intraocular refrac-
tive surgery. The datasets of these researches typically 
have a short time span and only contain a limited set 
of surgical types. In our study, we used machine learn-
ing to learn about the experience of ophthalmologists 
in decision-making and assist them in the choice of 
corneal refractive surgery in a new case. Our research 
was based on the data of 7,081 patients who underwent 
surgery at the Department of Ophthalmology, Peking 
Union Medical College Hospital, Chinese Academy of 
Medical Sciences between 2000 and 2017. The patients 
were divided into three groups according to the type 
of surgery performed: LASIK, PRK, and SMILE. Our 
research explored how to perform data preprocessing, 
feature selection, and machine learning model training 
to achieve the best prediction performance. The contri-
butions of this study are as follows: 

1. Aiming at the preprocessing of ophthalmology data, 
we provided data cleaning, feature selection, as 
well as a small number of oversampling techniques 
(SMOTE) to deal with the data imbalance problem in 
the experimental data.

2. We selected and trained six statistical machine learn-
ing models, including the Naive Bayesian Model 
(NBM), Random Forest (RF), Adaptive Boosting 
(AdaBoost), eXtreme Gradient Boosting (XGBoost), 
Back Propagation Neural Network (BP Neural Net-
work), and Deep Belief Network (DBN), and used 
ten-fold cross-validation and grid search to find 
the optimal hyperparameters to improve the accu-
racy of the classification model. When tested on the 
dataset, the multi-class RF model showed the best 
performance, with agreement with ophthalmologist 
decisions as high as 0.8775 and Macro F1 as high as 
0.8019. The model results showed that the model had 
good clinical application value.

3. To verify the rationality of feature selection, we used 
SHAP [14] to quantify the importance of features. 
The results were highly consistent with the prac-
tical experience of ophthalmologists. Ultimately, 
the developed model is able to provide confidence 
to doctors and patients by recommending surgery 
based on data when deciding on a surgical method.
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Related work
Since 1970, artificial intelligence (AI) research has made 
certain breakthroughs in the medical field, and a series 
of clinical decision support models have been used in the 
diagnosis of ophthalmic diseases and the choice of treat-
ment options, which can involve retinal images, opti-
cal coherence tomography (OCT), slit lamp images and 
other data that can be automatically analysed and applied 
to glaucoma [15, 16], age-related macular degeneration 
[17], cataract [18], Keratoconus [19], dry eye disease [20] 
screening for eye diseases, diabetic retinopathy [21], dia-
betic peripheral neuropathy [22] and auxiliary diagnosis 
of ocular manifestations such as systemic diseases [23]. 
In refractive surgery, the advantages of AI mainly focus 
on keratoconus screening, selection of refractive surgery 
options, design of surgical parameters (nomogram), post-
operative efficacy prediction, and implantable intraocu-
lar lens implantation in phakic eyes. Collamer lens (ICL) 
postoperative arch height prediction and other aspects 
have also been explored [24–28].

In the clinical practice of refractive surgery, Yoo TK et 
al. [29] established a machine learning architecture that 
combines a large number of different instrument data 
from patients and the clinical decisions of experienced 
experts to analyse the possible impact on surgical results, 
to identify surgical candidates and avoid surgical com-
plications that may happen. In addition, Achiron A et al. 
[30] extracted 38 clinical parameters from the case data 
of 17,592 patients who underwent LASIK or PRK surgery 
in an ophthalmology department for 12 consecutive years 
and used the statistical classifier algorithm to train and 
test the machine learning classifier. The study found that 
surgical effectiveness decreased with age, central corneal 
thickness, average corneal curvature, and preoperative 
CDVA, but increased with pupil size. Cui T  et al. [31] 
used 1,146 eye sample data and the MLPNN algorithm 
to construct a Nomogram prediction model for SMILE 
surgery based on machine learning algorithms and com-
pared the ML model with clinical experts. There were 
no significant differences; however, the ML group was 
superior to the clinical expert group in terms of efficacy 
and predictability. The postoperative spherical equivalent 
dioptres of the ML group and the clinical expert group 
are -0.09 ± 0.024 and -0.23 ± 0.021, respectively.

Yoo TK  et al. [32] developed an interpretable multi-
category XGBoost model for the expert-level choice of 
refractive surgery, classifying patients into four types: 
laser epithelial keratopathy, laser in  situ keratopathy, 
small-incision lens extraction, and contraindications. The 
analysis included 18,480 subjects and 142 variables, and 
the model achieved accuracies of 81.0% and 78.9% when 
tested on the internal and external validation datasets, 
respectively. Our study verified the results of the paper 

