
Nam et al. 
BMC Medical Informatics and Decision Making           (2024) 24:50  
https://doi.org/10.1186/s12911-024-02437-y

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

InsightSleepNet: the interpretable 
and uncertainty-aware deep learning 
network for sleep staging using continuous 
Photoplethysmography
Borum Nam1, Beomjun Bark2, Jeyeon Lee2 and In Young Kim2* 

Abstract 

Background This study was conducted to address the existing drawbacks of inconvenience and high costs associ-
ated with sleep monitoring. In this research, we performed sleep staging using continuous photoplethysmography 
(PPG) signals for sleep monitoring with wearable devices. Furthermore, our aim was to develop a more efficient 
sleep monitoring method by considering both the interpretability and uncertainty of the model’s prediction results, 
with the goal of providing support to medical professionals in their decision-making process.

Method The developed 4-class sleep staging model based on continuous PPG data incorporates several key compo-
nents: a local attention module, an InceptionTime module, a time-distributed dense layer, a temporal convolutional 
network (TCN), and a 1D convolutional network (CNN). This model prioritizes both interpretability and uncertainty 
estimation in its prediction results. The local attention module is introduced to provide insights into the impact 
of each epoch within the continuous PPG data. It achieves this by leveraging the TCN structure. To quantify the uncer-
tainty of prediction results and facilitate selective predictions, an energy score estimation is employed. By enhancing 
both the performance and interpretability of the model and taking into consideration the reliability of its predictions, 
we developed the InsightSleepNet for accurate sleep staging.

Result InsightSleepNet was evaluated using three distinct datasets: MESA, CFS, and CAP. Initially, we assessed 
the model’s classification performance both before and after applying an energy score threshold. We observed 
a significant improvement in the model’s performance with the implementation of the energy score threshold. On 
the MESA dataset, prior to applying the energy score threshold, the accuracy was 84.2% with a Cohen’s kappa of 0.742 
and weighted F1 score of 0.842. After implementing the energy score threshold, the accuracy increased to a range 
of 84.8–86.1%, Cohen’s kappa values ranged from 0.75 to 0.78 and weighted F1 scores ranged from 0.848 to 0.861. 
In the case of the CFS dataset, we also noted enhanced performance. Before the application of the energy score 
threshold, the accuracy stood at 80.6% with a Cohen’s kappa of 0.72 and weighted F1 score of 0.808. After threshold-
ing, the accuracy improved to a range of 81.9–85.6%, Cohen’s kappa values ranged from 0.74 to 0.79 and weighted 
F1 scores ranged from 0.821 to 0.857. Similarly, on the CAP dataset, the initial accuracy was 80.6%, accompanied 
by a Cohen’s kappa of 0.73 and weighted F1 score was 0.805. Following the application of the threshold, the accuracy 
increased to a range of 81.4–84.3%, Cohen’s kappa values ranged from 0.74 to 0.79 and weighted F1 scores ranged 
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from 0.813 to 0.842. Additionally, by interpreting the model’s predictions, we obtained results indicating a correlation 
between the peak of the PPG signal and sleep stage classification.

Conclusion InsightSleepNet is a 4-class sleep staging model that utilizes continuous PPG data, serves the purpose 
of continuous sleep monitoring with wearable devices. Beyond its primary function, it might facilitate in-depth sleep 
analysis by medical professionals and empower them with interpretability for intervention-based predictions. This 
capability can also support well-informed clinical decision-making, providing valuable insights and serving as a reli-
able second opinion in medical settings.

Keywords Sleep staging, Artificial intelligence, Uncertainty, Interpretability, Photoplethysmography

Background
Sleep is a state of reduced or absent consciousness in 
both mind and body, marked by relatively inactive sen-
sory organs, minimal muscle movement, and decreased 
responsiveness to stimuli [1]. According to the Ameri-
can Academy of Sleep Medicine (AASM), sleep consists 
of four distinct stages [2]. These stages can be catego-
rized into two main phases: Rapid Eye Movement (REM) 
sleep, characterized by rapid eye movements, and non-
REM sleep. Non-REM sleep is further divided into three 
stages, known as N1, N2, and N3, each defined by specific 
electroencephalogram (EEG) patterns following estab-
lished sleep stage evaluation guidelines. In a typical sleep 
cycle, REM sleep follows non-REM sleep, and this non-
REM-REM cycle repeats throughout the night. Individu-
als experiencing sleep disorders or poor sleep quality may 
encounter difficulties with daytime concentration, mem-
ory impairment, and persistent fatigue. The quality of 
sleep is closely linked to these sleep stages, with reduced 
REM sleep and N2 stages often resulting in diminished 
sleep quality [3, 4]. Therefore, monitoring sleep becomes 
crucial for identifying and addressing issues related to 
poor sleep quality, which can lead to various disadvan-
tages. The polysomnography primarily involves the use 
of electroencephalography (EEG), electrooculography 
(EOG), and electromyography (EMG). Additionally, 
it may include electrocardiogram (ECG) monitoring, 
video recording, airflow measurement, oxygen saturation 
monitoring, abdominal movement tracking, and audio 
recording [5]. Polysomnography is used to facilitate the 
diagnosis of sleep disorders and the assessment of sleep 
quality. However, it requires overnight stays at a hospi-
tal or sleep center, potentially leading to the first-night 
effect. This phenomenon may lead to a decrease in sleep 
efficiency, frequent awakenings, and an increased pro-
portion of light sleep, making it challenging to accurately 
assess sleep quality [6]. Additionally, polysomnography is 
resource-intensive, requiring the attachment of multiple 
sensors, which can be uncomfortable and significantly 
expensive [7]. To overcome these limitations, there is a 
growing demand for sleep monitoring methods that uti-
lize wearable devices. Using wearable devices enables 

