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Abstract 

Background Concept drift and covariate shift lead to a degradation of machine learning (ML) models. The objective 
of our study was to characterize sudden data drift as caused by the COVID pandemic. Furthermore, we investigated 
the suitability of certain methods in model training to prevent model degradation caused by data drift.

Methods We trained different ML models with the H2O AutoML method on a dataset comprising 102,666 cases 
of surgical patients collected in the years 2014–2019 to predict postoperative mortality using preoperatively available 
data. Models applied were Generalized Linear Model with regularization, Default Random Forest, Gradient Boosting 
Machine, eXtreme Gradient Boosting, Deep Learning and Stacked Ensembles comprising all base models. Further, 
we modified the original models by applying three different methods when training on the original pre-pandemic 
dataset: (1) we weighted older data weaker, (2) used only the most recent data for model training and (3) performed 
a z-transformation of the numerical input parameters. Afterwards, we tested model performance on a pre-pandemic 
and an in-pandemic data set not used in the training process, and analysed common features.

Results The models produced showed excellent areas under receiver-operating characteristic and acceptable 
precision-recall curves when tested on a dataset from January-March 2020, but significant degradation when tested 
on a dataset collected in the first wave of the COVID pandemic from April-May 2020. When comparing the probabil-
ity distributions of the input parameters, significant differences between pre-pandemic and in-pandemic data were 
found. The endpoint of our models, in-hospital mortality after surgery, did not differ significantly between pre- and in-
pandemic data and was about 1% in each case. However, the models varied considerably in the composition of their 
input parameters. None of our applied modifications prevented a loss of performance, although very different models 
emerged from it, using a large variety of parameters.

Conclusions Our results show that none of our tested easy-to-implement measures in model training can prevent 
deterioration in the case of sudden external events. Therefore, we conclude that, in the presence of concept drift 
and covariate shift, close monitoring and critical review of model predictions are necessary.
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Introduction
When developing machine-learning (ML) models, one 
should keep in mind that the environment in which 
they are applied can change with the consequence of a 
possible deterioration in model performance. Changes 
usually happen gradually and are summarized under 
the term “data drift” [1, 2]. The phenomenon of data 
drift can concern input as well as output parameters. 
In commercially used models, it is common to perform 
updates at regular fixed time intervals to counteract 
these changes [3].

However, the recent COVID pandemic has taught 
us that environmental changes can also occur abruptly 
with unpredictable consequences for ML models. This 
was felt in the free economy, where customer behaviour 
changed due to the lockdown, forcing companies to 
adjust their sales models [4, 5].

In the medical field, COVID-related changes were 
particularly noticeable; they affected not only intensive 
care and infectiology but also significantly impacted 
routine care at our hospitals [6]. With the beginning of 
the pandemic, elective procedures were postponed, and 
there were fewer hospital admissions overall, while the 
case-mix index, length of hospital stay and mortality 
rates increased [7].

These changes, which occurred so unpredictably, also 
led to an impairment of machine learning models in 
the medical field. For example, COVID-induced per-
formance drift has been shown for mortality and sepsis 
prediction models [1, 8].

It is not possible to predict how such sudden changes 
in the characteristics of the patient collective or the 
surgical spectrum will affect ML algorithms.

For intended use in clinical routine, however, it is of 
enormous importance that ML models function reli-
ably and display a certain robustness. Otherwise, elabo-
rate adaptation measures after a sudden event would 
lead to significant system downtime and restrict the use 
of an algorithm in practice.

In addition, changes in external circumstances are 
not always as obvious as in the case of the COVID 
pandemic and may only be noticed with some delay. 
Therefore, the question arises whether it is possible to 
increase the robustness of machine learning models 
from the outset.

In the present study, we addressed this question by 
examining how model performance is affected by the 
COVID pandemic using the example of models created 
with AutoML for the prediction of postoperative mor-
tality from preoperatively available data. We analysed 
for changes in the most important input parameters and 
tried to prevent the decline in predictive performance in 
advance by taking measures during model development.