conducted by Yoo  TK et  al. [32], but this study has the 
following differences and improvements: (1) Aiming at 
the preprocessing of ophthalmology data, we provided 
data cleaning, feature selection, as well as a small num-
ber of oversampling techniques (SMOTE) to deal with 
the data imbalance problem in the experimental data. (2) 
For the selection of machine learning models, we inves-
tigated 15 mainstream machine learning models in the 
early stage. We finally selected and trained six statistical 
machine learning models, including the NBM, RF, Ada-
Boost, XGBoost, BP Neural Network, and DBN, and 
used ten-fold cross-validation and grid search to find the 
optimal hyperparameters to improve the accuracy of the 
classification model. (3) Our data set Clinical data was 
collected from patients who underwent corneal refractive 
surgery at the Peking Union Medical College Hospital of 
the Chinese Academy of Medical Sciences from January 
2000 to October 2017. The time span is very long, more 
than 18 years. Combined with the previous examination 
methods, which were very limited, the well-preserved 
data and conducting research is of great cross-epochal 
significance. (4)In our experiments, it was discovered and 
verified that the feature of “sphere-column conversion” 
had a certain degree of influence on the predicted results 
of the surgical method, which has new clinical applica-
tion value.

The theory and technology of corneal refractive surgery 
are becoming increasingly perfect; however, there are 
still problems such as preoperative screening difficulties 
and postoperative complications in clinical practice, and 
the safety and accuracy of surgery still need to be further 
improved. In addition, due to the lack of data transpar-
ency, it is impossible to critically evaluate the quality of 
the model [33]. There are various sources of clinical data 
for building AI models, and there is no unified stand-
ard, which also limits the development of AI [34]. When 
the diagnosis and treatment opinions of the disease are 
inconsistent, the accuracy of AI prediction is affected. 
Due to the black-box nature of the algorithm, the pre-
vious AI model cannot make a reasonable explanation 
for the decision-making like human experts [35]. How-
ever, this study uses visualization technology to explain 
the results of the multi-classification RF algorithm. The 
developed model can recommend surgeries based on 
data when deciding on surgical methods. The consistency 
with the clinical decision-making of ophthalmologists is 
as high as 87.75%, providing confidence to doctors and 
patients.

Data preparation
The dataset for this study was obtained from the clini-
cal data of patients who underwent corneal refractive 
surgery at the Peking Union Medical College Hospital, 
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Chinese Academy of Medical Sciences, from January 
2000 to October 2017, and all data have been desen-
sitized. This study was approved by the Ethics Review 
Committee of Peking Union Medical College Hospi-
tal, Chinese Academy of Medical Sciences. All methods 
were carried out in accordance with relevant guidelines 
and regulations in the Declaration of Helsinki. All par-
ticipants signed an informed consent. At this ophthalmic 
centre, corneal refractive surgery is considered the main 
method of refractive error correction.

Previous studies have shown that Reinstein DZ et  al. 
[36] found that the postoperative TTS is considerably 
higher after SMILE than both PRK and LASIK, because 
the strongest anterior lamellae remains intact. Conse-
quently, SMILE should be able to correct higher levels of 
myopia. Xin Y et al. [37] found that the corneal biome-
chanical response to the three surgical procedures var-
ied significantly. With similar corneal thickness loss, the 
reductions in overall corneal stiffness were the highest in 
FS-LASIK and the lowest in tPRK. The effective remain-
ing corneal volume of different corneal refractive surger-
ies (such as LASIK, PRK, SMILE) is different and their 
biomechanical properties are different. Based on previ-
ous research and combined with the surgical experience 
of senior experts from Union Medical College, we added 
the criteria for whether laser vision correction surgery 
is feasible into the model training by hand-crafted rules. 
First, patients who could not undergo refractive surgery 
were excluded. The exclusion criteria included corneal 
diseases, such as keratoconus and corneal dilation dis-
ease; autoimmune diseases; systemic model diseases 
or partial metabolic diseases, such as severe hyper-
thyroidism or hyperthyroid exophthalmos; and active 
eye lesions, such as intraocular and corneal infections; 
poor fundus function, or severe cataract, glaucoma and 
other eye diseases; diabetes mellitus; cicatricial constitu-
tion; data loss >10%; refusing surgery during or after the 
examination.

All patients who pass the above screening are required 
to undergo strict eye examination before surgery. The 
preoperative examination and main instruments include: 
automatic computer refraction (Topcon, RM-800, Japan); 
Subjective refractor (Topcon, CV-5000, Japan) meas-
ured distance uncorrected visual acuity and distance 
corrected visual acuity; non-contact intraocular pres-
sure measurement (Canon, TX-20, Japan); A fully auto-
matic non-contact tonometer (TXF, Canon Company, 
Japan) was used to measure intraocular pressure, and a 
slit lamp microscope (BQ900, HAAG-STREIT Com-
pany, Switzerland) was used for examination; Corneal 
topography (Oculus, Pentacam, Germany) examination; 
ocular wavefront aberrometer (Visx4, United States), 
all the above examinations were completed by the same 

experienced optometrist. Doctors conduct a preliminary 
screening of surgical methods according to simple crite-
ria. General criteria for considering surgery include the 
following parameters: age 18 years or older; preoperative 
diopter: spherical diopter (SD) ≤ -9.00 diopters (D), astig-
matism (CD) ≤ -3.00D, and the diopter is in a stable state 
within 2 years; intraocular pressure (IOP): 10-21mmHg; 
spherical equivalent < +6.0D; central corneal thickness 
(CCT) measured by pachymetry is required, >500µ m for 
LASIK, >480µ m for SMILE and >460µ m for PRK; and 
surgery posterior residual corneal thickness >280µm.

