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Abstract 

Background Electronic health records (EHRs) contain valuable information for clinical research; however, the sensi-
tive nature of healthcare data presents security and confidentiality challenges. De-identification is therefore essential 
to protect personal data in EHRs and comply with government regulations. Named entity recognition (NER) methods 
have been proposed to remove personal identifiers, with deep learning-based models achieving better performance. 
However, manual annotation of training data is time-consuming and expensive. The aim of this study was to develop 
an automatic de-identification pipeline for all kinds of clinical documents based on a distant supervised method 
to significantly reduce the cost of manual annotations and to facilitate the transfer of the de-identification pipeline 
to other clinical centers.

Methods We proposed an automated annotation process for French clinical de-identification, exploiting data 
from the eHOP clinical data warehouse (CDW) of the CHU de Rennes and national knowledge bases, as well as other 
features. In addition, this paper proposes an assisted data annotation solution using the Prodigy annotation tool. This 
approach aims to reduce the cost required to create a reference corpus for the evaluation of state-of-the-art NER 
models. Finally, we evaluated and compared the effectiveness of different NER methods.

Results A French de-identification dataset was developed in this work, based on EHRs provided by the eHOP CDW 
at Rennes University Hospital, France. The dataset was rich in terms of personal information, and the distribution 
of entities was quite similar in the training and test datasets. We evaluated a Bi-LSTM + CRF sequence labeling archi-
tecture, combined with Flair + FastText word embeddings, on a test set of manually annotated clinical reports. The 
model outperformed the other tested models with a significant F1 score of 96,96%, demonstrating the effectiveness 
of our automatic approach for deidentifying sensitive information.

Conclusions This study provides an automatic de-identification pipeline for clinical notes, which can facilitate 
the reuse of EHRs for secondary purposes such as clinical research. Our study highlights the importance of using 
advanced NLP techniques for effective de-identification, as well as the need for innovative solutions such as distant 
supervision to overcome the challenge of limited annotated data in the medical domain.
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Background
Electronic health records (EHRs) represent a wealth of 
information that is useful for the advancement of health 
data reuse for clinical research [1]. However, such health-
care data are extremely privacy-sensitive, as they contain 
personal identifiable information (PII) about patients and 
medical practitioners. The use of these EHRs for different 
secondary purposes represents a real challenge in terms 
of security and confidentiality [2, 3].

To reuse such records and conduct health data-related 
studies, the task of de-identification has become essen-
tial [4–6]. This is necessary to protect the confidentiality 
of personal data in EHRs and comply with government 
regulations set in our case by the French Data Protection 
Authority, Commission Nationale de l’Informatique et 
des Libertés—(CNIL),1 and the General Data Protection 
Regulation—(GDPR).2

To overcome this problem, several named entity rec-
ognition (NER) methods have been proposed to remove 
or replace such personal identifiers. At first, these tech-
niques were based solely on rules [7, 8], then machine 
learning and deep learning were studied [4, 9] as well as 
hybrid systems combining rules and learning [10].

Named entity recognition is an important natural lan-
guage processing (NLP) task that can be used to extract 
and classify named entities in text. In the case of sensitive 
medical data, named entities include personal identifiers 
such as names, addresses, and phone numbers, as well as 
other sensitive information. By using the NER to identify 
named entities in EHRs, records can be automatically 
deidentified by masking or replacing this information. 
NER can be used in combination with pseudonymization 
techniques to identify and replace personal identifiers 
with pseudonyms, which further enhances the privacy 
and security of sensitive medical data.

Several recent studies have shown that machine learn-
ing-based models trained on annotated datasets achieve 
better performance than traditional rule-based methods 
on clinical NER tasks for PII extraction [10]. Dernon-
court et al. [11] proposed a deep learning-based approach 
based on artificial neural networks (ANNs) for the de-
identification of EHRs and presented promising results 
in two publicly available datasets in English: i2b2 [12] 

and MIMIC [13]. In France, Paris et  al. [9] developed a 
machine learning model based on a recurrent neural net-
work Bi-directional long short-term memory (Bi-LSTM) 
associated with a conditional random field (CRF) for 
the de-identification of hospital reports recorded in an 
Observational Medical Outcome Partnership (OMOP)3 
database. Their neural network-based model was trained 
on a manually annotated set of 2,589 hospital text docu-
ments from the Assistance Publique des Hôpitaux de 
Paris (APHP) and obtained an F1 score of 95.7%. This 
score was then improved by hybridization with rule-
based and knowledge-based methods, achieving an F1 
score of 96.7%. Furthermore, for the Italian clinical de-
identification scenario [6], the authors have adopted a 
Bi-LSTM + CRF sequence labeling architecture enhanced 
by a stacked word representation approach. This method 
outperforms other state-of-the-art approaches and 
achieved the best micro-average results on a COVID-19 
EHRs dataset.