Patients and methods
Study design
The study was approved by the Ethics Committee of the 
Technical University of Munich (TUM), School of Medi-
cine (253/19 S-SR, approval date 11/06/2019) and reg-
istered in Clinical Trials (NCT04092933, initial release 
17/09/2019). Informed consent was waived because of 
the retrospective study design. We conducted the study 
in concordance with the TRIPOD guidelines for report-
ing predictive model studies.

We included data from all patients undergoing non-
cardiac surgery at a single German University Hospital 
between June 2014 and May 2020. Only the first surgery 
of each patient during one hospital stay was included, 
subsequent surgeries were disregarded. If the patient was 
readmitted due to another disease at a later time, this was 
treated as a separate case in the dataset. A patient did 
not appear as a separate case if (i) he or she was read-
mitted with the same diagnosis within 30 days, (ii) if it 
was a planned readmission according to a treatment 
plan, (iii) treatment was interrupted for less than 24 h, or 
(iiii) returned from a rehabilitation facility. We included 
patients of all age groups and elective as well as urgent 
procedures. Patient numbers and exclusion criteria are 
depicted in Fig. 1.

Model training and validation were performed with 
the dataset ranging from June 2014 to December 2019. 
Models aimed to predict in-hospital mortality after a 
surgical procedure. Performance metrics were deter-
mined using two testing cohorts with data that was not 
included in the training or validation data set: The first 
testing cohort comprised patients undergoing surgery 
from January to March 2020 (pre-pandemic testing 
cohort), the second testing cohort consisted of patients 
treated in April and May 2020 during the first pan-
demic wave (in-pandemic testing cohort). All metrics 
presented in this study refer to these two sets of test 
data. The designated endpoint of the models was post-
operative in-hospital mortality. The prediction is based 
on preoperatively available data from the anaesthesio-
logic patient data management system (PDMS, brand: 
QCare, manufacturer: HIM-Health Information Man-
agement GmbH, Bad Homburg, Germany) which was 
used by the physician to conduct the pre-anaesthesia 
visit and to assess patient history including pre-existing 
illnesses and medication. Patient core data was derived 
from the hospital information system (SAP i.s.h.-med) 
and preoperatively available laboratory values from the 
laboratory information system (swisslab Lauris). Thus, 
all preoperatively available information on patients’ 
individual data, medication, and laboratory values, as 
well as all codes for the type of surgical intervention, 
were offered as input parameters. Since the collection 



Page 3 of 13Kagerbauer et al. BMC Medical Informatics and Decision Making  (2024) 24:34 

or non-collection of data in the pre-operative course 
could also contain hidden information, we created a 
dichotomous variable about its presence for each vari-
able with missing values and included it in the model.

Further, we did not perform any imputation as part 
of data pre-processing. Instead, we used AutoML’s 
internal algorithm, which replaces missing values of 
continuous variables with the mean and for categori-
cal variables with the modal value (https:// docs. h2o. 
ai/ h2o/ latest- stable/ h2o- docs/ data- scien ce/ algo- par-
ams/ missi ng_ values_ handl ing. html) [9]. Data extrac-
tion from the clinical systems and processing was 
performed as described before [10, 11]. In short, we 
removed redundant data documented in the clinical 
systems more than once. Numerical and categorical 
data were transferred unchanged, and other data types 
had to be modified: Free text was subjected to a quan-
tity-based search for keywords, which were then used 
as categorical input parameters. Drugs were grouped 
according to the first four digits of their Anatomical 
Therapeutic Chemical (ATC) code, and the extremely 
fine-grained codes of the German OPS system [12] for 
classifying medical interventions were summarised. In 
the end, of about 12,000 parameters from the raw data, 
2,775 possible input variables remained for modelling.