Subsequently, this study used the following expert 
knowledge and added them to the training of the model 
in the form of hand-crafted rule: for patients with thin 
corneas and high refractive power, PRK is preferred [38]; 
SMILE is not recommended for patients with high astig-
matism [39]; SMILE is not recommended for patients 
with irregular corneas; Myopic patients with a history 
of high intraocular pressure or glaucoma should avoid 
superficial surgery; patients with severe dry eye should 
avoid LASIK surgery. The type of surgery is determined 
based on the surgical experience and actual situation of 
senior experts from the Chinese Academy of Medical 
Sciences and Peking Union Medical College. And using 
machine learning methods to learn and combine vari-
ous judgment factors to ultimately determine the type of 
refractive corneal surgery that is most suitable for each 
eye. It should be noted that those who could not be cor-
rected all at once because of high myopia and insufficient 
corneal thickness needed to maintain a certain degree of 
vision, and were required to wear glasses after surgery to 
achieve the best vision.

At least we got the dataset with the clinical data of 
7,081 patients. In the dataset, there are three situations: 
the same operation is performed on both eyes simul-
taneously, different operations are performed on both 
eyes simultaneously, and the operation is performed on 
one eye. In the end, we obtained a total of 13,723 pieces 
of data in the data set, including 6,872 left-eye data and 
6,851 right-eye data. The model predicted the left eye and 
right eye respectively.

As shown in Table 1, three types of laser corneal refrac-
tive surgeries are currently mainstream for correcting 
refractive errors, all of which have good predictability 
and safety. Among them, LASIK, PRK, and SMILE can 
perform individualised ablation guided by wavefront 
aberration, Q value, and corneal topography, which are 
beneficial for improving the visual quality of patients 
[40]. The most commonly used surgical methods are 
LASIK and SMILE. This is because LASIK technology 
is very mature, has been practiced for many years, has 
a very good reputation, and doctors have a wealth of 
experience. Furthermore, SMILE represents the latest 
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development in the field of corneal refractive surgery and 
is the most popular surgery in recent years. The clinical 
implementation time is relatively short; however, it has 
completely realised the leap of minimally invasive and 
flapless refractive surgery [41], avoiding potential risks 
such as corneal flap folds, displacement and loss, and 
bringing corneal refractive surgery into the era of femto-
seconds [42].

Table 2 shows twenty attributes for patients which were 
extracted from demographic characteristics, physical 
examination report, corneal biomechanical properties, 
ophthalmological measurements and interview question-
naire, etc, namely fBestEye (Vision with glasses), fNude-
Eye (Vision without glasses), Central Corneal Thickness, 

Intraocular Pressure, DS Spherical Power, DC Cylinder 
Power, fDS3 (Cylinder Axis), Re-examination Optometry, 
fDC2 (Recheck Cylinder), fDC3 (Recheck Axis), Pupil, 
Dilated Pupil, Sphere-column Conversion, Corneal Cur-
vature K1, Axis K1, Corneal Curvature K1, Axis K2, fSRI 
(Surface Regularity Index), fSAI (Corneal Asymmetry 
Index), and fCSI (Corneal Spherical Aberration). Among 
them, Sphere-column Conversion = spherical equiva-
lent refraction * astigmatism / 2. These attributes help us 
determine which type of refractive surgery is selected as 
the best one for an eye. Due to the fact that the data in 
this paper is divided into three categories, the compari-
son was conducted using the Kruskal-Wallis test, with 
P<0.05 indicating a statistically significant difference.

Table 1 Technical characteristics and sample size of corneal refractive surgery for cutting

Surgical Method Features Number 
of 
Samples

LASIK It uses a microkeratome to make a pedicled lamellar corneal flap with a diameter of 8 ∼10mm and a thickness of 130∼

160um. An excimer laser is used to cut a concave surface with a certain diopter on the stromal bed, and then the cor-
neal flap is reset. By changing the corneal front the curvature of the surface achieves the purpose of correcting myopia 
[43].

9096

PRK There is no need for a mechanical blade or ethanol to remove the corneal epithelium. The laser directly cuts the epithe-
lium and stromal layer on the corneal surface, and no flap is required during the operation [44].

1991

SMILE First, a femtosecond laser is used to create a lens in the corneal stroma, then a tiny incision is made to avoid the crea-
tion of a corneal flap, and finally, the corneal stromal lens tissue is separated in a small incision of 2-5mm [45].