sleep monitoring in the comfort of one’s home, miti-
gating the first-night effect while reducing costs. Con-
sequently, our research aims to develop an automated 
sleep staging algorithm for wearable sensor-based sleep 
monitoring, offering these advantages. Wearable devices 
include various modalities, such as electrocardiography 
(ECG), accelerometry, audio, and electrodermal activity 
(EDA). Numerous sleep staging algorithms were devel-
oped based on the signals that can be acquired from these 
wearable devices [8]. In this study, we focus on develop-
ing a sleep staging algorithm based on photoplethysmog-
raphy (PPG) signal. PPG signal is optical measurements 
used for heart rate monitoring and detecting changes in 
blood volume. PPG sensor is commonly found in watch-
like devices and is adaptable to various other wearable 
devices, making it a convenient choice for sleep staging. 
Importantly, there is a strong connection between sleep 
stages and the autonomic nervous system, as both sleep 
and the autonomic nervous system are regulated by the 
same central nervous system mechanisms [9, 10]. Fur-
thermore, there is evidence supporting changes in heart 
rate, respiratory rate and blood pressure with each stage 
of the sleep cycle [11–14]. Consequently, since the auto-
nomic nervous system regulates the cardiovascular and 
respiratory systems, PPG can serve as a reliable proxy for 
sleep staging.

These advantages of PPG have led to numerous sleep 
staging studies that employ PPG. With the advance-
ment of deep learning algorithms, recent PPG-based 
sleep staging algorithms use two primary methods. The 
first method involves creating a pre-trained model using 
other signals, such as ECG, to compensate for the lack of 
PPG datasets, followed by transfer learning based on the 
model. In a previous study [15], a long short-term mem-
ory (LSTM) model that utilizes heart rate variability was 
fine-tuned to classify four classes (wake, light sleep, deep 
sleep, and REM sleep) using a PPG dataset. Another prior 
study [16] utilized an ECG dataset to train an LSTM that 
classified the same four classes and fine-tuned it with the 
PPG dataset. The second method is to train and develop 
a classification model using the PPG dataset alone, with-
out transfer learning. In [17], an algorithm for classifying 
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four classes was developed using a model that combines 
convolutional neural network (CNN) and bidirectional 
gated recurrent unit (GRU). In [18], a model combining 
CNN and LSTM was developed, and its performance 
in classifying three classes (wake, non-REM sleep, REM 
sleep), four classes, and five classes (wake, N1, N2, N3, 
REM sleep) was evaluated. Among these, SleepPPG-Net 
[19], a state-of-the-art (SOTA) algorithm, utilized time-
distributed residual convolution (ResConv) blocks and 
temporal convolutional network (TCN), and verified its 
performance in classifying four classes using two pub-
lic datasets. This study compared deep learning-based 
models using continuous PPG signals with conventional 
derived time series and feature engineering methods, 
concluded that SleepPPG-Net, which uses PPG signals 
without a feature extraction process, exhibited the best 
performance. Since automatic sleep staging requires the 
utilization of complex information from very large data-
sets, existing feature extraction methods may be influ-
enced by several factors [5]. Building on this, our study 
aimed to develop a 4-class sleep staging algorithm using 
continuous PPG data based on deep learning. In particu-
lar, our goal was to create an algorithm that could deliver 
performance without relying on transfer learning using 
other signals like ECG, making it useful in cases where 
transfer learning was not feasible (e.g., when utilizing 
only PPG collected by wearable devices).

While existing PPG-based sleep staging algorithms 
yielded impressive results, they struggled due to a lack of 
interpretability and the misclassification of light sleep as 
deep or REM sleep. Interpretability is crucial in the bio-
medical field, as it ensures patient safety, reliability, and 
supports medical decision-making by healthcare provid-
ers [20]. Similarly, in the case of sleep staging, analyzing 
data collected at home by wearable devices and present-
ing the results to clinicians can have the advantage of 
improving and optimizing care by supporting medical 
decisions, provided that the algorithms used in the analy-
sis are interpretable. As mentioned in the studies that 
developed automated sleep scoring algorithms using PSG 
data, it is crucial in sleep staging to develop algorithms 
that are, above all, reliable and stable [5, 21]. While some 
studies focused on these benefits and interpreted sleep 
stage prediction results using different signals [22–24], 
there is a scarcity of algorithms that utilize PPG to ensure 
both performance and interpretability. Moreover, intro-
ducing a technique to measure prediction uncertainty in 
cases where confusion arises among specific sleep stage 
classes could enhance human decision-making by pro-
viding information about the degree of uncertainty in the 
predictions and allowing for decisions to be postponed 
[25, 26]. This approach is similar to studies that have 
measured uncertainty in other biomedical domains and 

can enable synergies between humans and AI [27–29]. 
Existing methods for measuring uncertainty in the pre-
dictions of deep learning models include computing 
uncertainty over the trained model, such as normalized 
entropy [30] and softmax response [31], and comput-
ing uncertainty using a dropout layer embedded in the 
model, such as Monte-Carlo dropout [32]. Among these 
conventional methods, newer approaches with enhanced 
performance were developed. One of these methods [33, 
34] measures uncertainty by employing selective pre-
diction using a rejection option [33], which is improved 
by incorporating a separate rejection component into 
the model structure. However, this outstanding method 
requires simultaneous optimization of both the classifica-
tion and rejection components, potentially leading to a 
lengthy optimization process, especially for complex data 
such as medical data. In addition to this approach, the 
most recent research focuses on utilizing an energy score 
to assess the uncertainty of model prediction results [34]. 
This technique addresses the issue of overconfidence 
observed in traditional methods, and prediction uncer-
tainty can be readily obtained by calculating the energy 
score during the inference stage without requiring any 
additional modifications to the model. Thanks to its ver-
satility, energy scoring provides flexibility and can be 
employed with various model architectures and datasets, 
establishing it as a widely adopted method for uncer-
tainty estimation.