Model development
Models were developed using the H2O framework in R 
(version 4.3.2). We applied the h2o.automl() function. The 
model types used were a Generalized Linear Model with 
regularization (GLM), Default Random Forest (DRF), 
Gradient Boosting Machine (GBM), eXtreme Gradient 
Boosting (XGBoost), a fully-connected multilayer neu-
ral network (Deep Learning), and Stacked Ensembles 
including ensembles of all base models (“all models”) and 
the best model of each algorithm family (“best of fam-
ily”) [13]. As GLM, a binomial regression model was used 
with ridge regularization according to the default settings. 
(https:// docs. h2o. ai/ h2o/ latest- stable/ h2o- docs/ automl. 
html) [9]. We configured AutoML to run for a specific 
amount of time. Once this time limit is reached, the pro-
cess stops, regardless of the number of models that have 
been trained. Using a total computing time of 125 h, 649 
models in total were created with different random hyper-
parameters: 269 native models and 62, 46 and 272 with 
the three different adaptation methods. The whole dataset 
ranging between June 2014 and December 2019, serving 
as a training and validation dataset, was split once using 
a stratified 80:20 split so that there were approximately 
equal proportions of deaths in each of the two sets. We 
used the pre-pandemic data from January to March 2020 

Fig. 1 Strobe Diagram.  Applying exclusion criteria as shown, 109,719 anaesthetic cases remained in the whole dataset. Training and validation 
collective for the “native” as well as the “scaled” and “weighted” models consisted of 102,666 cases. The “6 months” method dataset comprised 11,161 
cases. CT computed tomography, PET positron emission tomography, MRT magnetic resonance tomography, ICU intensive care unit

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/missing_values_handling.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/missing_values_handling.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/missing_values_handling.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
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and in-pandemic data from April and May 2020 as test 
sets. The oversampling process included in the AutoML 
framework (“balance_classes”-parameter) was used to 
counteract the class imbalance [9]. Individual model crea-
tion was stopped when the area under precision recall 
curve (AUPR) did not increase for 100 rounds. We chose 
to optimise using the AUPR [14], because poor precision-
recall trade-off was a weakness of the models we created 
in former studies and is a known limitation of AutoML 
models [11, 15].

Variable importance was determined using the h2o.
permutation.importance() function for the Stacked 
Ensemble models and the h2o.varimp() functions for the 
other models (https:// docs. h2o. ai/ h2o/ latest- stable/ h2o- 
docs/ varia ble- impor tance. html) [9].

Calculations were performed on the Linux Cluster of 
Leibniz Supercomputing Centre in Munich on 20 cores 
Intel Xeon-CPU with 800 GB of RAM and a peak perfor-
mance of 1400 TFlop/s.

Methods to improve model robustness
After training the models on the original dataset com-
prising data between June 2014 and December 2019, we 
tried to increase the robustness of these native models 
with three different measures, namely, first, weighting the 
input features with a factor as follows (method: “weight”): 
The training and validation data set comprised a total of 
2040 days. Here, the first day with available data in the 
dataset was assigned the weight 1

2040
 , and the param-

eter values of the last included day in the dataset used 
for training and validation, 31/12/2019 (day 2040), were 
weighted with the factor 1. The other days were weighted 
with a quotient of the day n and the number of total days 
( n

2040
 ) in the data set. The models were then trained with 

the weighted features.
Second, only the data from June - December 2019 

were used as the training and validation dataset to use 
the most recent data possible (method:”6 months”). This 
method applies a binary step function where data before 
the cut-off date is weighted with 0 and from the defined 
cut-off point on with 1.

Third, the numerical input parameter values were 
subjected to a z-transformation (z = x−µ

σ
 , where x is the 

respective value, µ the mean and σ the standard devia-
tion of the sample). This method is referred to below as 
“scaled”. There are two approaches to carrying out this 
scaling: Firstly, the mean value and standard deviation of 
the entire data set can be determined, and these scaled 
values can be used as input. On the other hand, the train-
ing and validation set can be scaled together for model 
development, and then the pre- and in-pandemic data set 
can be scaled separately. The second method may allow 
a better adjustment to the covariate shift, but it assumes 

that data from the pandemic already exists, so it cannot 
be used pre-emptively.