2636

Table 2 Features statistics of corneal refractive surgery prediction models

Feature Name (unit) LASIK PRK SMILE P Value

fBestEye/(logMAR) (Vision with glasses) 0.03(±1.03) 0.03(±1.03) 0.00(±1.00) <0.01

fNudeEye/(logMAR) (Vision without glasses) 0.85(±0.55) 0.85(±0.55) 0.77(±0.47) <0.01

Central Corneal Thickness/(µm) 539.31(±151.06) 537.84(±107.16) 539.04(±108.96) <0.01

Intraocular Pressure/(mmHg) 15.79(±15.21) 15.75(±9.25) 15.65(±11.45) <0.01

DS Spherical Power/(D) -5.28(±14.28) -4.93(±12.43) -5.26(±7.99) <0.01

DC Cylinder Power/(D) -1.29(±7.29) -1.22(±7.22) -1.24(±7.24) <0.01

fDS3(Cylinder Axis)/(D) 117.76(±62.24) 114.71(±65.29) 115.23(±64.77) <0.01

Re-examination Optometry/(D) -5.49(±15.49) -5.03(±15.03) -5.51(±14.51) <0.01

fDC2 (Recheck Cylinder)/(D) -1.22(±7.22) -1.23(±7.23) -1.23(±7.23) <0.01

fDC3 (Recheck Axis)/(D) 116.98(±62.02) 115.35(±64.65) 115.88(±64.12) <0.01

Pupil/(mm) 2.70(±1.80) 2.69(±1.31) 2.71(±1.30) <0.01

Dilated Pupil/(mm) 5.26(±1.26) 5.34(±1.34) 5.29(±1.15) <0.01

Sphere-column Conversion/(D) -6.18(±19.43) -5.29(±18.29) -5.99(±18.99) <0.01

Corneal Curvature K1/(D) 44.28(±10.14) 44.26(±12.11) 44.31(±10.12) <0.01

Axis K1/(D) 90.83(±80.83) 90.57(±80.57) 90.62(±80.04) <0.01

Corneal Curvature K2/(D) 43.05(±11.01) 43.09(±11.05) 43.07(±11.08) <0.01

Axis K2/(D) 98.35(±81.65) 99.92(±80.08) 98.35(±81.65) <0.01

fSRI (Surface Regularity Index)/(D) 0.20(±0.83) 0.20(±0.95) 0.20(±0.85) <0.01

fSAI (Corneal Asymmetry Index)/(D) 0.32(±0.91) 0.32(±1.19) 0.34(±0.93) <0.01

fCSI (Corneal Spherical Aberration)/(µm) 1.34(±4.04) 1.26(±3.86) 1.33(±4.07) <0.01
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Experiments and discussion
In this section, we present our experimental methods and 
conclusions, including the data preprocessing, predic-
tive model selection and training, and feature importance 
analyses.

Data preprocessing
Owing to the features of irregularity, high dimensional-
ity, redundancy, and data loss in our dataset, a series of 
preprocessing steps were performed on the original data 
before data mining, including 1) data cleaning to identify 
outliers and duplicates and 2) deleting cases lacking key 
values.

The experimental data used in our study had multiple 
features, each with different dimensions and dimension 
units. Differences in the magnitude of the feature data 
can affect the performance of the model. For example, 
features at different scales may lead the model to pay 
more attention to features with larger values, thus ignor-
ing other important features and leading to a decrease in 
its predictive performance. Therefore, we further stand-
ardized and normalized the data to increase the solution 
speed of the gradient descent and eliminate the influence 
of the magnitude and dimension, thereby improving the 
convergence speed and accuracy of the prediction model. 
Standardization refers to Z-core normalization, which 
enables the values of all features to be converted into a 
normal distribution with a mean of zero and a stand-
ard deviation of one. Normalization refers to min-max 
scaling, which converts each feature value into a [0,1] 
interval. For each feature, the minimum and maximum 
values were converted to 0 and 1, respectively. Deviation 
standardization can transform data into different propor-
tions, eliminate the dominance of special features, and 
does not require assumptions regarding the distribution 
of data. However, normalization cannot handle outliers. 
In contrast, standardization can better handle outliers 
and accelerate the convergence of algorithms, such as 
gradient descent. This study selected the optimal data 
preprocessing method by comparing the classification 
effects of standardization and normalization.

Our experimental data showed an imbalance in the 
number of cases for the three surgical methods. Among 
them, LASIK had the largest number of cases (9,096), 
and PRK had the smallest number of cases (1,991). In 
this study, a synthetic minority oversampling technique 
(SMOTE) [14] was adopted to overcome the imbal-
ance problem. The SMOTE method is an oversampling 
method that randomly generates new instances of minor-
ity classes to balance the number of classes and is the 
most popular and effective method for balancing the 
dataset during training. When generating binary vari-
ables (gender or yes/no questionnaire) using SMOTE, a 

rounding function was applied after the SMOTE process 
to restore the binary variable attributes. Subsequently, a 
fully balanced dataset was generated using the SMOTE 
technique, such that the surgical modalities in the experi-
mental data had the same number of instances.