In this study, we aimed to develop a sleep staging 
model that possesses a better understanding of classifica-
tion and can maximize synergy between medical profes-
sionals and AI. To achieve this, we accomplished this by 
enhancing the interpretability of the sleep staging algo-
rithm through the use of continuous PPG data based on 
deep learning and by incorporating a measure of predic-
tion result uncertainty.

Methods & Materials
InsightSleepNet
Our goal was to develop a 4-class sleep staging model 
based on continuous PPG data, with a focus on interpret-
ability and the ability to estimate prediction uncertainty. 
To accomplish this objective, we created InsightSleepNet, 
whose overall structure is depicted in Fig. 1. InsightSleep-
Net contains five main components: a local attention 
module, an InceptionTime module, a time-distributed 
dense layer, a temporal convolutional network (TCN), 
and a 1D convolutional network (CNN).

To develop a model with interpretability, we intro-
duced a local attention module into the model structure 
in this study. To design this local attention module, we 
drew inspiration from a structure called TCN [36]. TCN 
presents several advantages, such as the employment 
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of causal convolutions that consider the temporal cau-
sality of time series data, dilated convolutions with an 
expansive receptive field capable of representing a wide 
spectrum of time series data, and the incorporation of 
residual connections that contribute to the stability of 
training for TCN models with multiple layers. In our 
research, we aimed to construct a local attention mod-
ule to gain insight into the interpretation of prediction 
results for each epoch (30 seconds), which serves as the 
fundamental unit for sleep stage classification.

After the local attention module, we designed a struc-
ture capable of effectively compressing the weighted 

input and learning its features. For this purpose, we uti-
lized the InceptionTime structure [37]. InceptionTime 
has a bottleneck architecture, various convolutional oper-
ations with different time scales, and includes residual 
connections, making it well-suited for learning long time 
series data. Due to these structural elements, its perfor-
mance outperformed that of existing models designed for 
time series classification, leading us to adopt this struc-
ture. The InceptionTime module in the InsightSleepNet 
developed in this study is depicted in Fig. 1. The Incep-
tionTime module in InsightSleepNet has a 1D convolu-
tional layer with a channel size of 32, a stride of 20, and 

Fig. 1 InsightSleepNet architecture

This was done to discern which segment of the PPG signal influenced the prediction for each epoch in continuous PPG. Additionally, to identify 
light sleep, we incorporated the ‘3-minute rule’ [35], an established sleep staging technique that analyzes data over 3-minute intervals, into our local 
attention module. To achieve this, we set the kernel size of the causal convolutional layer, the initial layer of the local attention module, to 7168 
(equivalent to 7 epochs) and a stride of 1. This configuration allowed the layer to cover the preceding 3 minutes of the epoch to be predicted. The 
causal convolutional layer of the TCN model has the characteristic of applying zero padding equal to ‘kernel size - 1’ on both sides of the input data 
sequence. This feature enabled us to perform computations as intended from the very first epoch. After the causal convolution, we added a 1D 
convolutional layer with a kernel size of 1 and a stride of 1 to generate an output with a size of 1. Following that, we applied a sigmoid operation 
every 1024 epochs, corresponding to the PPG signal length within a single epoch. This enabled the calculation of an attention score for each epoch 
across the entire PPG sequence, considering causality and the influence of the previous 7 epochs. Consequently, an attention score ranging from 0 
to 1 was calculated for each epoch
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a kernel size of 40, followed by ReLU activation. It subse-
quently incorporates 6 InceptionTime blocks. The struc-
ture of the InceptionTime block is illustrated in Fig.  2. 
The kernel sizes of the three convolutional layers present 
in the InceptionTime block (Conv I, Conv II, Conv III in 
Fig. 2) are 5, 11, and 23, respectively, with a stride of 1. 
The convolutional layer following max-pooling (Conv 
IV in Fig.  2) has a kernel size of 1 and a stride of 1. In 
InsightSleepNet, a total of 6 InceptionTime blocks are 
employed. As a result, the channel sizes for these blocks 
are set to 32, 32, 64, 64, 128, 256, while the filter sizes are 
8, 16, 16, 32, 64, 128, and the bottleneck channel sizes 
are 8, 16, 16, 16, 32, 32. The output of the InceptionTime 
block is subsequently obtained as the final output of the 
InceptionTime module after passing through an adap-
tive average pooling layer, followed by a 1D convolutional 
layer with a kernel size of 1.

Furthermore, for achieving optimal classification per-
formance, we devised a layer structure inspired by a 
hybrid architecture, combining the time-distributed 
dense layer and TCN, as employed in state-of-the-art 
(SOTA) technology [19]. The output of the Inception-
Time block served as the input. We utilized the time-
distributed dense layer to produce outputs for each 
time step. Subsequently, we compressed the final fea-
tures using five temporal blocks of TCN and a 1D con-
volutional network to generate the ultimate output. The 
temporal block structure of TCN, as illustrated in Fig. 1, 
includes the following elements: an initial 1D causal con-
volutional layer, ReLU activation, dropout layer, second-
ary 1D causal convolutional layer, ReLU activation, and 
another dropout layer. Across all five temporal blocks, 
the channel sizes remained consistent at 64, with fixed 
kernel sizes and strides of 8 and 1, respectively. A uni-
form dropout ratio of 0.2 was applied, and dilation sizes 
for each temporal block were set to 1, 2, 4, 8, and 16. The 
1D convolutional layer responsible for generating the 
final output had a kernel size of 1 and a stride of 1. The 

shape of the final output was (1200, 4), representing val-
ues for four classes (wake, light sleep, deep sleep, REM) 
across 1200 epochs. The ultimate prediction was calcu-
lated using softmax.

