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Abstract 

Background  Deep learning has demonstrated significant advancements across various domains. However, its 
implementation in specialized areas, such as medical settings, remains approached with caution. In these high-stake 
environments, understanding the model’s decision-making process is critical. This study assesses the performance 
of different pretrained Bidirectional Encoder Representations from Transformers (BERT) models and delves into under-
standing its decision-making within the context of medical image protocol assignment.

Methods  Four different pre-trained BERT models (BERT, BioBERT, ClinicalBERT, RoBERTa) were fine-tuned for the med-
ical image protocol classification task. Word importance was measured by attributing the classification output 
to every word using a gradient-based method. Subsequently, a trained radiologist reviewed the resulting word impor-
tance scores to assess the model’s decision-making process relative to human reasoning.

Results  The BERT model came close to human performance on our test set. The BERT model successfully identified 
relevant words indicative of the target protocol. Analysis of important words in misclassifications revealed potential 
systematic errors in the model.

Conclusions  The BERT model shows promise in medical image protocol assignment by reaching near human level 
performance and identifying key words effectively. The detection of systematic errors paves the way for further refine-
ments to enhance its safety and utility in clinical settings.
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Background
Machine learning systems are being rapidly adopted for 
many applications including high- stakes settings such 
as medical applications [1–5]. Recent progress with self-
attention techniques, and specifically Transformers, have 

dominated the field of text processing and classification 
tasks. Large pretrained Transformers have outperformed 
humans on language understanding tasks such as Super-
GLUE [6], a suite of challenging NLP tasks designed to 
evaluate a system’s proficiency in understanding and gen-
erating human language. These tasks encompass a range 
of complex language scenarios, from question answering 
to sentiment analysis. However, despite these advance-
ments, many specialized text analysis tasks do not make 
use of modern machine learning methods [7]. It remains 
questionable how well existing pretrained models will 
transfer to large, specialized texts.
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In high-stakes fields like medicine, law, and security, 
where specialized human expertise is crucial, the effec-
tive deployment of machine learning algorithms hinges 
on not only achieving human-level performance but also 
providing clear, trustworthy explanations to the user [8, 
9]. Furthermore, model explainability is being driven 
by laws and regulations which state that decisions from 
machine learning algorithms must provide information 
about the logic behind those decisions [10]. In fact, the 
lack of explainability of ML models often plagues medi-
cal artificial intelligence (AI) [11]. For these reasons, in 
high-stake settings, explainability should be a priority for 
researchers.

In this study, we focus on the specialized task of iden-
tifying medical imaging protocols within text descrip-
tions. Clinicians often order radiologic studies, such as 
magnetic resonance imaging (MRI) or computed tomog-
raphy (CT), to help answer clinical questions and guide 
treatment decisions [12–14]. Typically, when a physician 
orders an imaging study, he/she will provide a provide 
a description with the patient’s symptoms and history, 
which radiologists then review to recommend the most 
suitable radiologic protocol.

Traditionally, protocol assignment to each radiologic 
order is done manually by the radiologists or radiol-
ogy technologists. This can incur substantial costs to 
the healthcare system. This tedious task may take up to 
at least 6% of the radiologists’ time [15]. With increas-
ing radiology orders, an automated process with high 
throughput and accuracy is desirable to ensure patient 
care and to avoid radiologists’ burnout. However, given 
the high stakes of medical tasks, machine learning mod-
els must be evaluated for any systematic biases or errors 
before they can be trusted by clinicians and patients [16]. 
In order for these models to be used in practice they need 
to provide valid explanations for how the decisions are 
made.

Deep learning machines can perform this proto-
col classification. Previous work has been done using 
machine learning techniques such as SVM, Random 
Forests, and Gradient Boosted Machine [17]. A deep 
neural network approach demonstrated a slight boost 
over k-Nearest Neighbors (KNN) and random for-
ests methods [18]. However, these models are limited 
by the size of the model and the use of classical word 
embeddings which do not provide deep contextual 
word embeddings [19]. Newer models, such as the bidi-
rectional recurrent neural networks (RNN) and Trans-
formers can improve text representation to be sensitive 
to its local context in a sentence and optimized for spe-
cific tasks by using a self-attention mechanism to help 
embed the context of each word [20]. Large language 

models such as BERT (Bidirectional Encoder Represen-
tations from Transformers) [21] and ELMo (Embed-
dings from Language Model) [22] have been shown to 
provide substantial performance improvements for lan-
guage modeling and text classification.