Model training
In our study, the choice of surgical type was regarded as 
a classification problem, and the aim was to develop an 
optimal classification model based on the dataset. Six 
statistical machine learning methods, namely NBM, RF, 
AdaBoost, XGBoost, BP neural network, and DBN were 
selected. The dataset was randomly divided into train-
ing (80%, n=10978) and testing (20%, n=2745). Ten-fold 
cross-validation and grid search are used to find the 
optimal hyperparameters, and then SMOTE is used for 
oversampling in each cross-validation cycle to ensure the 
accuracy of the validation results. In the experiment, fea-
ture selection refers to selecting the first 12 features with 
feature importance greater than 0.4 for model training. 
We conducted model training by conducting two sets 
of comparative experiments on the left and right eyes 
respectively through feature selection and max_depth 
parameter selection.

The six machine learning models are based on differ-
ent design concepts and technical principles. The settings 
of the public parameters in the model are as follows, the 
random seed is set to 1, the number of iterations max_
iter is set to 1000, and the activation function of the hid-
den layer is set to relu. 

1. The NBM [46] model, which classifies by calculating 
probability, is suitable for multi-classification tasks 
and incremental training. For large-scale data, the 
computational complexity is low, and the algorithm 
principle is relatively simple and easy to understand.

2. The RF [47] model combines the classification results 
of several weak classifiers to form a strong classi-
fier. It can evaluate the importance of each feature 
in the classification problem, can effectively run the 
input samples of high-dimensional features, does not 
require dimensionality reduction, has excellent accu-
racy, and can also obtain good results for missing 
value problems.

3. The AdaBoost [48] model is an iterative algorithm. 
Its core idea is to train different classifiers (weak clas-
sifiers) for the same training set, and then combine 
these weak classifiers to form a stronger final classi-
fier (strong classifier).

4. XGBoost [49] is an improvement to the gradient 
boosting algorithm. Newton’s method is used to 
solve the extreme value of the loss function, and the 
loss function Taylor is expanded to the second order. 
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In addition, a regularization term is added to the loss 
function.

5. The BP neural network [50] model has arbitrarily 
complex pattern classification capabilities and excel-
lent multi-dimensional function mapping capabili-
ties, and solves XOR and some other problems that 
simple perceptrons cannot solve.

6. The DBN [51] model is a hybrid model composed of 
a restricted Boltzmann machine (RBM) and a sig-
moid belief network (SBN). Compared with the neu-
ral network of the traditional discriminant model, 
it establishes a joint distribution between observa-
tion data and labels, in which Both P (Observation | 
Label) and P (Label | Observation) are evaluated.

Experiment results
We use the currently recognized general indicator accu-
racy [52] and Macro-F1 as indicators for evaluating model 
performance. Accuracy is defined as the percentage of 
samples correctly classified by the prediction model in all 
samples, reflecting the ability of the prediction model to 
identify if various samples and the formula is shown in (1), 
where TP(True Positives) represents the number of correct 
predictions for positive samples, TN(True Negatives) rep-
resents the number of correct predictions for negative sam-
ples, and N represents the total number of samples.

The Macro-F1 reflects the model’s performance in 
multi-category classification tasks, especially when 

(1)Accuracy =
TP+ TN

N

dealing with imbalanced category distributions. It meas-
ures the model’s ability to recognize each category and 
calculates the weighted average of its precision and recall 
across all categories, as shown in formulas (2) and (3):

The Macro-F1 is calculated using formula (4):

Data preprocessing and experimental results
As mentioned earlier, the data processing stage includes 
data cleaning, SMOTE technology, and feature selection. 
Among them, the SMOTE [53] method is used to deal 
with the data imbalance problem by randomly generat-
ing new instances of a minority class. Feature selection is 
performed by selecting the top 12 features with impor-
tance greater than 1.4%. In this section, we conduct mul-
tiple comparative experiments to verify the effectiveness 
of the hyperparameter max_depth and feature process-
ing on classification performance. Tables  3 and 4 show 
the performance of the machine learning model predic-
tions for the left and right eyes, respectively, ACC and 
Macro-F1.

From Tables 3 and 4, it can be seen that: 

(2)Precisionmacro =

n
i=1 Precisioni

n

(3)Recallmacro =

∑n
i=1 Recalli

n

(4)F1macro = 2 ·
Precisionmacro · Recallmacro

Precisionmacro + Recallmacro

Table 3 Accuracy and Macro_F1 of machine learning models on left eye data with different hyperparameters max_depth and with/
without feature selection

Model Max_depth

9 10 11

ACC Macro_F1 ACC Macro_F1 ACC Macro_F1

Feature selection (Select the top 12 features with importance 
greater than 1.4%.)