In such approaches, manual annotation is a crucial step 
in the process of training NER models, but it also comes 
with a set of limitations. One of the main limitations is 
that the process is time consuming and expensive [14], 
particularly when dealing with large amounts of data and 
when domain expertise is needed. Furthermore, the lim-
ited availability of labeled datasets [15] and the privacy 
concerns of manual annotation [16] have severely lim-
ited the applicability of these supervised techniques in 
other languages such as French [4]. Moreover, the model 
trained on a limited amount of data or in a monocentric 
fashion may not generalize well to unseen data, which 
could lead to lower performance on new clinical reports 
or in other hospitals [17]. Additionally, since the annota-
tion is based on a limited dataset, it may not cover all the 
entities or variations of the entities that the model will 
encounter in a real-world scenario.

Several studies have accepted the expensive cost of 
manual annotation and have hired teams to label training 
data [6]. However, an increasing number of researchers 
are turning to less expensive techniques to generate auto-
matic labels. One of these techniques is distant supervi-
sion, where data are matched with entities in knowledge 
bases to produce noisy labels [18]. Other approaches 
include rules for labeling data [9]. Although these tech-
niques are less expensive, they produce noisy labels, 

1 https:// www. cnil. fr/ fr/ lanon ymisa tion- de- donne es- perso nnell es
2 https:// ec. europa. eu/ info/ law/ law- topic/ data- prote ction/ data- prote ction- 
eu_ en 3 https:// ohdsi. github. io/ Commo nData Model/

https://www.cnil.fr/fr/lanonymisation-de-donnees-personnelles
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
https://ohdsi.github.io/CommonDataModel/
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which can negatively impact the performance of the 
resulting model [19]. Approaches such as Snorkel (Ratner 
et al., 2017) [20] have been proposed, which aim to com-
pensate for the noise of automatic labels by increasing 
the volume of inexpensive data.

The aim of this study was to develop an automatic de-
identification pipeline for all kinds of clinical documents 
based on a distant supervised method to significantly 
reduce the cost of manual annotations and to facilitate 
the transfer of the de-identification pipeline to other clin-
ical centers. The first step was to propose an automated 
annotation process based on knowledge bases and rules. 
The second step was to evaluate different state-of-the-art 
deep learning algorithms to train a NER model for the 
de-identification task of the following entities: Patient, 
Doctor, Postal Address, Zip, City, Date, Email, and Phone 
Numbers.

The feasibility of this study is linked to the avail-
ability and use of open data resources, in particular 
national knowledge bases. In the field of distant supervi-
sion, where automatic labels are generated by matching 
data with entities in knowledge bases, these open data 
resources proved indispensable. The wealth of informa-
tion provided by these resources, facilitated the process 
of automatic annotation, a crucial step in reducing the 
cost of manual annotation.

Related works
Automatic de-identification of electronic health records 
is generally considered a task of named entity recogni-
tion, which enables the extraction of personal informa-
tion from unstructured medical text [5, 21].

Named entity recognition is a core task of natural lan-
guage processing and a fundamental step in knowledge 
extraction. The goal is to identify named entities in text 
and classify them into groups or categories, e.g., person, 
organization, or date [22].

In recent years, many named entity recognition 
approaches have been developed and applied to clinical 
text data, and these techniques can be divided into three 
broad categories: rule-based systems, machine learning/
deep learning-based systems, and hybrid systems com-
bining rules and learning.

Rule‑based named entity recognition
Early works on NER were all founded on rule-based tech-
niques. These NER approaches are systems that consist of 
developing predefined rules that are elaborated by hand. 
Rules are based on domain-specific knowledge and lexi-
cal features of the targeted entity types.

Several rule-based named entity recognition systems 
have been developed and extended to the use case of 
clinical data de-identification [7, 8, 23, 24]. In general, 

rule-based systems provide better performance when 
annotated data are not available. However, the imple-
mentation of these rule-based systems is highly depend-
ent on human expertise in a specific field (clinical domain 
expertise), which limits their generalization and portabil-
ity across domains [25].