In this study, we designed machines to perform a pro-
tocol classification task using Transformer-based mod-
els. We adapted several large pre-trained BERT-based 
language models to classify neuroradiologic orders. 
The ML models will learn the medical language used 
to indicate a neuroradiologic order and assign the best 
protocol accordingly. This is a complex task because the 
models need to understand language in the context of 
human anatomy and pathology from a short vignette. 
We hypothesize that the use of context-dependent token 
embeddings will substantially improve medical text clas-
sification and model interpretation compared to conven-
tional ML models. A BERT model that was pre-trained 
on biomedical literature [23] and another pre-trained 
on clinical text [24] will be included for comparison. 
This will provide the best contextual token embeddings 
for the model to understand the physicians’ notes. The 
performances of these BERT-based Transformer models 
were compared to several machine learning models.

In addition, we evaluate the model’s ability to provide 
explanations of its decision based on word importance. 
A trustworthy algorithm should be able to demonstrate 
it is making complex decisions using similar rational to 
a human. For this application, explanation is increas-
ingly complex because the model will need to under-
stand language in the context of human anatomy and 
physiology. Figure  1 illustrates a proposed system 
in which physician notes are fed as input to a model, 
which then outputs an imaging protocol along with an 
explanation for its decision-making process.

The main contributions of this study are as follows:

•	 We fine-tune different pre-trained BERT model 
using a medical dataset of medical imaging proto-
col text, and demonstrate that it achieves state-of-
the-art performance compared to previous studies.

•	 We employ a gradient-based method called inte-
grated gradients to quantify the contribution that 
each word in the input text makes to the model’s 
decision.

•	 We validate the model’s word importance claims 
using a technique called erasure.

•	 We analyze the model’s mistakes using word 
importance and identify systematic errors that may 
pose potential safety risks and need to be addressed 
before the model can be safely deployed in a clinical 
setting.
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Data
In order to train a specialized model for medical text 
classification, we have compiled a new large-scale data-
set for image protocol review. This dataset consists of 
order entries and assigned protocols for magnetic reso-
nance (MR) neuroradiology studies that were conducted 
at our institution between June 2018 and July 2021. Each 
row in the dataset represents a single radiology order and 
includes the ’reason for exam’, patient age and gender, and 
the protocol assigned by the radiologist.

We have excluded orders for spine imaging from this 
study, as the assigned protocol typically reflects the spe-
cific segment of the spine indicated in the order. From the 
original dataset of 119,093 rows, we removed the most 
common protocol, ’routine brain’, as it can be used for a 
wide range of indications and serves as the default pro-
tocol at our institution. The remaining dataset was nar-
rowed down to the 10 most common protocols (Table 1).

To ensure the accuracy and quality of the data, we per-
formed a thorough review by an experienced radiologist 
(ET) with 10 years of experience. We also applied stand-
ard text preprocessing techniques such as handling of 

missing outputs, and expansion of acronyms, to further 
clean and organize the data. Furthermore, in medical 
documentation, the use of standardized terminology and 
phrases is common practice, which could lead to similar 
entries in our dataset. To address this, we have meticu-
lously removed any duplicate entries prior to the rand-
omization process to prevent overfitting. The remaining 
similar entries accurately reflect real-world medical 
reporting practices where standardized language is prev-
alent. Our methodology ensures that the model’s training 
and validation are as close to the clinical reality as possi-
ble. The final dataset includes 88,000 recorded notes with 
expert-annotated imaging protocols.

Methods
This retrospective study was conducted with the approval 
of the Stanford Institutional Review Board (IRB) and 
under a waiver of informed consent. The study was 
approved for collaboration between Stanford University 
and the University of California, Berkeley.