Statistical analysis
Analysis was performed using R (Version 4.3.2, R Foun-
dation for Statistical Computing, Vienna, Austria). Com-
parison metrics for the models were their area under 
the receiver operating characteristic (AUROC) and area 
under the precision-recall curve (AUPR), shown with 
their 95%-confidence interval. Kolmogorov-Smirnov-Test 
was performed to detect differences in the probability 
distribution of the input features. Model performance 
before and in the pandemic was compared by paired 
t-test. Performances of the native models compared with 
model performance after the corrective actions “weight”, 
“6 months”, and “scaled” were quantified by means of 
one-way ANOVA with post-hoc Tukey HSD test.

Results
Native model performance
 In total, 269 native models were developed on the dataset 
ranging from June 2014 to December 2019. These mod-
els showed excellent AUROCs and acceptable AUPRs 
on the pre-pandemic test set. Stacked Ensemble mod-
els performed best with a mean AUROC of 0.95 and a 
mean AUPR of 0.26. The ROC- and PR-curves of the best 
model of the respective family in the pre-pandemic test 
set are depicted in Fig. 2. Applying the best pre-pandemic 
models to the in-pandemic test set, mean model evalua-
tion metrics AUROC and AUPR declined significantly in 
GBM, XGBoost, Deep Learning and Stacked Ensemble 
models (Table  1). As an additional information we pre-
sent F1 scores of the native models pre- and in pandemic 
in Supplemental Figure S1.

Features of the native models and probability distributions
About 12,000 possible input features from the raw data 
were available for model development, with 2,775 being 
used for model creation. The most important common 
feature in the best pre-pandemic native model of each 
family was age; the other features that were commonly 
used in the best native models were number of preopera-
tively ordered red blood cell concentrates, c-reactive pro-
tein, number of preoperatively requested consults, ASA 
score, reason for admission, number of prehospital treat-
ment days and international normalized ratio.

During the pandemic, there was a change in the prob-
ability distribution of input features. The Kolmogorov-
Smirnov test performed on the validation set and the 
in-pandemic test set revealed significant differences on a 
large number of features including the common ones of 
the best pre-pandemic models.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html
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The probability of occurrence of the endpoint, post-
operative in-hospital mortality, did not change sig-
nificantly during the pandemic. Patient-characterizing 
features and their percentage change during the pan-
demic are shown in Table 2.

Attempts to increase robustness
None of the modifications carried out could prevent the 
significant deterioration in performance. Occasionally, 

individual models did not drop quite as much in the pan-
demic or even improved, but the performance metrics 
of these models did mostly not perform well on the pre-
pandemic test data set.

In detail, the weighting method, by which 62 models 
were created, led to a highly significant drop in AUROC 
of the Deep Learning models accompanied by a decline 
in precision-recall trade-off in the pre-pandemic test 
set which remained almost unchanged in-pandemic. 

Fig. 2 ROC- curves (top left), PR-curves (top right) and Venn-Diagram (bottom) of the best pre-pandemic model of each family. The dashed line 
in the precision-recall plot showed the baseline which is the precision that would be achieved if the model always predicted the negative class. The 
Venn Diagram includes the 100 most important features of the best model of each family. Intersections without numbers are empty sets, the outer 
areas (84,14,41,47,15, and 14 features respectively) occur only in the top 100 of the respective model. The centre of the diagram shows the 8 
parameters that occur in each of the models. GLM: Generalized Linear Model, DRF: Default Random Forest, GBM: Gradient Boosting Machine, XGB: 
eXtreme Gradient Boosting, RPC: red packed cells, ASA: American Society of Anesthesiologists, INR: International Normalized Ratio
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The performance of the other model families remained 
mostly unaffected before the pandemic but also suffered 
from performance loss during the pandemic.