Uncertainty measure
To estimate the uncertainty of the results predicted 
by the designed model, this study utilized a method 
for measuring the energy score [34]. This technique is 
employed to detect whether inputs are out-of-distribu-
tion (OOD), measuring the uncertainty that arises when 
the model encounters inputs differing in patterns from 
the training data. Consequently, it enables the detection 
of cases where the model exhibits low confidence in pre-
dictions, particularly for samples that do not align with 
the training set. When a neural classifier, represented as 
f(x): ℝD → ℝK, maps an input x ∈ℝD to logits in the form 
of K real-value numbers, the energy-based model (EBM) 
[38] employs these logits to generate a categorical distri-
bution using the softmax function as follows:

where T is the temperature parameter derived from the 
Gibbs distribution, and fy(x) represents the yth index of 
f(x), the logit corresponds to the yth class label. Therefore, 
for a given input (x, y) the Helmholtz free energy E(x) can 
be expressed as the free energy function E(x; f) as follows, 
based on eq. (1), in terms of the denominator of the soft-
max activation:

As a result, the energy score is a value computed for 
a given input x, utilizing the probability density of the 
inputs. According to the theory of the EBM model, it 

(1)p
(

y|x
)

=
efy(x)/T

∑K
i efi(x)/T

(2)E x; f = −T · log

K

i

efi(x)/T

Fig. 2 Inception time block structure
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yields low values for observed data and relatively high 
values for unobserved data. Equation (2) is employed 
for selective prediction of classification results, and the 
selector G used in this process is expressed as follows:

where τ represents the energy threshold. To make the 
selector G practically effective, the threshold must be 
determined empirically. In this study, we set the test set’s 
threshold by utilizing the energy score distribution of the 
training set. Previous studies [5, 15–19] noted that exist-
ing sleep staging algorithms often misclassify deep sleep 
and REM sleep stages as light sleep, despite effectively 
classifying the wake class. We considered this misclas-
sification to have contributed to the decline in the per-
formance of sleep staging results. To address this, during 
inference time, when an input sample’s energy score 
exceeds the threshold, we opted to withhold judgment 
and reject the prediction, as illustrated in Fig. 3.

Datasets
In this study, we used a total of three polysomnography 
datasets, all of which were publicly available databases: 
MESA [39, 40], CFS [39, 41], and CAP [42]. For the 
MESA dataset (Multi-Ethnic Study of Atherosclerosis), 
we used data from 2054 subjects, which included PPG 
signals sampled at 256 Hz. Following previous research 
[19], we developed and evaluated our model by splitting 
the dataset into a training set with 1850 subjects and a 
test set with 204 subjects using a hold-out strategy. For 
the CFS dataset (Cleveland Family Study), we utilized 
data obtained from 320 subjects with a PPG sampling 
rate of 256 Hz. For model evaluation, we employed a 
4-fold cross-validation approach based on previous 
research [19]. For the CAP dataset (Cyclic Alternating 
Pattern), sourced from PhysioNet [43], we used the PPG 
signal data from a total of 24 subjects with sleep disor-
ders (insomnia:5, nocturnal frontal lobe epilepsy:8, REM 

(3)G
(

x; τ ; f
)

=

{

f (x), if E
(

x; f
)

≤ τ

don′t know (rejection), if E
(

x; f
)

> τ

behavior disorder:7, no pathology:4). The PPG signals 
in this dataset were sampled at 128 Hz. We validated 
overall performance using 4-fold cross-validation (train-
ing set: 18, validation set: 6). All three datasets used in 
this study were annotated into six classes based on the 
Rechtschaffen & Kales manual by expert annotators. 
Referring to prior research [19], datasets are described 
in more detail in Table 1. This research received ethical 
approval from the Institutional Review Board of Hanyang 
University (#HYUIRB-202309-009), and the requirement 
for informed consent was waived by the institution. All 
procedures were conducted in accordance with relevant 
guidelines and regulations.

Preprocessing
We performed signal processing to use continuous PPG 
samples from the database as inputs for the model. The 
preprocessing was conducted with reference to a previ-
ous study [19] for fair comparison. We utilized an 8th-
order zero-phase low-pass Chebyshev Type II filter with 
a cutoff frequency of 8 Hz and a stop-band attenuation 
of 40 dB for signal filtering. After this, we applied a 10th 
order polynomial for detrending the signal. As the range 
of PPG signals varied across each dataset, we applied 

Fig. 3 Energy score thresholding

Table 1 PSG database overview with statistics is presented 
using the median and inter quartile range (IQR)

MESA CFS CAP

Patients 2054 320 24

Gender (M:F) 1:1.2 1:1.2 1:1

Total windows 2.35 M 0.37 M 0.03 M

Duration (hrs) 10 [9–10] 10 [9–10] 9 [8–10]

Age (yrs) 68 [62–76] 42 [21–54] 44 [29–71]

Wake (%) 37 [30–47] 34 [27–44] 14 [8–30]

Light (%) 43 [36–50] 39 [29–46] 39 [31–45]