BERT fine tuning
We approach the problem of text classification as predict-
ing the class that corresponds to a given input text. In our 
dataset, we have 10 possible classes that can be predicted. 
To achieve this, we fine-tuned four pre-trained language 
models using the HuggingFace Transformers library: 
BERT, RoBERTa, BioBERT, and ClinicalBERT [25].

BERT (Bidirectional Encoder Representations from 
Transformers) is a machine learning framework for 
natural language processing (NLP) that serves as the 
foundation of these models. BERT was pre-trained on a 
dataset of English text consisting of books, articles, and 
websites, including Wikipedia. The model was trained 
using an unsupervised pre-training method, where the 
model is trained to predict missing words in a sentence 
or a sequence of text (also known as "masked language 
modeling").

Fig 1  A proposed system in which physician notes are used as input to a model. The output of the model is an imaging protocol, with color 
coding to denote the significance of terms in influencing the model’s decision: red signifies words that negatively influence the prediction, blue 
denotes the most important words that positively influence the prediction, and white indicates a neutral influence. This system aims to provide 
a more efficient and accurate method for determining appropriate imaging protocols, while also offering insight into the decision-making process 
of the model. By incorporating an explainability component, the proposed system has the potential to enhance trust and understanding in the use 
of machine learning for medical image protocol assignment

Table 1  The 10 most commonly assigned protocols and their 
frequencies

Protocol name Number of entries

MR brain demyelinating 4,076

MR brain mass/metastases/infection 32,587

MR moya-moya with Diamox 1,765

MR nasopharynx oropharynx 3,945

MR orbit sinus face 4,289

MR seizure 3,476

MR sella 5,297

MR skull base 4,390

MR stroke 23,704

MR vascular malformation/hemorrhage/trauma 4,523

Total 88,052



Page 4 of 12Talebi et al. BMC Medical Informatics and Decision Making           (2024) 24:40 

Before being processed by the encoder, the input 
data is transformed by passing it through three embed-
ding layers: a token embedding layer, a segment embed-
ding layer, and a position embedding layer. In the token 
embedding layer, the input sentences are tokenized. Each 
token is then transformed into a fixed-dimensional vec-
tor representation (e.g., a 768-dimensional vector). Spe-
cial classification [CLS] and separator [SEP] tokens are 
also inserted at the beginning and end of the tokenized 
sentence to serve as input representations and sentence 
separators for the classification task. The [CLS] token in 
the last hidden state of BERT contains the embedding of 
the entire input and is used for classification (Fig. 2)

While all models share this core architecture, they dif-
fer in their pre-training data, which tunes them for spe-
cific domains: RoBERTa was optimized on extended 
data for improved performance; BioBERT was further 
pre-trained on biomedical literature; and ClinicalBERT 
was further fine-tuned on clinical text. Our contribution 
involves adapting and integrating these models for accu-
rately predicting neuroradiology protocol assignment 
from physician notes.

Resemblant to the clinical setting, the number in 
each protocol is not evenly distributed (Table  1). More 
than half of the imaging protocol entries belong to two 
of the classes. To mitigate this imbalance we up sample 
the remaining 8 imaging protocols so that the dataset is 
approximately balanced between all 10 classes of imag-
ing protocols. Before performing the up sampling, the 
data is randomly split into a train, validation and test 
sets. We have 70% of the protocols make up the train set, 
20% make up the validation set, and 10% make up the 

test set. The validation set was used to perform a hyper-
parameter grid search. The learning rate was tuned from 
the range of 1x10−4 to 1x10−6, using a step size of 2x10-5. 
During our experiments we found the model would con-
verge after 10 epochs and training for any longer would 
degrade performance. The model is trained using a single 
A6000 GPU.

Model baseline
In order to establish a baseline and compare the perfor-
mance of our fine-tuned BERT model against traditional 
machine learning methods, we conducted experiments 
using several well- known algorithms, namely Ran-
dom Forest (RF), XGBoost, and Deep Neural Networks 
(DNN). These algorithms have been used in previous 
studies for medical imaging protocol assignment and 
provide a benchmark to evaluate the effectiveness of our 
approach.