NBM 0.7566 0.5696 0.7566 0.5696 0.7566 0.5696

DBN 0.8276 0.5252 0.8276 0.5252 0.8276 0.5252

RF 0.8676 0.7635 0.8775 0.8019 0.8725 0.7778
AdaBoost 0.8374 0.6970 0.8424 0.6871 0.8079 0.6514

XGBoost 0.8676 0.7460 0.8677 0.7484 0.8725 0.7603

BP Neural Network 0.8578 0.7462 0.8578 0.7462 0.8578 0.7462

No feature selection was performed (There are 20 features 
in total.)

NBM 0.6946 0.5643 0.6946 0.5643 0.6946 0.5643

DBN 0.8054 0.5165 0.8054 0.5165 0.8054 0.5165

RF 0.8172 0.7148 0.8173 0.6998 0.8226 0.7117

AdaBoost 0.7784 0.6348 0.7622 0.6284 0.7514 0.6191

XGBoost 0.8118 0.6872 0.8172 0.6998 0.8226 0.7117

BP Neural Network 0.7957 0.6271 0.7957 0.6271 0.7957 0.6271
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(1) According to the results of the two sets of com-
parative experiments, the best method is to select 
the first 12 features with feature importance greater 
than 1.4% and the RF model trained when max_
depth=10. The accuracies of the left eye and right 
eye are 0.8775 and 0.8229 respectively, and the 
Macro-F1 is 0.8019 and 0.8080 respectively. The 
model’s performance demonstrates its significant 
clinical usability. The prediction performance of 
the DBN model without feature selection is rela-
tively the lowest. The accuracy of the left eye and 
right eye are 0.6946 and 0.7487 respectively, and the 
Macro-F1 is 0.5643 and 0.4657 respectively. Investi-
gate its reason, RF is an ensemble learning method 
that improves generalization by combining multi-
ple decision trees. It can handle high-dimensional 
data and feature interactions, reducing overfitting. 
Additionally, it possesses strong anti-overfitting 
capabilities by randomly selecting features and con-
structing decision trees through random sampling. 
Furthermore, it effectively deals with imbalanced 
datasets by focusing on minority class samples and 
provides interpretability and feature importance 
measurements, achieving outstanding performance 
in multi-class machine learning.

(2) Max_depth is a key hyperparameter in the decision 
tree model. It can be seen that the selection of the 
hyperparameter max_depth has a certain impact 
on model training. This paper uses methods such as 
ten-fold cross-validation to try different max_depth 
values, and then select the model with the best per-
formance on the data set. This is a common param-

eter adjustment method that can help us find opti-
mal hyperparameter values. But for NBM, DBN, 
and BP Neural Network, the design of these models 
does not involve parameters such as “max_depth”, 
because their structure and training methods are 
different from other models that need to set depth 
or layer limit, so their training results Not affected 
by max_depth. It can be seen that when max_depth 
is 10, the effect of the machine learning model is 
usually better than when max_depth is 9 or 11. For 
the RF model, when max_depth is 10, the model 
accuracy of the left eye and right eye is 0.8775 and 
0.8229 respectively, and the Macro F1 is 0.8019 
and 0.8080 respectively. When max_depth is 9 and 
11, the model accuracy of the left and right eyes is 
reduced by 1% and 1% on average, and Macro F1 
is reduced by 4% and 3% on average. This suggests 
that at a maximum depth of 10, the model is better 
able to capture complex relationships in the train-
ing data, while a depth of 9 or 11 may be too simple 
or too complex, resulting in degraded performance. 
Choosing an appropriate max_depth is crucial 
for models such as random forests, which directly 
affects the complexity and generalization ability of 
the model.

(3) Feature selection generally improves the perfor-
mance of classification models, but there are excep-
tions. E.g, through the analysis of experimental 
results, it can be seen that NBM models are usually 
used to process high-dimensional data, and fea-
ture selection will reduce the number of features, 
thereby reducing the ability of NBM to capture 

Table 4 Accuracy and Macro_F1 of machine learning models on right eye data with different hyperparameters max_depth and with/
without feature selection

Model Max_depth

9 10 11

ACC Macro_F1 ACC Macro_F1 ACC Macro_F1

Feature selection (Select the top 12 features with importance 
greater than 1.4%.)

NBM 0.7435 0.4633 0.7435 0.4633 0.7435 0.4633

DBN 0.7487 0.4824 0.7487 0.4824 0.7487 0.4824

RF 0.8125 0.7694 0.8229 0.8080 0.8073 0.7527
AdaBoost 0.7644 0.6475 0.7382 0.6047 0.7330 0.5931

XGBoost 0.8020 0.7373 0.7917 0.7102 0.7917 0.7084

BP Neural Network 0.7708 0.6621 0.7708 0.6621 0.7708 0.6621

No feature selection was performed (There are 20 features 
in total.)