Machine learning‑based named entity recognition
With the development of machine learning and NLP sys-
tems, several methods have been applied to the problem 
of NER to further automate the process of extracting 
entities from the text.

Machine learning-based techniques have addressed the 
named entity recognition problem as a sequence-labeling 
task. Instead of using rules created by domain experts, 
machine learning relies on predicting entities in medi-
cal text by training models on annotated input examples. 
Machine learning methods have been successfully used 
to extract named entities from text with high precision 
[26].

The most commonly used techniques in the literature 
include the support vector machine (SVM) [27] and the 
conditional random field (CRF) [28–30].

Jiang et  al. [31] compared two machine-learning 
approaches, CRF and SVM, for the extraction of clinical 
entities using a training dataset with 349 annotated notes 
and a test dataset with 477 annotated notes. In their first 
experiments on the training set (using a fivefold cross-
validation), CRF outperformed SVM with equivalent fea-
tures. Additional features and kernel optimization for the 
SVM may improve its performance.

However, it also indicates the complexity of SVM 
parameter optimization. Based on this comparison, they 
proposed a novel hybrid clinical NLP system using both 
ML methods and rule-based components. In the 2010 
i2b2/VA NLP challenge, their approach achieved an F1 
score of 83,91% for concept extraction and 93,13% for 
assertion classification.

Deep learning‑based approaches
In recent years, deep learning has significantly improved 
the performance for several applications in NLP, as well 
as for NER systems in the medical field. This success of 
deep learning-based systems for clinical NER results 
from the combination of two components: contextual 
embeddings, which are word vectorizations tailored to 
the context in the text, and high performance of complex 
neural network architectures.

Currently, several deep learning-based NER models 
have been implemented on language corpora other than 
English and have achieved high performance [6, 32–34].

Dernoncourt et  al. [11] presented the first deep 
learning system for the de-identification of patient 
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notes in electronic medical records. They used a 
recurrent neural network (RNN) model called long 
short-term memory (LSTM) [35]. They compared the 
performance of their system with that of CRF-based 
systems on two de-identification datasets: i2b2 [8] 
and MIMIC [13]. It achieved an F1 score of 97.85% on 
the 2014 i2b2 de-identification challenge dataset and 
an F1 score of 99.23% on the MIMIC de-identification 
dataset.

These RNN-based architectures have been further 
improved. In their paper, Huang et  al. [36] performed 
a comparative study of several LSTM-based models for 
sequence tagging. These models include LSTM net-
works, Bi-LSTM networks (Bi-LSTM), LSTM with a 
conditional random field layer (LSTM-CRF), and bidi-
rectional LSTM with a CRF layer (Bi-LSTM—CRF). 
The results demonstrate that the hybrid Bi-LSTM—
CRF model outperforms the other models. It achieved 
an F1 score of 94.40% on the CoNLL2000 dataset and 
an F1 score of 84.74 on the CoNLL2003 dataset.

For the de-identification task, Liu et al. [37] proposed 
a hybrid system that combines the Bi-LSTM—CRF 
architecture with a rule-based subsystem. The results 
of the proposed model on the i2b2 dataset achieve F1 
scores of 96.98%, 95.11% and 98.28% under the "token", 
"strict" and "binary token" criteria, respectively, thus 
outperforming the results of Dernoncourt et  al. [11] 
on the same de-identification dataset. The hybrid Bi-
LSTM—CRF architecture for sequence labeling was 
then improved by adding contextualized word embed-
dings (BERT embeddings) [38], attaining remarkable F1 
scores on the i2b2 2014 dataset. Specifically, it achieved 
scores of 97.48%, 95.50%, and 98.70% under the "token," 
"strict," and "binary token" criteria, respectively.

Large pretrained models, such as BERT (Bidirec-
tional Encoder Representations from Transformers) 
[39], CamemBERT [40] language model for French 
and FlauBERT [41] have rapidly become the state-of-
the-art approach to model tasks in NLP. For the NER 
task, these large pretrained models are typically used 
in two different ways: the first uses the transformers 
to provide contextual word embeddings for a standard 
Bi-LSTM—CRF sequence labeling architecture, and 
the second fine-tunes the transformers on an NER task 
with the addition of a linear layer for word-level predic-
tions [42]. These findings have been applied to clinical 
NER [43] and then to the de-identification of medical 
records in France [4].