For the RF, XGBoost, and KNN models, we employed 
TF-IDF vectorization to transform the input text into 
numerical feature vectors. For the DNN model we inte-
grated pre-trained GloVe embeddings [26]. To implement 
and evaluate the traditional machine learning methods, 
we used popular and widely adopted Python libraries for 
each of the algorithms. For RF, and XGBoost, we utilized 
the scikit-learn library. For the DNN, we employed Keras 
for building a 1D Convolutional Neural Network (CNN) 
classifier.

Word importance
For the purposes of this study, we use the concept of 
”word importance” as a means of interpreting the model. 

Fig 2  (Left) Original pre-trained BERT that is trained to perform ‘next sentence prediction (NSP)’ and ‘masked-language modeling (MLM)’. Special 
classification [CLS] and separator [SEP] tokens are inserted into the input to facilitate learning. (Right) BERT is fine-tuned for this classification task 
using labeled data from physician entries. The output is a class label corresponding to the assigned protocol
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Word importance quantifies the contribution that each 
word in the input text makes to the model’s prediction. 
To calculate word importance, we utilize a gradient-
based method called integrated gradients [27, 28].

Validating word importance
The assumption to use heat-maps of attribution values 
over the inputs as explanations is particularly popular 
for natural language processing. To test the validity of 
these explanations,” stress tests” can be designed using 
a method called erasure, where the most or least impor-
tant parts of the input, as indicated by the explanation, 
are removed and the model’s prediction is observed for 
changes [29]. Specifically, we erase the most (or least) 
important word from the input sentence and measure the 
resulting model accuracy.

Aggregating word attribution
We aggregate the word attributions across multiple texts 
for each imaging protocol. Integrated gradient assigns 
attribution scores to each prediction made on a text 
segment that is a maximum of 512 sub-words long. We 
calculate the top 5 words for each imaging protocol by 
taking the average attribution value for each word across 
all text for a given imaging protocol, and select the top 
words as those with the highest average attribution value. 
We further filter out words that appear in less than 3 
texts. A trained radiologist assigned a measure of word 
importance across all text for a given imaging proto-
col. This measure was based on a numerical score, with 
a value of 1 indicating a strong influence on the radi-
ologist’s decision, 0.5 indicating a slight influence, and 0 
indicating a neutral influence. For each word, the human 
word importance score was determined as the average of 
all word scores across a single image protocol class. These 
methods were employed to generate lists of the most 

influential words for each imaging protocol, utilizing 
both the BERT model and the judgments of the trained 
radiologist.

Results
The results of our fine-tuning experiment on the BERT 
model are shown in Table  2. The model’s performance 
was evaluated using three metrics: precision, recall, and 
F1 score. The F1 score is a measure of the model’s accu-
racy, taking into account both the precision and recall 
of the model. We found that the BERT, RoBERTa, Clin-
calBERT, and BioBERT models had an F1 score of 0.89, 
0.89, 0.91, and 0.92 respectively. This represents a sig-
nificant improvement over the results of previous studies 
using other machine learning methods. One such study 
using deep neural network, random forest algorithm, and 
k-nearest neighbors (kNN) achieved a F1 scores of only 
0.83, 0.81 and 0.76 respectively [18].

For our dataset, we also measured the weighted aver-
age F1 scores of the traditional machine learning mod-
els: XGBoost achieved an F1 score of 0.84, RF scored 
0.77, KNN obtained 0.70, and the DNN yielded an F1 
score of 0.85. These results are comparable to the per-
formance of existing studies. Overall, the results of our 
experiment demonstrate the superior performance of the 
pre-trained BERT models compared to non-Transformer 
based approaches. The BERT models were able to achieve 
a higher level of accuracy, as indicated by the higher F1 
score, and outperformed other methods in this task.