NBM 0.7487 0.4657 0.7487 0.4657 0.7487 0.4657

DBN 0.7435 0.4262 0.7435 0.4262 0.7435 0.4262

RF 0.8177 0.7998 0.8021 0.7427 0.8073 0.7527

AdaBoost 0.7435 0.6411 0.7592 0.6428 0.7487 0.6337

XGBoost 0.7969 0.7182 0.8073 0.7426 0.7969 0.7203

BP Neural Network 0.7760 0.6818 0.7760 0.6818 0.7760 0.6818
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complex relationships in the data. On high-dimen-
sional data, selecting the right subset of features 
may become more difficult, reducing model perfor-
mance.

(4) Based on the results of the above comparative 
experiments, it can be observed that the predic-
tion performance of the left-eye model in the pro-
posed model was generally better than that of the 
right eye. We considered the order of surgical eye 
treatment and individual patient variability in phys-
iological factors, such as axial length, corneal curva-
ture, pupil size, occupation, and eye habits. There-
fore, the dioptres corrected for each eyeball and the 
depth of the corneal cut will also vary, which will 
have some impact on the predictive effect of the 
type of surgery.

Figure 1 is a comparison chart of the ROC curves of the 
five classification algorithms that predict each surgical 
method in the data set. The ROC curve shown in Fig. 1A 
shows the relationship between the specificity and sensi-
tivity of the classifier when predicting whether a patient 
will undergo lasik surgery, and is a comprehensive repre-
sentation of the diagnostic accuracy of the classifier. For 
different classifiers, the larger the area under the ROC 
curve (AUC), the better the diagnostic performance. 
As can be seen from the figure, the ROC area of the RF 
model is the largest, and the probability of being consist-
ent with the doctor is the highest, proving that the model 
has good comprehensive performance.

Feature importance and visualization
In this section, we investigate the importance of each 
feature for classification. In Fig.  2 the SHAP feature 
importance matrix graph shows the features with high 

Fig. 1 Comparison of the ROC curves of the five classification algorithms predicted for each surgical method in the data set. A LASIK. B PRK. C 
SMILE

Fig. 2 SHAP feature importance matrix map of random forest model
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importance and quantifies the impact of multiple clini-
cal features, such as Central Corneal Thickness (0.1556), 
Sphere-column Conversion (0.0725), Re-examination 
Optometry (0.0704), DS Spherical Power (0.0643), Cor-
neal Curvature K2 (0.0577), and Corneal Curvature K1 
(0.0561). All of which play important roles in the selec-
tion of corneal refractive surgery methods. It was veri-
fied that the explanation of feature importance using 
SHAP techniques is consistent with the clinical diagno-
sis of oculists. As shown in Fig. 3, these three box plots 
respectively show the center position and scatter range 
of the data distribution of the top-3 variables in SHAP 
importance in each surgical method. The figure clearly 
and intuitively shows that there are obvious differences in 
the distribution of the three variables in different surgical 
methods.

Analysis shows the data span is more than eighteen 
years, and surgical techniques have innovated rapidly 
over time. The central corneal thickness is an important 
indicator in corneal refractive surgery, which to a cer-
tain extent determines the range of degrees that can be 
corrected by surgery, and has an important impact on 
the feasibility, safety, correction effect, and postopera-
tive stability of surgery. In addition, a patient’s best vision 
while wearing glasses provides a baseline for physicians 
in assessing surgical feasibility and predicting surgical 
outcomes, helping them assess the potential degree of 
visual improvement after surgery. To a certain extent, it 
may have an impact on the goal setting, surgical effect 
prediction, and surgical type selection of corneal refrac-
tive surgery.

The interpretation of the feature importance using the 
SHAP technique in this study was consistent with the 
ophthalmologist’s practical Experience. In addition, our 
study also find that the new clinical indicator of sphere-
column conversion (sphere-column conversion = spheri-
cal equivalent refraction * astigmatism / 2) has a certain 
degree of impact on the predicted results of the surgical 

method, which will provide ophthalmologists with a new 
clinical tip.

Figure 4 shows the summary plot graphs of 3 random 
forest classifiers, each of which gives the global inter-
pretability of why the corresponding surgical type was 
chosen. In each summary plot graph, the vertical axis 
sorts the features based on the sum of the SHAP values 
of all samples, while the horizontal axis represents the 
SHAP value, which is the distribution of the impact of 
the features on the model output. Each point represents 
a sample. From the origin to the right, the SHAP value 
is positive, indicating that the contribution of the feature 
to the prediction result is positive. The more lines to the 
right, the greater the contribution, and vice versa to the 
left.The thicker the line, the larger the sample size, and 
vice versa. The color from blue to red represents the rep-
resentative value from small to large. As shown in Fig. 4, 
for all surgical types, Central Corneal Thickness, Dilated 
Pupil, DS Spherical Power, and Re-examination Optom-
etry are the most important features.