Deep (%) 5 [1–10] 12 [7–19] 25 [20–30]

REM (%) 11 [7–14] 11 [8–14] 15 [13–22]
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min-max normalization to ensure that the model could 
interpret PPG signal variations and scale them to a range 
between 0 and 1, enabling sleep staging. In order to have 
each epoch comprising 1024 samples, we sampled the 
PPG signal at a frequency of 34.3 Hz. To prepare the con-
tinuous PPG signals for the input layer of the deep learn-
ing model, we standardized the total length of the PPG 
signal to 10 hours, equivalent to 1200 epochs. Any sam-
ples longer than this length were truncated, and those 
shorter were zero-padded. The zero-padded epochs were 
not used for loss calculation and performance evalua-
tion. Since all three datasets were labeled according to 
the R&K manual, we transformed the sleep staging into 
a 4-class label format. The S1 and S2 stages were grouped 
together as the ‘light sleep’ class, while the S3 and S4 
stages were consolidated into the ‘deep sleep’ class. The 
wake and REM stages were retained unchanged.

Model setting
In this study, InsightSleepNet with 1,922,397 trainable 
parameters was trained with a batch size of 2 and for 
100 epochs. It was optimized using the RMSprop opti-
mizer with learning rates of 0.001 for MESA. The Adam 
optimizer was used with learning rates of 0.001 for CFS 
and 0.001 for the CAP dataset. Because the MESA data-
set was the largest, we performed a transfer learning on 
the CFS and CAP datasets using the entire pre-trained 
InsightSleepNet model, which was initially trained on the 
MESA dataset. During the transfer learning, the weights 
were not frozen. Due to different class distributions in the 
datasets used in this study, weights were assigned to each 
class sample based on the training set, and the model was 
trained using the Negative Log Likelihood (NLL) loss 
function. We empirically selected the hyperparameters 
and the optimizer used for training through repeated 
testing with a grid search method. Due to the relatively 
long length of each continuous PPG sample, the maxi-
mum batch size our computing resources could handle 
was limited to 2. Similarly, through the grid search, we 
confirmed that a batch size of 2 achieved the best per-
formance across all datasets. Our model was designed 
using the PyTorch framework and trained using an AMD 
Ryzen 55,600X 6-Core Processor, an NVIDIA GeForce 
RTX 3090 GPU, and 64.0GB of RAM.

Model performance evaluation
For the evaluation of InsightSleepNet, we presented 
accuracy and Cohen’s kappa coefficient based on pre-
vious studies. Accuracy in (Eq.  4) represents the pro-
portion of correct predictions among all the samples, 
while Cohen’s kappa in (Eq.  5) quantifies the level of 
agreement between experts. Additionally, we used the 
weighted F1 score to evaluate performance, considering 

the imbalanced class distribution, which was not 
addressed in previous studies [19, 44]. The F1 score 
in (Eq.  6) represents a balance between precision and 
recall. Using this, we calculated the weighted F1 score 
to account for the imbalance between classes. In the 
equations below, TP stands for True Positive, TN for 
True Negative, FN for False Negative, and FP for False 
Positive. Additionally, Pr(a) represents the probability 
of agreement between the evaluations of two assessors, 
and Pr(e) represents the probability of chance agree-
ment between the two assessors. These metrics were 
computed for predictions on each epoch of the entire 
continuous PPG signal dataset.

To ensure dependable classification in this study, we 
adopted a classification approach based on an energy 
score threshold. For samples that did not meet the 
threshold criteria, we considered them to have insuf-
ficient confidence and rejected them. We examined 
the distribution of energy scores in the training set 
to empirically choose energy score threshold. In this 
study, we defined energy score thresholds based on the 
energy score distribution using four criteria: the top 
80%, top 85%, top 90%, and top 95%. These energy score 
thresholds were used to determine rejection during 
validation, and we evaluated the resulting performance 
improvements. Additionally, to validate whether the 
developed model could be utilized as a tool for evalu-
ating sleep quality, we presented the results of esti-
mating sleep parameters in this study. The presented 
sleep parameters include four variables: total sleep 
time (TST) and sleep-stage fractions (FℝLight, FℝDeep, 
FℝℝEM), as represented by Eqs. (7) and (8). We assessed 
the validity of InsightSleepNet by comparing the esti-
mated sleep parameters with the ground truth sleep 
parameters for each subject, using correlation analysis. 
Similarly to the calculation of loss and performance, 
the zero-padded and truncated parts were not utilized 
in the estimation of the sleep parameters. For the sam-
ples shorter than 10 hours, the sleep parameters were 
estimated based on their original number of epochs. 
For the recordings exceeding 10 hours, the initial 1200 

(4)Accuracy =
TP + TN

TP + FP + FN + TN

(5)Cohen′s kappa =
Pr(a)− Pr(e)

1− Pr(e)

(6)F1 score =
2TP

2TP + FP + FN
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epochs were used for the sleep parameter estimation. 
When evaluating the results of applying the energy 
score threshold, we excluded rejected samples from the 
overall evaluation.