The performance of the BioBERT model was compared 
with a human readers. The number of errors and the accuracy 
in each category are tabulated in Table 3. The accuracy is tied 
in the ‘MR moya-moya with Diamox’ and ‘MR seizure’ catego-
ries. Otherwise, the neuroradiologist achieved higher accu-
racy than the BioBERT model in the remaining 8 categories

Table 2  A comparison of imaging protocol F1 scores

Protocol Name BERT RoBERTa ClinicalBert BioBERT DNN XGBoost RF KNN

MR BRAIN DEMYELINATING 0.92 0.92 0.95 0.94 0.91 0.92 0.90 0.75

MR BRAIN MASS/METS/INFECT 0.85 0.85 0.86 0.87 0.77 0.71 0.66 0.59

MR BRAIN MOYA-MOYA DIAMOX 0.96 0.96 0.96 0.98 0.96 0.98 0.97 0.90

MR NASOPHARYNX OROPHARYNX 0.89 0.94 0.93 0.97 0.92 0.93 0.91 0.75

MR ORBIT SINUS FACE 0.85 0.84 0.89 0.88 0.83 0.81 0.75 0.68

MR BRAIN SEIZURE 0.95 0.95 0.96 0.96 0.77 0.78 0.68 0.66

MR SELLA 0.96 0.96 0.97 0.97 0.94 0.94 0.89 0.74

MR SKULL BASE 0.82 0.82 0.89 0.96 0.79 0.74 0.64 0.61

MR STROKE 0.84 0.84 0.88 0.88 0.83 0.79 0.73 0.72

MR VASCULAR MALFORMATION 0.87 0.84 0.89 0.88 0.84 0.83 0.75 0.65

Weighted Average 0.89 0.89 0.91 0.92 0.85 0.84 0.77 0.70
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Word importance
The attribution scores assigned to individual words by 
the integrated gradients are intended to reflect the influ-
ence of those words on the model’s decisions.

To verify the validity of these attribution scores, we 
conducted a ”stress test” using a technique called eras-
ure. This involved systematically removing the most and 
least important words from the input text and meas-
uring the resulting impact on the performance of the 
BERT models. The results of this stress test are shown in 
Fig.  3. We can see that the removal of the least impor-
tant words had a relatively small effect on the model’s 
performance, causing a decline in the F1 score from 0.89 
to 0.86. In contrast, the removal of the most important 
words had a much more significant impact, with the F1 

score dropping sharply from 0.89 to 0.62 when the top-
most important words were removed. Each subsequent 
removal of the most important words also resulted in 
a decremental drop in the F1 score. The stress test was 
also performed on RoBERTa, ClinicalBERT and BioBERT 
yielding similar results.

These results provide strong evidence that the attribu-
tion scores generated by the integrated gradients method 
are valid, as they accurately reflect the influence of each 
word on the model’s performance. The stress test demon-
strates that the most important words have a substantial 
impact on the model’s ability to make accurate predic-
tions, and that the words with the highest attribution 
scores are particularly influential in the model’s decision 
making process. We aggregate word attribution scores 

Table 3  Performance results of the biobert model compared with neuroradiologists. Human outperform the model in all but 2 
categories

Number of entries Number of BioBERT 
errors

Accuracy % Number of Human 
errors

Accuracy %

MR brain demyelinating 395 19 0.95 13 0.97
MR brain mass/mets/infection 457 46 0.90 9 0.98
MR moya-moya with Diamox 184 4 0.98 4 0.98
MR nasopharynx oropharynx 384 11 0.97 5 0.99
MR orbit sinus face 426 60 0.86 15 0.96
MR seizure 355 4 0.99 4 0.99
MR sella 521 13 0.98 1 0.99
MR skull base 443 44 0.90 20 0.95
MR stroke 497 55 0.89 17 0.97
MR vascular malformation/hemor-
rhage/trauma

433 47 0.88 25 0.94

Weighted Average 0.93 0.97

Fig 3  Model performance after step-wise removal of the 4 most important words and the 4 least important words from the text prompt. The 
results show that the least important words are less likely to degrade model performance while the most important words substantially degrade 
the performance
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for each image protocol and investigate the difference in 
the word importance ranks of BERT, and those of a radi-
ologist (Fig.  4a). Both human (trained radiologist) and 
the BERT models picked the words most frequently men-
tioned in the indications for brain mass workup. There 
was no difference in the top 5 aggregate words between 
BERT and RoBERTa, and only minimal differences were 
observed between BERT and ClinicalBERT, as well as 
between BERT and BioBERT (Fig. 4b).