Figure 5 illustrates a single-sample prediction explana-
tion with a force plot. In the force plot, the SHAP value 
of each feature is visualized as a force that increases or 
decreases the prediction accuracy. The red force indi-
cates a positive contribution to the predicted result, and 
the blue force indicates a negative contribution to the 
predicted result, while the quantity of contribution is 
expressed as a numerical value on the x-axis. E.g Fig. 4B 
indicates that the positive contribution of the feature of 
DS Spherical Power = -4 is the largest, followed by Cen-
tral Corneal Thickness = 531, Re-examination Optom-
etry = -4, Sphere-column Conversion = -4.5, and Dilated 
Pupil = 5.5, but the negative contribution of fSRI(Surface 
Regularity Index) = 0.01. This means that, under the 
comprehensive influence of all features, the probability 
that the model predicts that PRK should be used for this 
case is 98%. The fSRI in the patients with PRK surgery in 
the data set is mainly concentrated between [0.03, 0.20], 

Fig. 3 Box plot of data distribution of the top 3 variables of SHAP importance in each surgical method



Page 11 of 14Li et al. BMC Medical Informatics and Decision Making           (2024) 24:41  

Fig. 4 Random forest-based SHAP summary graph. A multiclass classification with LASIK versus rest groups. B multiclass classification with PRK 
versus rest groups. C multiclass classification with SMILE versus rest groups
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but in this case, the Corneal Curvature K2 is 0.01, which 
has a negative impact on the classification model.

Conclusion
In this paper, we proposed a machine learning-based 
prediction model for selecting corneal refractive surgery 
techniques. Firstly, we cleaned the data set, removed 
samples with missing key data, selected the top 12 fea-
tures with feature importance greater than 1.4%, and 
solved the problem of data imbalance through SMOTE 
technology. Next, we selected six machine learning mod-
els and used 10-fold cross-validation and grid search to 
train the models and determine the optimal hyperparam-
eters to improve model performance. The best method 
is to select the first 12 features with feature importance 
greater than 1.4% in the left eye, set max_depth to 10, and 
train the RF model through SMOTE, with an accuracy 
of 0.8775 and a Macro-F1 of 0.8019. Further, the SHAP 
technique is used to interpret feature importance consist-
ent with the practical experience of ophthalmic surgeons. 
In our experiments, it was discovered and verified that 
the feature of “sphere-column conversion” had a certain 
degree of influence on the predicted results of the surgi-
cal method, which has new clinical application value.

In this research, 20 features including demographic 
characteristics, physical examination report, corneal bio-
mechanical properties, ophthalmological measurements, 
and interview questionnaire were used, and 6 machine 
learning models were used for classifications. In further 
work, we will build multi-modal models to process vari-
ous information including graphical data and text. At the 

same time, our analysis solely utilizes data from a single 
ophthalmic hospital, and the performance of the machine 
learning model may differ when applied to larger datasets 
with different patient features and institutions with dif-
ferent distributions. However, due to the limited amount 
of case data and the principle of confidentiality, we are 
unable to obtain external data. Ultimately, the devel-
oped model is able to provide confidence to doctors and 
patients by recommending surgery based on data when 
deciding on a surgical method.

The hospital’s ophthalmology department from which 
the data set in this study comes has high medical stand-
ards and high surgical quality, with an annual outpatient 
volume of more than 120,000 and an annual operation 
volume of more than 8,000. More than 98% of patients 
come to our center for review of uncorrected vision, cor-
rected vision, subjective and objective refraction, and 
intraocular pressure, 1 day after surgery, 1 week after sur-
gery, 1 month after surgery, 3 months after surgery, and 6 
months after surgery. A slit lamp and other examinations 
were performed, and subjective refraction and dominant 
eye examination were performed in the 6th month after 
surgery. Because the time span of this study is very long, 
a small amount of postoperative examination data was 
missing, but the hospital conducted postoperative fol-
low-up visits for all patients, and the results showed that 
the expected surgical results were achieved and there 
were no postoperative complications. This data set only 
records the surgical data of some doctors. These doctors 
have rich surgical experience and superb surgical skills, 
and there are no postoperative complications in this part. 

Fig. 5 Case examples show the machine learning prediction results with local interpretation via force plots
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Data that could lead to postoperative complications were 
not recorded in this data set. Therefore, the failure to 
reflect surgical results such as postoperative complica-
tions, visual acuity, or refraction is a clear limitation of 
the study.

The data used in this study span a very long time span, 
more than 18 years. Combined with the very limited 
previous inspection methods, it is of great epochal sig-
nificance to preserve well-preserved data and conduct 
research. Our next step is to obtain an external validation 
dataset, in order to prevent overfitting and better explore 
the effectiveness of the machine learning model across 
different institutions and surgeons.
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