Result
Classification performance
In this study, we evaluated the performance of Insight-
SleepNet for PPG-based sleep stage classification using 
three datasets: MESA, CFS, and CAP. As results, we 
presented the classification performance for each data-
set, along with the performance improvements achieved 
through energy-based rejection. Additionally, we exam-
ined the rejection rates for each stage using energy-based 
rejection and presented the results for sleep parameter 
prediction as well as model interpretation. In this sec-
tion, we conducted a comparative analysis of classifica-
tion performance before and after applying the energy 
score threshold for each dataset and compared it with 
the results from previous studies. Additionally, we com-
pared our performance with the SOTA techniques for 
sleep staging using PPG from the same datasets. As men-
tioned earlier, we set the energy score thresholds based 
on the top 80, 85, 90, and 95% of the training set, pre-
senting numerical results for various metrics. Firstly, we 
assessed the performance on the MESA dataset, which 
consisted of 204 test subjects selected randomly. We 
followed the same hold-out validation approach as pre-
vious research [19]. The InsightSleepNet without thresh-
olding in this study achieved a classification accuracy of 
84.2% and a Cohen’s kappa (κ) of 0.742. We obtained a 
weighted F1 score of 0.842 (for each class, Wake: 0.894, 
Light Sleep: 0.845, Deep Sleep: 0.330, REM Sleep: 0.770). 
When comparing these metrics to those reported for the 
SleepPPG-net, BM-FE, and BM-DTS models in previ-
ous research [19], our model either outperformed them 

(6)
TST =

∑

Light sleep+

∑

Deep sleep+

∑

REM sleep (minute)

(7)FRStage =

∑

Stage

TST
× 100 (%)

or showed similar performance across the provided met-
rics. Subsequently, we applied energy score thresholding 
to InsightSleepNet to reject samples with low confidence. 
As a result, by employing four different thresholds, we 
observed accuracies ranging from 84.8 to 86.1%, κ val-
ues varying from 0.752 to 0.777, and weighted F1 scores 
ranging from 0.848 to 0.861. Lowering the energy score 
threshold resulted in more rejections and improved per-
formance, enabling more confident sample classification 
(Table 2).

We applied InsightSleepNet to the CFS dataset and 
conducted a 4-fold validation on 320 subjects, follow-
ing the methodology outlined in prior research [19]. 
Each fold involved a distinct test set comprising 80 sub-
jects without overlaps, resulting in a total of 320 valida-
tion instances. We consistently applied energy score 
thresholding and evaluation metrics, following the same 
approach used for the MESA dataset. Before apply-
ing energy score thresholding, InsightSleepNet dem-
onstrated noteworthy performance with an accuracy of 
80.6%, a Cohen’s kappa (κ) of 0.718 and a weighted F1 
score of 0.808. These results outperformed models from 
previous studies (accuracy: 63–76%, κ: 0.47–0.67). In 
alignment with our approach for the MESA dataset, we 
applied energy score thresholding using four distinct cri-
teria. As a result, for each of these criteria, we observed 
an enhanced performance, with accuracies ranging from 
81.9 to 85.6%, κ values ranging from 0.738 to 0.793 and 
weighted F1 scores varying from 0.821 to 0.857. These 
outcomes are summarized in Table 3.

Finally, our model was applied to the CAP dataset, 
which consists of sleep study data from 24 subjects. 
Our model evaluated through 4-fold cross validation. 
We ensured that each fold had a distinct test set, avoid-
ing overlaps. This resulted in a total of 4 validation sets 
(n = 24). Without the energy score thresholding, Insight-
SleepNet showed an impressive performance, achieving 
an accuracy of 80.6%, a Cohen’s kappa (κ) of 0.730 and 
a weighted F1 score of 0.805. These results already out-
performed previous research [44], which focused on a 
four-class model. Subsequently, we applied four distinct 
energy score thresholds, following the same procedure 

Table 2 Performance evaluation of the model on the MESA test dataset (n = 204) and a comparison before and after energy score 
thresholding

The ‘-’ symbol indicates that the corresponding metric is not provided in the study

InsightSleepNet 
(without 
thresholding)

0.80 Energy 
threshold

0.85 Energy 
threshold

0.90 Energy 
threshold

0.95 Energy 
threshold

BM-FE [19] BM-DTS [19] Sleep 
PPG-Net 
[19]

Accuracy 0.842 0.861 0.857 0.853 0.848 0.78 0.76 0.83

Cohen’s kappa (κ) 0.742 0.777 0.769 0.761 0.752 0.66 0.64 0.74

Weighted F1 score 0.8420 0.8613 0.8572 0.8528 0.8479 – – –
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as with the previous datasets. As seen in our previous 
results, reducing the energy score threshold led to higher 
rejection ratios while enhancing the overall model per-
formance. The summary of these results is presented in 
Table 4.

Energy based rejection
The utilization of energy score-based thresholding as 
a rejection technique in this study led to performance 
improvements. In this section, we examined changes in 
the rejection ratios for each sleep stage class. Using the 
top 90% of the energy score distribution from the train-
ing set as a threshold, we observed a rejection rate of 4% 
for samples classified as ‘wake’ in the MESA dataset that 
were actually ‘wake’ samples. Among the samples clas-
sified as ‘wake’, those whose actual classes were ‘light 
sleep’, ‘deep sleep’, and ‘REM sleep’ were rejected at rates 
of 16.9, 52.9, and 23.3%, respectively. Therefore, rela-
tively uncertain samples tended to have a higher rejection 
rate compared to correctly classified samples. This trend 
was consistently observed across all three datasets and 
became more pronounced as we narrowed the tolerance 
range. This trend became more pronounced as we low-
ered the threshold. We have summarized these findings 
in Fig. 4.