All these approaches have one limitation, deep learn-
ing models trained on sensitive data are not sharable. 
Moreover, they are difficult to train locally, as they 
require numerous annotations. It is therefore important 

to consider a method for reducing the cost and dura-
tion of annotations.

Word representations & BiLSTM‑CRF architecture
Word representation
The representation of tokens in the text is an essential 
part of many NLP tasks, including clinical NER. Tra-
ditional word embeddings, such as Global vectors for 
word representation GloVe [44] and Word2Vec [45] 
provide only one global representation for each word in 
the text. However, words can have different meanings 
depending on their context. Contextual embeddings 
address this limitation by providing a representation 
for each word based on its context, allowing for the 
capture of many syntactic and semantic properties of 
words in various contexts.

We present the following methods currently used in 
the literature to generate contextual embeddings.

BERT pretrained language model Proposed by Devlin 
et  al. (2018) [39], BERT, which stands for bidirectional 
encoder representations from transformers, is a pre-
trained language model for text representation based on 
the transformer architecture. The representation made 
by BERT has the particularity of being contextual. More-
over, the BERT context is bidirectional; that is, the repre-
sentation of a word involves both the words that precede 
it and the words that follow it in a sentence. In this work, 
we used the mBert model: BERT multilingual base model 
(cased), a multilingual BERT pretrained on the top 104 
languages with the largest Wikipedia.

CamemBERT Developed by Facebook, INRIA, and 
Sorbonne University, CamemBERT [40] is a state-of-the-
art language model for French based on the RoBERTa 
architecture [46], which is a variant of BERT. Pretrained 
on large French corpora, this model has been evalu-
ated on four NLP tasks: part-of-speech tagging (POS), 
dependency parsing, named entity recognition (NER), 
and natural language inference. CamemBERT improved 
the state of the art in the four previous tasks, confirming 
the effectiveness of large pretrained linguistic models for 
French [40].

FlauBERT FlauBERT, French language understanding 
via Bidirectional Encoder Representations from Trans-
formers, is a French language model [41]. FlauBERT has 
been trained on a very large and heterogeneous French 
corpus, with a configuration similar to BERT and Cam-
emBERT. This model was evaluated on several NLP tasks, 
and the results demonstrate yet again that a French-lan-
guage model gives better performance than multilingual 
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BERT models as well as other French language models 
[41].

FLAIR Proposed by Akbik et  al. (2018) [47], Flair 
embeddings are contextual string embeddings. They are 
generated from a character language model that is trained 
by predicting the next character based on previous char-
acters. Flair embeddings model words as sequences of 
characters, which allows for a better representation of 
misspelled words often present in medical reports. In 
addition, these types of embeddings are contextualized, 
so the same word will have different embeddings due to 
different context usage.

FastText FastText is a fast word representation tech-
nique proposed by Bojanowski et al. (2017) [48]. Trained 
on large corpora, this approach is based on the skipgram 
model, where each token of the text is represented by a 
sequence of n characters and n grams. For example, for 
n = 3 (trigram), the word "Patient" will be represented 
by < Pa, Pat, ati, tie, ien, ent, nt > , where ’ < ’ and ’ > ’ rep-
resent the beginning and end of the word. This n-gram 
information enriches word vectors with subword infor-
mation and allows morphological information to be cap-
tured to construct vectors for unseen words or out-of-
vocabulary words.

Bi‑LSTM
Bidirectional long short-term memory (Bi-LSTM) is a 
type of recurrent neural network (RNN) that extends 
the capabilities of traditional Long Short-Term Mem-
ory networks (LSTMs). First introduced by Hochreiter 
and Schmidhuber in 1997 [35], LSTMs are a variant of 
RNNs widely used in the literature and highly effective in 
addressing the challenge of learning long-term depend-
encies in sequential data.

In the context of natural language processing, Bi-
LSTMs are designed to model the contextual information 
of each word, as they are used to capture past and future 
information [49]. Unlike traditional LSTMs, which pro-
cess input sequentially, Bi-LSTMs process the sequence 
in both forward and backward directions, merging infor-
mation from both directions.

CRF
Conditional random fields (CRFs) are a framework used 
to construct probabilistic models to partition and label 
sequential data [50]. They offer a unique combination of 
properties: discriminatively trained models for sequence 
segmentation and labeling.