Training the models with data obtained no longer than 
6 months before the pandemic led to a slightly worse pre-
pandemic performance according to AUROC and to a 
deterioration of pre-pandemic precision-recall trade-off 
in most of the 272 models. Furthermore, the use of the 
most recent data could also not prevent the decline dur-
ing the pandemic. It is noticeable that the Deep Learn-
ing and GBM models showed a large range regarding 
AUROC.

The scaling method with scaling performed on the 
whole dataset yielded 46 models. Applying this method, 
the individual models no longer showed such a large 
fluctuation in performance metrics within their fami-
lies, although the drop in performance could not be pre-
vented here either. In the main manuscript we refer to 
the method “scaling” as scaling on the whole dataset as 
described above. Results of separately performed scal-
ing for training/validation and pre-and in-pandemic test 
data are presented in Supplemental Figure S2. Here, too, 
a deterioration in performance was observed during the 
pandemic.

Table 2 Changes in feature distribution and Kolmogorov-Smirnov-Test results of the most important cohort-describing pre-pandemic 
features

The Kolmogorov-Smirnov-Test was performed between the pre-pandemic validation and the pre-pandemic test set(§), and the pre-pandemic validation and the 
in-pandemic test set(#), a p-value < 0.05 indicates that the distributions of the respective parameter differ significantly from each other

The table shows the common parameters of the best pre-pandemic model of each family which are marked with a. Sex and body mass index (BMI) were included 
in the table to better describe the patient collective. The number and percentage of missing values are referred to as "missing" and are also listed in the table. The 
absolute number and the percentage share are shown for discrete variables and the median and interquartile range for continuous variables in brackets

BMI Body mass index, RPC’s Red packed cells, CRP c-reactive protein, ASA American Society of Anesthesiologists physical score [16], INR International normalized ratio

pre pandemic 
validation
n = 102,666

pre pandemic test
n = 4,802

KS-test§

p-value
in pandemic
n = 2,251

KS-test#

p-value

Deceased 834 (0.8%) 49 (1.0%) 1 22 (1.0%) 0.458

Agea 56 (38, 70) 56 (38, 70) 0.292 58 (40, 72) < 0.001

Sex 1 0.720

    Male 55,640 (54.2%) 2,546 (53.0%) 1,186 (52.7%)

    Female 47,026 (45.8%) 2,256 (47.0%) 1,065 (47.3%)

BMI missing 33,445 (32.6%) 831 (17.3%) 0.711 484 (21.5%) < 0.001

BMI 25.2 (22.5, 28.6) 25.2 (22.5, 28.7) 0.914 24.9 (22.2, 28.4) 0.034

Lab request RPC’s ordered 27,727 (27.0%) 1,485 (30.9%) 1 849 (37.7%) < 0.001

No of ordered RPC’sa 4.00 (2.00, 4.00) 4.00 (2.00, 4.00) 1 4.00 (2.00, 4.00) < 0.001

Laboratory CRP missing 47,588 (46.4%) 1,878 (39.1%) 1 879 (39.0%) < 0.001

Laboratory CRPa 0.30 (0.10, 1.00) 0.30 (0.10, 1.10) 0.558 0.30 (0.10, 1.60) < 0.001

Number of consults before surgerya 2.00 (1.00, 3.00) 2.00 (1.00, 4.00) 0.211 3.00 (2.00, 4.00) < 0.001

ASA missing 30,624 (29.8%) 783 (16.3%) 0.999 440 (19.5%) < 0.001

ASAa 1.000 < 0.001

    I 20,202 (28.0%) 1,002 (24.9%) 415 (22.9%)

    II 37,049 (51.4%) 1,950 (48.5%) 889 (49.1%)