Meningioma is the most common type of brain tumor 
and lung cancer is the most common cause of brain 
metastases. Mets is a very commonly used shorthand for 
metastases. Both human and BERT picked up words sug-
gesting a history of treatment for brain tumors, human 
picked ‘cyberknife’, while BERT picked ‘post, stereo, treat-
ment’. ‘Rule’ and ‘date’ favored by BERT are most likely 
due to bias.

Seizure and epilepsy (a condition with prolonged or 
repetitive seizures) are obviously important for the sei-
zure protocol, both human and BERT agreed. They also 
consider ‘visualase’, which is an ablation technique for 
treating seizures, important. BERT did not recognize 
the specific anatomic structures (hippocampus, tempo-
ral lobe) and specialized medial term that are considered 
important for humans. Instead BERT was biased by some 
non-specific words.

The top 5 words in agreement for stroke protocol are 
indeed critical, specific, and frequently used. Again BERT 
was biased by a few generic words, and failed to recog-
nize words that describe the symptoms of stroke or the 
medical acronym for stroke (‘cva’).

Furthermore we examine individual texts and their 
word attribution values to assess the model’s under-
standing of language in the context of human anatomy 
and pathology. Figure 5 presents a physician’s text along-
side the model’s corresponding word attribution values. 
In the first example, the model places emphasis on the 
patient’s history of breast cancer and a headache. In older 
patients, headaches can often indicate the presence of a 
brain tumor, and cancer can spread from the breast to 
the brain, leading to brain metastasis. Despite the pres-
ence of symptoms such as dizziness, facial, and numb-
ness, which suggest the possibility of a stroke, the model 
de-emphasizes these words and correctly determines 
that brain metastasis is the most likely cause, given the 
patient’s history of breast cancer and a headache. In the 
second example, we see a case where the model makes an 
incorrect decision. The mention of possible edema on a 
computerized tomography scan suggests the possibility 
of a brain tumor. Additionally, the model ignores the age 
of the patient, which is relevant because for patients over 
the age of 50, seizures are often caused by brain tumors. 
While an MRI to diagnose brain seizure is plausible, the 
reasons described indicate that an MRI to diagnose brain 
metastasis is generally more likely in this case.

Error analysis
In order to understand the errors made by our fine-tuned 
BERT model on the test set, we conducted an analysis 
of the model’s explanations and looked for any system-
atic patterns in the mistakes. Our analysis identified four 
broad categories of errors: (1) multifarious choices, (2) 

Fig 4  Top 5 words where human (trained radiologist) and (a) BERT or (b) BioBERT agree or disagree for 3 selected protocols. Human & robot are 
words both human and model agree are important. Human only are words with high human importance but low model importance. Robot 
only are words with high model importance but low human importance
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age-related results, (3) ambiguous entries, and (4) flagrant 
errors.

The most common type of mistake occurred when the 
clinical question was too complex or broad, with multiple 
clinical questions, regions of interest, or complex medi-
cal histories. In these cases, there may be multiple valid 
imaging protocols, and the model struggled to select 
the most appropriate one. This accounted for 52% of the 
errors in the test set.

Errors in the second category, age-related results, 
occurred when the model failed to consider the age of 
the patient in its prediction. For example, the best proto-
col for a patient with intracranial hemorrhage may vary 
depending on their age group. This category accounted 
for 15% of the errors in the test set. Errors in the third 
category, ambiguous entries, occurred when the model 
was unable to make a prediction due to ambiguous or 
esoteric language in the input text. This could include 
stems that were too rare or cryptic, or protocols that 
could not be designated to ambiguous stems. This cat-
egory accounted for 5% of the errors in the test set.

Finally, flagrant errors, the fourth category, occurred 
when the model made a wrong prediction or the order of 
word importance did not make sense for the prediction. 
This category accounted for 28% of the errors in the test 
set. A visual breakdown of these mistakes is provided in 
Fig. 6.