This framework was proposed by Lafferty et al. (2001) 
[50], and its use is constantly growing. For instance, the 

CRF model is the most widely deployed in NER tasks and 
especially in de-identification tasks due to both its theo-
retical advantage and its experimental efficiency [37].

The purpose of using CRF as the last layer is to ensure 
that the label produced by Bi-LSTM is valid by learning 
the adjacent relationship between the labels, as LSTM 
can only consider the long-term context information of 
sentences; thus, it cannot consider the dependencies 
between labels [33]. This makes the CRF an advantageous 
option for decoding.

Methods
In this section, we present an overview of the materials 
and methods used in this study.

Figure  1 illustrates the process of de-identification of 
clinical notes in French.

A full description of the datasets, knowledge bases, 
preprocessing techniques and automatic annotation pro-
cedure used to create the training dataset is presented. 
In addition, the NER methods used in this study and 
the experimental parameters are clarified. Additionally, 
the manual annotation procedure used to create the test 
dataset for evaluating the trained models is described. 
Finally, statistics of the de-identification dataset and 
inter-annotator agreement are presented at the end of 
this section.

Data sources
The databases used in our study consist of clinical data 
from the eHOP Clinical Data Warehouse (CDW) at 
Rennes University Hospital in France [51] and knowl-
edge bases including national knowledge bases of French 
streets and city names from the Base Adresse Nationale 
(BAN) [52] and healthcare professionals practicing in 
France from the Health Directory [53].

Our method exploits both the clinical data from the 
CDW and the public identification information from the 
knowledge bases as well as author characteristics to per-
form automatic data annotation.

Clinical data
We used the eHOP Clinical Data Warehouse of the 
Rennes University Hospital, France, to retrieve the EHRs 
of patients [51]. The CDW allows us to retrieve both 
structured and unstructured data from approximately 
2 million patients who came to the hospital since 2000. 
The documents come from clinical applications in either 
native HTML, CDA R2, XML or pdf formats and are 
then transformed to HTML. Each document is associ-
ated with a given venue of a given patient. Hence, several 
metadata can be retrieved to contextualize documents 
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such as the type of document coded in LOINC terminol-
ogy, first name, last name, birthdate, address, phone, and 
mail of the patient, and the date of stay.

Knowledge bases
We collected data from national open sources knowledge 
databases of French streets, city names, and health pro-
fessionals practicing in France [52, 53].

Fig. 1 Overview of the de-identification process
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The Health Directory gathers identification data for 
healthcare professionals and their structures from vari-
ous national repositories, including the Shared Direc-
tory of Professionals involved in the healthcare system 
(RPPS), Association for the Development of Computer 
Logic (ADELI), and National File of Healthcare and 
Social Institutions (FINESS). These data are classified 
into two categories: data accessible to all and restricted 
access data. The freely accessible data, for which extrac-
tions are published, include the following:

• The RPPS or ADELI number.
• Gender.
• Full name of professional.
• Professional category: civilian, military, student.
• Profession.
• Mode of practice: private practice, employed, vol-

unteer.
• Qualifications: degrees, practice authorizations, 

skills.
• Contact information for the practice structures.
• Function and type of activity.

The Base Adresse Nationale (BAN) is one of the nine 
databases in the public service for reference data. It is 
the only officially recognized address database by the 
administration. The BAN is accessible in the form of 
files and APIs and includes the following data:

• Street name (nom_voie).
• Postal code (code_postal).
• INSEE code.
• City name (nom_commune).
• Old municipality INSEE code.
• Old municipality name.
• Longitude (lon).
• Latitude (lat).
• Position type.
• Source street name (source_nom_voie)
• Municipality certification (certification_commune)
• …

From these resources, we selected valuable data 
for our study, such as the first and last names of the 

health professionals (“Nom d’exercice” and “Prenom 
d’exercice”), the street names (“nom_voie”), the names 
of the cities (“nom_commune”), and the postal codes 
(“code_postal”) in France.

Building the training dataset
We extracted 878,217 hospital discharge summaries 
(HDSs) from the CDW. The data are then stored in Par-
quet files on a local HDFS node with metadata (id_docu-
ment, id_patient, HTML document, firstname, lastname, 
birthdate).