    III 14,102 (19.6%) 1,011 (25.2%) 474 (26.2%)

    IV 642 (0.9%) 53 (1.3%) 33 (1.8%)

    V 47 (0.1%) 3 (0.1%) 0 (0.0%)

Reason for admissiona 0.513 < 0.001

    Obstetric 20,369 (19.8%) 911 (19.0%) 553 (24.6%)

    Normal case 56,961 (55.5%) 2,935 (61.1%) 1,233 (54.8%)

    Organ donor 21,239 (20.7%) 753 (15.7%) 359 (15.9%)

    Accident 4,001 (3.9%) 197 (4.1%) 106 (4.7%)

    Full inpatient with pre-inpatient treatment 96 (0.1%) 6 (0.1%) 0 (0.0%)

Treatment days pre-inpatienta 1.00 (0.00, 1.00) 1.00 (0.00, 2.00) 0.204 1.00 (0.00, 1.00) < 0.001

Laboratory INR missing 24,796 (24.2%) 647 (13.5%) 1 283 (12.6%) < 0.001

Laboratory INRa 1.00 (0.90, 1.00) 0.90 (0.90, 1.00) 0.902 0.90 (0.90, 1.00) < 0.001
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Loss of model performance according to AUROC 
and AUPR in all applied methods is shown in Fig.  3. A 
comparison of pre- and in-pandemic evaluation metrics 
according to model families and modification methods 
can be found in Supplemental Tables S1 and S2.

Common features after model modification
We analysed the 100 most important features of the best 
model of each family and determined their common 
intersection. Applying the “weighted data” method, of 
the top 100 features used in the best pre-pandemic model 
of each family, only 1 feature was common in all mod-
els, namely “age”, which is the most important mortality-
determining factor overall.

Using the “6 months” method, the best models of each 
family had 13 features in common with age, reason for 
admission and number of preoperative consults being the 
most important.

The “scaled” models had 5 factors in common, includ-
ing age, and several laboratory values.

Venn diagrams of the top 100 factors of the best pre-
pandemic model of each family are shown in Fig. 4.

Feature importance pre- and in-pandemic
Models that performed best in the pandemic mostly used 
different variables or the variables used differed in their 
importance compared with models of the same family 
that performed best before the pandemic. An overview 
of variable importance in the models that performed best 
pre-pandemic and in-pandemic is provided in the appen-
dix (Supplemental Table S3).

Discussion
In our study, we used the AutoML framework which is 
becoming increasingly popular due to its efficiency in 
creating models with little expenditure of time. Although 
there is not much data on this topic, it is assumed that 
AutoML is susceptible to data shifts [15]. We can confirm 
this assumption in our study, as all parametric and non-
parametric methods provided by this framework showed 
significant deterioration when exposed to COVID-
related changes.

Taken together, a loss in performance of AutoML 
models for the prediction of postoperative mortality 
due to the COVID pandemic was clearly recognizable 
and evident in the precision-recall trade-off as well as 
in the AUROC. Weighing the input features, using only 
the most recent data or scaling the input features did 
not have an impact on the robustness of the models.

In creating the models, we applied a data set with a 
great number of features. Although we removed redun-
dant variables during preprocessing, we intentionally 
left highly correlated variables in the final data set (for 

example, haemoglobin and haematocrit or liver and 
kidney laboratory panels) to avoid loss of information. 
As a result, importance was split across several vari-
ables and was often relatively low in the individual case. 
Despite the high number of input features, there were 
relatively few overlaps in the common parameters of 
the best models. Despite this diversity, the vast majority 
of these models deteriorated when using data from the 
first pandemic wave. This is a sign that the pandemic 
was a sudden multifactorial event, especially in its ini-
tial phase. We know from the recent medical literature 
that conditions in our hospitals became different with 
the onset of the pandemic [7, 17] including a change 
in demographics and the types of surgeries performed 
[18, 19] which could also be observed in our patient 
collective.