Estimate sleep parameters
In this section, we aimed to validate whether Insight-
SleepNet can effectively estimate actual sleep quality. 
We estimated four sleep parameters: Total Sleep Time 

(TST), Light fraction, Deep fraction, and REM fraction, 
and compared them with the ground truth. This evalu-
ation was conducted using three datasets, with the CFS 
dataset used for visualization purposes (Fig.  5). We 
assessed the reliability of confidence-based classification 
by examining the correlation coefficients between the 
estimated parameters from each subject’s data and the 
ground truth parameters, both before and after applying 
the energy score threshold. For the MESA dataset, before 
applying the energy score threshold, InsightSleepNet 
achieved the following correlation coefficients: r of TST 
was 0.969, r of Light fraction was 0.671, r of Deep frac-
tion was 0.270, and r of REM fraction was 0.809. How-
ever, when an energy score threshold of 0.80 was applied, 
there were noticeable improvements in all sleep param-
eters. Furthermore, when we applied the model to the 
CFS and CAP datasets, we obtained the following cor-
relation coefficients for TST: r of 0.913 for CFS and r of 
0.810 for CAP, Light fraction: r of 0.796 for CFS and r of 
0.827 for CAP, Deep fraction: r of 0.889 for CFS and r of 
0.936 for CAP, and REM fraction: r of 0.781 for CFS and r 
of 0.790 for CAP. The application of energy score thresh-
olding resulted in an average improvement of 0.054 in the 
correlation coefficients for CFS and 0.068 for CAP in the 
model performance for each dataset. A summary of these 
results is provided in Tables 5 and 6.

Model interpretability
To interpret the rationale behind the model predictions, 
we conducted an analysis of the local attention module 

Table 3 Performance evaluation of the model on the CFS dataset (n = 320) and a comparison before and after energy score 
thresholding

The ‘-’ symbol indicates that the corresponding metric is not provided in the study

InsightSleepNet 
(without 
thresholding)

0.80 Energy 
threshold

0.85 Energy 
threshold

0.90 Energy 
threshold

0.95 Energy 
threshold

BM-FE [19] BM-DTS [19] Sleep 
PPG-Net 
[19]

Accuracy 0.806 0.856 0.844 0.832 0.819 0.63 0.69 0.76

Cohen’s kappa (κ) 0.718 0.793 0.777 0.758 0.738 0.47 0.53 0.67

Weighted F1 score 0.8082 0.8574 0.8461 0.8337 0.8210 – – –

Table 4 Performance evaluation of the model on the CAP dataset (n = 24) and a comparison before and after energy score 
thresholding

The ‘-’ symbol indicates that the corresponding metric is not provided in the study

InsightSleepNet (without 
thresholding)

0.80 Energy 
threshold

0.85 Energy 
threshold

0.90 Energy 
threshold

0.95 Energy 
threshold

Zhao 
et al., 
2021 [44]

Accuracy 0.806 0.843 0.835 0.825 0.843 0.77

Cohen’s kappa (κ) 0.730 0.786 0.775 0.760 0.786 0.69

Weighted F1 score 0.8046 0.8417 0.8342 0.8242 0.8133 –
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Fig. 4 Proportion of samples rejected based on four different energy score thresholds for each dataset. The rejection rate is calculated with respect 
to the state before energy-based rejection. The blue confusion matrix represents the MESA dataset, the green one corresponds to the CFS dataset, 
and the purple one represents the CAP dataset. LS means ’Light sleep’ and DS means ’Deep sleep’. W means ’Wake’
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within the model’s architecture. The inclusion of a causal 
convolutional layer in the local attention module enabled 
the consideration of sequence relevance across epochs 
for the entire continuous PPG sequence. Additionally, the 
final sigmoid function computed important time points 
for each epoch. The attention, which was computed using 
the sigmoid function, underwent normalization and sub-
sequent visualization. To visualize the model predictions, 
we conducted a case study involving three subjects, with 
one epoch for each class (Fig. 6).

Discussion
Overview
In this study, we introduced an algorithm for analyzing 
sleep stages based on PPG signals. We devised a model 
with an architecture that is advantageous for time series 
processing, incorporating InceptionTime, TCN, and an 
attention module, enabling interpretation of model pre-
dictions. We performed selective classification by reject-
ing ambiguous samples using the energy distribution 
derived from training set in each dataset. We empiri-
cally determined four different energy score thresholds 
based on the energy distribution and proceeded with our 
research. As our results demonstrated, employing energy 

Fig. 5 Estimation of sleep parameters in the CFS dataset (n = 320) before and after applying the energy score threshold. The red line represents 
before applying the energy score threshold, and the blue line represents after applying the energy score threshold

Table 5 The correlation coefficients between estimated sleep parameters and ground truth before energy score thresholding for each 
dataset

MESA CFS CAP

TST r = 0.969, r2 = 0.938 r = 0.913, r2 = 0.834 r = 0.810, r2 = 0.654

Light sleep fraction r = 0.671, r2 = 0.450 r = 0.796, r2 = 0.768 r = 0.827, r2 = 0.684

Deep sleep fraction r = 0.270, r2 = 0.073 r = 0.889, r2 = 0.790 r = 0.936, r2 = 0.877

REM sleep fraction r = 0.809, r2 = 0.573 r = 0.781, r2 = 0.611 r = 0.790, r2 = 0.624

Table 6 The correlation coefficients between estimated sleep parameters and ground truth after applying the energy score threshold 
(0.80) for each dataset

MESA CFS CAP

TST r = 0.981, r2 = 0.964 r = 0.938, r2 = 0.880 r = 0.889, r2 = 0.791

Light sleep fraction r = 0.688, r2 = 0.473 r = 0.900, r2 = 0.810 r = 0.915, r2 = 0.837

Deep sleep fraction r = 0.294, r2 = 0.086 r = 0.906, r2 = 0.816 r = 0.964, r2 = 0.928

REM sleep fraction r = 0.831, r2 = 0.691 r = 0.853, r2 = 0.727 r = 0.865, r2 = 0.749
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score thresholds led to improved performance across 
all classes compared to when the energy score thresh-
olds were not applied. When the energy score thresh-
old is lowered, only the samples with greater confidence 
in the classification results remain, leading to improved 
performance. However, in real-world applications, it’s 
important to be cautious about setting the energy score 
threshold too low, as this can result in the rejection of a 
substantial amount of data. Therefore, determining the 
optimal energy score threshold is of utmost importance.