Data preprocessing
We first parsed HTML discharge summaries using a cus-
tom HTML parser based on the Python “html.parser” 
library. This parser allows tracking character positions of 
extracted raw texts in the original HTML documents so 
that we can mask potential PII at the end of the pipeline. 
Once the HTML is parsed, raw text is split into sentences 
and tokens using the NLTK library4. This module allows 
us to split paragraphs into sentences according to punc-
tuation and capitalization. At the end of the preprocess-
ing steps, each token can be positioned in its original 
position in the HTML document.

Data annotation
In this article, we adopted the BIO formatting scheme 
[54], where a token is labeled as a ‘B-tag’ if the token is in 
the beginning of a named entity, or an ‘I-tag’ if the token 
is inside a named entity, otherwise an ‘O’ for ‘Outside’. An 
example of BIO tagging is shown in Fig. 2.

We performed an automatic annotation for the follow-
ing eight entities:

• PATIENT: Last name and first name of the patient
• DATE: All dates mentioned, including date of birth, 

date of admission to the hospital, and date of dis-
charge

• DOCTOR: Last name and first name of health pro-
fessionals

Fig. 2 BIO tagging format

4 https:// www. nltk. org/

https://www.nltk.org/
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• EMAIL: Email addresses
• PHONE: Phone and fax numbers
• STR: Postal address, designation of a location
• ZIP: Zip code
• VILLE: Name of the city

Dictionary-based markers were used for the DOC-
TOR, STR, ZIP, and VILLE entity types. We performed 
data normalization and data augmentation by split-
ting the names of the compound health professionals 
into several words, for example, “JEAN-PIERRE” gives 
(’JEAN-PIERRE’, ‘JEAN’, and ‘PIERRE’). We filtered the 
resulting dictionaries to exclude ambiguous terms such 
as complementary pronouns (e.g., ‘DE’, ’DU’, ’DES’, ’LE’, 
’LA’, ’L’, ’D’, etc.). Finally, we added a dictionary of abbre-
viations for street names and academic titles of health 
professionals, for example: ’Ave’: ’Avenue’, ’St’: ’Saint’, 
’Dr’: ’DOCTOR’, ’Pr’: ’PROFESSOR’, etc.

The rule-based system includes a set of rules that 
exploit numerous components, including personal 
information already available in the dataset (e.g., 
patient names and their dates of birth) and the results 
of the dictionaries, to recognize entities in the text. For 
each type of entity, we developed a Python function 
that combines the previous components with several 
characteristics:

• Pattern specifications, which incorporate the classic 
lexical forms of certain types of entities appearing 
in medical reports, for instance dates (e.g., dd-mm-
yyyyy, dd/mm/yy), zip codes (00000), and phone 
numbers (e.g., ‘00–00-00–00-00–00,’00 00 00 00’, 
‘00.00.00’).

• Orthographic characteristics, which consist of word 
specifications such as words that are capitalized, 
words that begin with upper or lower case, and the 
length of tokens or words.

• Lexical and semantic indicators. As an example, 
street names often include terms such as "AVENUE", 
"BOULEVARD", "RUE”, and “ALLEE”.

• Contextual cues that point to the presence of a par-
ticular type of entity in the clinical text. They include 
specific lexical expressions (e.g., titles of healthcare 
practitioners, months/days and their abbreviations, 
common abbreviations used in French medical 
reports, etc.

Finally, we selected only the sentences that contain at 
least one entity, and we divided the documents in such 
a way that for each patient, all his documents go to the 
same dataset (Train_auto: 80%, Valid_auto: 10%, and 
Test_auto: 10%) using the Permanent Patient Identifier 
(ID_PAT).

System architecture
We formulate the medical de-identification problem as 
a sequence labeling task. For example, given an input 
sentence "Monsieur le Docteur JEAN DUPONT ", 
the medical de-identification model will generate the 
following labeling sequence "[O] [O] [B-DOCTOR] 
[I-DOCTOR]".

We have used two different approaches for NER based 
on the pretrained language models currently used in the 
literature.

In the first one, we used language models to provide 
embeddings to one of the best architectures for sequence 
labeling proposed in the literature by Huang Z et al. [36]. 
This architecture is based on the Bi-LSTM—CRF model. 
In general, the architecture consists of three layers: (1) a 
word representation layer, (2) a Bi-LSTM layer, and (3) a 
CRF layer.