The fact that the COVID-pandemic caused a data shift 
that exerts a negative influence on the performance of 
machine learning algorithms being trained with histori-
cal data has already been demonstrated in the field of 
medicine [1, 8, 20]. However, it can only be speculated 
what consequences this will have in practice and what 
measures should be taken.

It can be observed in many models that AUROCs 
decline but remain in an acceptable range, whereas 
the precision-recall-trade-off decreases and, due to a 
low baseline of about 1%, is better than random guess-
ing but may not be satisfactory in practice [21]. In the 
clinical setting, the performance of a binary classifica-
tion model depends on the threshold settings which are 
adapted to a specific clinical situation. General assump-
tions can be made regarding AUROC and AUPR: While 
the high AUROC means that a model is generally good at 
discriminating between classes, the low AUPR indicates 
that it is not effective at identifying true positive cases, 
which would usually limit its use in clinical practice. 
Especially in times of limited resources, this suboptimal 
trade-off can lead to false alarms or unnecessary inter-
ventions. This limitation is exacerbated in the presence 
of a covariate shift, as occurred at the beginning of the 
COVID pandemic. Consequently, usage of these models 
could, for example, lead to a rising number of patients 
admitted to high-dependency units as a consequence of 
an incorrectly assumed high risk of potentially fatal com-
plications. Such a misjudgement would place additional 
burden on an already battered healthcare system.

The domain of medicine is known as a so-called non-
stationary environment where several types of data drift 
can happen either gradually or abruptly [22]. Various 
types of such data shifts are described in the literature, 
including concept drift [23], prior probability shift, poste-
rior probability shift and covariate shift [24, 25]. Concept 
drift means that the relationship between input variables 
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Fig. 3 AUROC and AUPR pre- and in-pandemic. Two points that belong together are each connected by a line. The respective left point represents 
model performance on the pre-pandemic test set, the right point on the in-pandemic test set. Changes in area under receiver-operating 
characteristic (AUROC) curve are depicted in the left column, changes in area under precision-recall (AUPR) curve are depicted in the right column. 
This graphic shows all the created models of each family. Most models suffer from a performance loss in the pandemic, not only the native ones, 
but also those modified by means of the “weight”, “6 months” and “scaled” methods. GLM: Generalised Linear Model, DRF: Default Random Forest, 
GBM: Gradient Boosting Machine, XGB: eXtreme Gradient Boosting, DL: Deep Learning, Stacked: Stacked Ensemble
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and output changes. One indication of concept drift in 
our study is the fact that the models that performed best 
before the pandemic and those that performed best in 
the pandemic mostly use different input variables. For 
example, the deep learning model that works best with 
the pre-pandemic dataset is primarily based on surgical 
codes, while the one that provides the best prediction 
in-pandemic relies on other parameters such as consults 
and laboratory values.

“Prior probability shift” happens due to a change in the 
initial probabilities of events or outcome categories. This 
means that the input variables remain the same, but the 
distribution of the output variable changes. A “posterior 
probability shift” accounts for the change in probabilities of 
events after the consideration of new data. Both phenom-
ena are rather out of the question for our data set as the 
mortality rate remains unchanged in the whole time period.

The changes that lead to a deterioration of the mod-
els in our case are most likely to be a covariate shift. The 
term “covariate shift” refers to a change in the probabil-
ity distribution of the input data while the conditions or 
events remain the same [26]. This problem can occur 
when the model is applied under different circumstances 
than those under which it was trained. In our case, this 
fact is illustrated by significant Kolmogorov-Smirnov-
test findings between pre-pandemic data and the in-pan-
demic test dataset.

The phenomenon of covariate shift and concept drift 
occurs in most real-world data sets [26]. Many authors 
therefore also investigated methods aimed at compensat-
ing for this shift as well as methods for detecting the drift 
[24, 27–30]. To achieve balanced covariates, for example, 
it is possible to use propensity score matching [31] or to 
perform re-training with or without model weighting [23].