Additionally, we assessed the practicality of applying 
our method to real-world scenarios using three datasets. 
We evaluated four sleep parameters (Total Sleep Time, 
Light fraction, Deep fraction, REM fraction) and found 
that, even without energy score thresholds, we achieved 
highly significant correlations for almost all parameters, 
except deep fraction. Furthermore, applying energy score 
thresholds improved the correlations compared to the 
results without thresholds, validating the practical appli-
cability of our approach.

One of the objectives of our study was to enhance the 
interpretability of the model’s predictions. We achieved this 
by analyzing the local attention module within the mod-
el’s architecture. Upon scrutinizing all three datasets, as 
depicted in Fig. 6, it became evident that segments exhibit-
ing high attention scores primarily aligned with the peaks 
of the PPG signal in most of the datasets. This result indi-
cates that the local attention module was focused on the 
periodicity of the PPG signal, suggesting that our model 
may leverage physiological characteristics, such as heart 
rate, respiratory rate, and blood pressure, as previously 
reported in related studies [11–14], to classify sleep stages.

Strengths and limitations of the study
In this study, we developed InsightSleepNet, a deep 
learning-based model designed for automated sleep 

staging, specifically tailored for continuous PPG data. 
We integrated a local attention module into the model’s 
architecture, allowing it to focus more on crucial tempo-
ral aspects during training and improving both predic-
tion interpretability and performance. Additionally, we 
introduced the calculation of energy scores for individual 
samples, simplifying the assessment of prediction reli-
ability without the need for additional structural com-
plexity. Our objective was not only to evaluate prediction 
reliability through energy scores but also to enable classi-
fication results based on these scores, empowering med-
ical professionals to make more informed judgments. 
By adopting this approach, we aimed to reduce the need 
for medical professionals to re-annotate samples with 
low prediction confidence, potentially easing the work-
load associated with revising existing annotations. In 
summary, our model has the capability to enhance the 
interpretability of model prediction results and estimate 
uncertainty to reject uncertain predictions. However, 
several challenges remain. Firstly, the prediction perfor-
mance for deep sleep stages is not sufficiently high, likely 
due to class imbalance resulting from a limited number 
of deep sleep samples. To address this, we plan to employ 
techniques that consider dataset class ratios to enhance 
sensitivity toward deep sleep. Additionally, achieving 
satisfactory performance for the 5-class sleep staging, 
particularly using PPG data, remains a challenge. To 
overcome this, we aim to develop a more detailed model 
that accurately captures the cardiovascular characteris-
tics specific to each sleep stage. Furthermore, while the 
energy-based uncertainty estimation method has several 
advantages, determining the optimal threshold still relies 
on empirical methods. Therefore, our goal is to develop 
a method based on a more specific theoretical founda-
tion to establish the threshold. Lastly, while our model 
provides interpretability for prediction results, further 

Fig. 6 Local attention visualization. The subjects were randomly selected from the CFS dataset
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research into quantifying this interpretability could offer 
even better insights. In our future studies, we intend to 
address these weaknesses and evaluate the suitability 
of InsightSleepNet for practical use in analyzing PPG 
data obtained from wearable devices. Our model was 
developed for sleep staging using data acquired during 
sleep rather than for real-time application. However, 
with appropriate modifications to the structure and 
purpose of the model, it appears feasible to adapt it for 
real-time application on wearable devices. In conclu-
sion, this research leads us to anticipate enabling effec-
tive continuous sleep monitoring in the future. Through 
this research, we remain optimistic that our algorithm 
may enable efficient continuous sleep monitoring in the 
future.

Conclusion
In this study, we developed InsightSleepNet, a 4-class 
sleep staging model tailored for continuous PPG data. 
This model not only provides interpretability to enhance 
collaboration between humans and AI but also has the 
ability to reduce uncertainty in predictions through 
uncertainty estimation. To the best of our knowledge, 
InsightSleepNet represents the first research effort aimed 
at improving the performance of automatic sleep stag-
ing algorithms by the ability to reject uncertain predic-
tions and offering interpretability of prediction results. 
The model’s performance was validated using three 
public datasets, demonstrating its potential for sleep 
staging using continuous PPG data. Furthermore, our 
model incorporated a local attention module as part of 
its architecture, enabling us to analyze which parts of 
the PPG signal it focuses on when making predictions. 
This enhances our understanding of the interpretation 
of prediction results. We also utilized an energy-based 
uncertainty measure to estimate the confidence level 
of prediction results, and its performance was verified. 
InsightSleepNet not only facilitates the continuous sleep 
monitoring through wearable devices but also sup-
ports the evaluation of various factors (such as food 
intake, fatigue, pharmaceutical effect, daily events) that 
impact the sleep quality - factors that can be challeng-
ing to evaluate through polysomnography. Moreover, 
the model’s interpretability is paramount in empower-
ing medical professionals to make well-informed deci-
sions. By leveraging energy-based decision-making, our 
model excels in identifying uncertainties, leading to more 
precise and reliable sleep quality assessments in collab-
oration with medical experts. In conclusion, this model 
expands the role of AI in the medical domain, providing 
continuous oversight of patients’ sleep health and offer-
ing interpretability.
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