The input embedding layer converts each word of a 
sentence into a sequence of vector representations. This 
sequence is then input into the Bi-LSTM layer, which 
outputs a sequence of vectors containing the probabili-
ties of each label for each corresponding token. Finally, 
the CRF layer uses these probability vectors to predict 
the most likely sequence of labels.

We used embeddings from language models like Multi-
lingual BERT (mBERT), CamemBERT, and FlauBERT as 
well as other embeddings like Flair and FastText adapted 
to the French language used in EHRs.

In the second, we fine-tune the language models them-
selves on the NER task and add only a linear layer for 
word-level predictions [42].

Experimental settings
In this subsection, we present all the combinations of 
models and pretrained language models for text rep-
resentation that we have used for our study. Model 
hyperparameters were selected from the literature and 
constrained by GPU memory allocation. We trained each 
model independently on the automatically annotated 
training set and then tested it on the manually annotated 
test set.

Computing resources
All experiments were performed on a secure server 
hosted at the University Hospital of Rennes with 112 
CPU cores: Intel(R) Xeon(R) Gold 6258R and an NVIDIA 
A100 40 GB graphics card.

Training parameters
Bi‑LSTM—CRF Based Models
We used the BERT multilingual base model (cased) 
(mBERT), which contains 12 layers, 768 hidden 
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dimensions, 12 attention heads, and 179 M parameters. In 
addition, we used the PyTorch Deep Learning Framework 
to implement the mBERT + Bi-LSTM + CRF model. The 
model was trained for 5 epochs using the Adam optimizer. 
Table 1 lists the hyperparameters used to train the model.

To further explore the performance of our models, 
we used the Flair11 library [55] for the implementation 
of the Bi-LSTM and CRF model with the embeddings 
mentioned earlier. FLAIR is a natural language process-
ing (NLP) framework built on the popular PyTorch deep 
learning library. FLAIR enables state-of-the-art perfor-
mance and includes implemented architectures such as 
Bi-LSTM and CRF as well as very powerful embeddings 
such as Flair embeddings, FastText embeddings, BERT 
embeddings, etc. We used the French FastText embed-
dings alone, then the French Flair embeddings (forward 
and backward), and finally, we combined both Flair and 
FastText embeddings using the StackedEmbeddings 
() function of FLAIR. We used the Bi-LSTM and CRF 
model with these embeddings. The hyperparameters 
used in this experiment are reported in Table 2.

We also used the CamemBERT-based model, pretrained 
on a subcorpus of the OSCAR multilingual corpus [56]. 
The CamemBERT embeddings + Bi-LSTM + CRF model 
was trained for 5 epochs using the Adam optimizer. The 
maximum sequence length is set to 512, the batch size is 
set to 64, the learning rate is set to 5e-5 and the dropout 
is set to 0.5.

Following the experiments conducted by Suárez PJO 
et  al. [43], we also tested the combination of Camem-
BERT embeddings and FastText embeddings with the Bi-
LSTM + CRF architecture.

Finally, we applied the FlauBERT base-cased model 
available on the Hugging Face library,5 which contains 12 
layers, 768 hidden dimensions, 12 attention heads, and 
138  M parameters. We then ran the FlauBERT embed-
dings + Bi-LSTM + CRF and FastText + FlauBERT embed-
dings + Bi-LSTM + CRF models on the 4,948,186 training 
data with the same hyperparameters as CamemBERT.

Fine‑tuning transformers
We used pretrained language models to generate word 
embeddings for the Bi-LSTM + CRF architecture. In 
addition, we tested fine-tuning the BERT model and 
other French versions of BERT, which is a common 
approach for various NLP tasks. This involved fine-tun-
ing the transformers on the NER task and adding a linear 
layer for word-level predictions [42]. The models we used 
included the BERT multilingual base model, the Camem-
BERT-based model, and the FlauBERT base model.

We used the Hugging Face Transformers Framework 
[57] to fine-tune the models on the training sentences. The 
models were trained for 5 epochs using the Adam opti-
mizer, the batch size was set to 16, and the learning rate 
was set to 5e-5.

Evaluation
Building the test dataset
To evaluate the quality of our automatic annotation sys-
tem, we manually annotated a set of documents repre-
sentative of all types of documents included in the CDW. 
Several types of documents were excluded because they 
did not mention identifying data, such as Diagnosis-
related groups (DRGs) and drug administrations.

Data sampling consisted of a random selection of 250 
documents stratified in each original data format (that 
is, native HTML, CDA R2, XML, PDF). Therefore, the 
total evaluation dataset to be annotated includes a total 
of 1000 documents. The details of the distribution of 
document types in the sample are available in (Additional 
file 1).