Overall, the largest issue for the model was its difficulty 
in understanding the hierarchical ordering of protocols. 
This accounted for 52% of the errors in the test set, and 
will require further work to address before the model 
can be used in a clinical setting. Another issue was the 

model’s partial capture of important regions of the input 
text, which accounted for 15% of the errors. This may be 
due to biases or limitations in the training data, and will 
also require further work to address. By understanding 
the patterns of errors made by the model, we can begin to 
identify areas for improvement and fine-tune the model 
to achieve even better performance.

Discussion
Protocoling is a crucial task for radiologists to ensure 
that the appropriate sequences are acquired in response 
to clinical questions. However, manual protocoling can 
be time-consuming, disruptive, and prone to errors. 
In recent years, the volume of radiologic orders has 
increased, making protocoling an increasingly costly bur-
den. To address these challenges, we utilized a large pre-
trained language model that was fine-tuned by training it 
with a large dataset of radiologic orders. This allowed the 
model to learn medical terminology and accurately pro-
cess orders, which frequently contain typos, acronyms, 
and grammatical errors, and are often written in short-
hand using specialized medical terminology.

In response to the increasing demand for ‘explain-
able AI’, we investigated the decision-making process of 
our model. We evaluated the model’s ability to provide 
explanations of its decision based on ‘word importance’. 
Model explanation techniques were applied to estimate 
the importance of each word within the text of each 
radiologic order. This allowed us to delve into the mod-
el’s decision-making process and determine whether it 
was making correct predictions for the right reasons, as 

Fig 5  Selected samples from the dataset with color coded word importance. Red signifies words that negatively influence the prediction, blue 
denotes the most important words that positively influence the prediction, and white indicates a neutral influence.. The indication for the exam 
is provided by the ordering physician, which briefly summarizes the symptoms, relevant medical history, and the medical questions. The ‘true label’ 
is the protocol, assigned manually by a trained radiologist, that is most suitable for the indication. The ‘predicted label’ is the protocol predicted 
by the AI model
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well as to identify the root causes of any mistakes. Our 
results indicate that the BERT based models are able to 
identify relevant words that are highly indicative of the 
target protocol.

Our error analysis revealed that the model struggled 
most with understanding complex indications involving 
multiple clinical questions, leading to incorrect protocol 
selection in some cases. For example, the model may have 
difficulty distinguishing between protocols for a patient 
with acute neurologic deficits after brain tumor resection, 
as it may not fully comprehend the hierarchical ordering 
of protocols. Furthermore, we identified that approxi-
mately 15% of the model’s mistakes were due to insuffi-
cient capture of important regions of the input text. This 
could be due to various factors such as bias in the train-
ing data or limited examples of certain edge cases.

We recognize the limitations of deep learning 
explainability tools like integrated gradients, which, 
although effective for text-based models such as BERT, 
may not universally apply to other data types or models. 
Other methods, such as LIME [30] or attention weights 
offer alternative ways to interpret model decisions.

It’s essential to recognize that current explainability 
techniques are, at best, approximations. Recent studies 
have shown that these methods provide our best guess 
at explaining model decisions, but they are not always 
entirely accurate or intuitive [31]. The field has yet to 
discover a universally intuitive and completely reliable 
explainability technique. This uncertainty underscores 
the importance of ongoing research and critical evalua-
tion of explainable AI models, especially in high-stakes 
environments like healthcare.

Furthermore, the emergence of advanced genera-
tive models like GPT-4 introduces new challenges and 

opportunities for large language models [32]. These 
models excel in text generation with their nuanced lan-
guage understanding and production. Yet, their internal 
complexity raises significant explainability challenges. 
Some recent studies have begun to clarify their func-
tionality [33], but there is still much to uncover. Future 
studies will extend this research to compare the inter-
pretability and explainability of pretrained BERT mod-
els with such generative AI models.

Lastly, in future studies, we aim to delve deeper into the 
granularity of medical imaging by extending our model’s 
capabilities beyond protocol-level classification to the 
labelling of individual imaging acquisitions. Given that cer-
tain acquisitions may be common across multiple proto-
cols, this refined approach could unveil how well the model 
discerns the nuanced differences and similarities between 
them. Such an investigation would not only enhance the 
model’s precision in predicting appropriate acquisitions 
but also provide a more detailed understanding of its align-
ment with the intricate requirements of each protocol.