Unfortunately, many of the proposed compensation 
measures require real-world post-intervention data [29] 
which means that, in the case of sudden events like the 
COVID pandemic, it would be necessary to retrain the 
model with new data or to anticipate a change in the 
parameter distribution. Therefore, it is necessary to 
review the real-world, clinical and demographic data of 
the patient population regularly. This is critical to ensure 
that the machine learning model continues to respond to 
current and representative data and thus maintains its 
accuracy and relevance.

In order to be able to do without such re-training, it 
would be better to develop models that are more robust 
against sudden changes from the outset. In our study, 
we address this question by applying several strategies 
before training the original model. One simple adjust-
ment we tried was assigning different weights to the fea-
tures in such a way that the older the data, the weaker 
they are weighted. To further increase this measure, in 
the next step we only took data from the last 6 months 
of the training period to build the model. The fact that 
these two methods could not prevent model degra-
dation is just another indication that the data drift to 
which the model was subjected did not happen gradu-
ally, but suddenly. Our third approach, the concept of 
normalization of data, is a common practice in the field 
of machine learning. It is believed that many algorithms 
work better when all features have the same scale and 
are centred around the zero point [32]. However, even 
this approach did not show any significant effects on 
model degradation.

From the present results, it is extremely important to 
critically evaluate model predictions in changing con-
comitant circumstances. Further studies are needed to 
elucidate the best methods of model surveillance and 
adaptation to achieve reliable predictions especially 
when environmental changes do not only occur gradu-
ally but suddenly.

Strengths and limitations
Our models were created using data from only a single 
centre in Germany which is probably why many national 
and local circumstances are reflected in the data set used. 
The impact and directives at the beginning of the COVID 
pandemic also differed from country to country, reflect-
ing German particularities here. However, with a total of 
over 109,000 cases, we used a representative dataset from 
a university hospital and assumed that COVID-related 
cuts have led to significant changes in the clinical setting 
in almost every country.

The use of domain adaptation methods could be useful 
in this context [33, 34]. Still, it should be borne in mind 
that at the beginning of the pandemic, it was not foresee-
able to what extent the data distribution would change. 
Therefore, such an adjustment could only be made 
retrospectively.

(See figure on next page.)
Fig. 4 Venn diagrams after model modification. Diagrams show the 100 most important features of the best pre-pandemic model of each family 
after the methods “weight”, “6 months” and “scaled” were applied. The centre of each diagram shows the number of parameters that occur in each 
of the models, with “age” being the number one common feature in each of the methods. The text boxes on the left indicate which parameters are 
involved in all models sorted by their importance. RPC’s: red packed cells, INR: international normalized ratio, γGT: gamma-glutamyl transferase, ASA: 
American Society of Anaesthesiologists Physical Score [16], BUN: blood urea nitrogen, MCHC: mean corpuscular haemoglobin
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Fig. 4 (See legend on previous page.)
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The aim of our work was a general comparison of the 
models that can be created in AutoML. We are aware 
that different thresholds would be chosen for different 
clinical applications, which is why we preferred AUROC 
and AUPR over metrics that require the specification of a 
correct threshold.

Finally, there are a number of other modifications that 
could be applied, such as further non-linear methods 
of weighting data. However, we have deliberately cho-
sen simple mathematical and data set adaptations to the 
models in order to make them comprehensible to clini-
cians and applicable in practice.

Conclusions
Both the parametric and non-parametric methods rep-
resented in the AutoML framework experienced a loss 
of performance at the beginning of the COVID-pan-
demic which was caused by concept drift and covari-
ate shift. Simple adjustments in model building like 
weighing, scaling or using only the most recent data 
did not make them more robust. Therefore, if models 
are intended for use in clinical routine, model surveil-
lance plays a crucial role in detecting and reacting to 
changes early on.
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