Limitation
There are several limitations to consider in the context 
of this study. First, our dataset comprised of neuroradio-
logic orders from a single center, and thus may be limited 
in its representation of the racial, social, and ethnic diver-
sity of other regions. Validation with datasets from differ-
ent institutions is necessary to more accurately compare 
the model’s performance. Additionally, we limited the 
number of protocols to the ten most commonly used 
protocols in this study, which may not fully capture the 
breadth of protocols used in clinical practice. The data 
was collected from routine clinical work, which means 
that protocols were assigned by multiple radiologists 

Fig 6  The bar plot decomposes the mistakes into four categories: multifarious choices, age-related, ambiguous text, and flagrant errors



Page 10 of 12Talebi et al. BMC Medical Informatics and Decision Making           (2024) 24:40 

with varying levels of experience, potentially leading to 
inter-operator variability. While the dataset is relatively 
large at over 80,000 entries, it is possible that additional 
data could further improve model performance.

Additionally, it is important to note that there may be 
significant variations in the importance of certain words 
when considering the perspectives of different radiolo-
gists. In this study, we were constrained to a single radiol-
ogist when evaluating word-level agreement with BERT. 
However, in future studies, it would be beneficial to eval-
uate word importance from the perspectives of a diverse 
group of radiologists to achieve more robust results.

Related work
Previous work has been done using classification mod-
els to predict imaging protocol from a physician’s notes 
using machine learning techniques such as SVM, Ran-
dom Forests, and Gradient Boosted Machine [34]. More 
recently, a deep neural network approach was used to 
automate radiological protocols which showed a slight 
boost over kNN and random forests. However, these 
models are limited by the size of the model and the use 
of classical word embeddings which don’t provide deep 
contextual word embeddings. To date, there has been no 
research on explainable medical text for image protocol 
classification tasks or on the decision-making process of 
these models to identify potential systematic errors that 
may need to be addressed.

Recently bidirectional RNN’s and transformers have 
improved text representation to be sensitive to its local 
context in a sentence and optimized for specific tasks by 
using a self- attention mechanism to help embed the con-
text of each word. Large language models such as BERT 
and ELMo have been shown to provide substantial per-
formance improvements for language modeling and text 
classification. We hypothesize that the use of context-
dependent token embeddings will provide a substantial 
improvement for medical text classification and model 
interpretation. While there has been recent work evaluat-
ing large pretrained models for specialized tasks such as 
legal contract review [35], to the best of our knowledge, 
this paper is the first to evaluate how these models will 
perform on this specialized medical text which poses dif-
ferent challenges.

Furthermore, in the case of high stake applications, both 
accuracy and trust are necessary for the adoption of the 
model’s decisions. Recent studies have focused on incor-
porating model explanations to improve trust [36, 37]. 
Explainable models have been developed to visualize word 
importance and attention layers. This has provided research-
ers with insight into understanding the model’s decisions 
[38]. However, to the best of our knowledge, no other group 

has attempted to evaluate if machine learning models can 
provide valid explanations for specialized medical texts.

Conclusion
In this study, we demonstrate state-of-the-art perfor-
mance for the radiologic protocol classifi- cation task and 
provide a better understanding of how natural language 
processing (NLP) models make decisions in the medi-
cal domain. Using a large dataset of over 80,000 entries 
annotated by medical experts, we evaluated different 
pretrained BERT models and found that they signifi-
cantly outperformed existing machine learning meth-
ods. We showed that BERT is able to identify relevant 
words that are highly indicative of the target protocol. 
The differences in BERT and human word importance 
were driven by BERT not recognizing specific anatomic 
structures and specialized medial terms that are impor-
tant for humans. Furthermore, our analysis of the errors 
revealed that the largest source of errors was due to the 
model’s difficulty in understanding the hierarchy of pro-
tocol assignments, while the third largest contributor was 
potential limitations or biases in the dataset.

Overall, our findings demonstrate that BERT can pro-
vide valuable insight into its decision making process 
for specialized medical tasks. This insight is valuable in 
understanding the error profile of the model. Under-
standing BERT’s decision making process is a necessary 
stop to deploying it in a real-life clinical environment.
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