Table 1 Hyperparameters of the BERT-based model

Hyperparameter Value

Attention heads 12

Batch size 64

Epochs 5

Hidden size 768

Hidden layers 12

Maximum Sequence Length 512

Parameters 179 M

Optimizer Adam

Table 2 Hyperparameters of the FLAIR + FastTEXT-based model

Hyperparameter Value

Hidden size 256

Batch size 512

Learning rate 0.1

Max_epochs 5

Locked_dropout 0.5

Word_dropout 0.05

Patience 3

Anneal_factor 0.5

RNN layers 1

Optimizer Stochastic 
gradient descent 
(SGD)

5 https:// huggi ngface. co/ models

https://huggingface.co/models
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Annotators were selected among the members of the 
Massive Data and Learning Information Systems in 
Health (DOMASIA) team of the Signal and Image Pro-
cessing Laboratory (LTSI) and signed a confidentiality 
agreement. Five people with different backgrounds per-
formed the annotation: three medical doctors in public 
health with medical informatics backgrounds, one data 
manager, one PhD student in NLP, and one Master’s 
student in NLP.

Each annotator was randomly assigned 20% of the 
total sample (n1), that is, approximately 200 documents 
per annotator. Then, to evaluate the concordance and 
to measure the inter-annotator agreement, each anno-
tator also annotated 20% of the documents assigned to 
each of the other annotators (n2).

In total, each annotator annotated the following num-
ber of documents presented in Table 3.

After distributing the documents among the anno-
tators, each document went through a pre-processing 
phase, which included parsing HTML documents using 
a customized HTML parser and splitting the raw text 
into sentences. This pre-processed data was stored 
in a JSONL file. In general, Prodigy prefers line-break 
delimited JSON, as it can contain detailed information 
and metadata, and can be read line by line. An example 
of a JSONL file entry is provided for clarity:

{"text": "CENTRE HOSPITALIER UNIVERSITAIRE 
DE RENNES …", "meta": {"ID_PAT": 363342.0, "ID_
ENTREPOT": 141303567.0, "CODE": "EHOP:CR_
ECHO", "annotator": 5.0, "annotator2": 2.0}, "tokens_
parser": [{"start_char": 1713, "end_char": 1719, "text": 
"CENTRE", "start": 0, "end": 6, "id": 0}, {"start_char": 
1720, "end_char": 1738, "text": "HOSPITALIER", 
"start": 7, "end": 18, "id": 1}, {"start_char": 1732, 
"end_char": 1764, "text": "UNIVERSITAIRE", "start": 
19, "end": 32, "id": 2}, {"start_char": 1746, "end_char": 
1781, "text": "DE", "start": 33, "end": 35, "id": 3}, {"start_
char": 1749, "end_char": 1791, "text": "RENNES", 
"start": 36, "end": 42, "id": 4}]}.

The "text" field contains the content of the sentence. 
The "meta" field contains metadata, including the 
patient identifier ("ID_PAT"), the warehouse identifier 
("ID_ENTREPOT"), a specific code ("CODE") and the 
annotator identifiers ("annotator" and "annotator2"). 
The "tokens_parser" field provides the character posi-
tions of extracted raw texts in the original HTML, spec-
ifying start and end positions, the text of each token 
and its ID.

The data (Jsonl files) selected for the annotation cam-
paign were collected on a secure local server.

Manual annotation was performed with the Prodigy 
annotation tool at the sentence level. The guidelines for 
annotations were shared with all annotators through 
a dedicated document. A demonstration was also per-
formed on a test sample so that the annotators could 
become more familiar with the Prodigy [58] annotation 
tool.

During manual annotation, each annotator examined 
all the sentences assigned to them. The pre-annotation 
step, implemented using a rule- and knowledge-based 
system, aimed to simplify the annotation task by high-
lighting the detected entities in the Prodigy interface. 
In some cases, the rule- and knowledge-based system 
did not detect any named entity in the sentence, and the 
annotators corrected this by annotating the entities pre-
sent in the sentence. This method enabled us to simplify 
the manual annotation task by continuously process-
ing the sentences and highlighting the detected entities 
based on rules and dictionaries, making it convenient 
for human annotators to simply accept, reject, or correct 
the annotations. An image of the user interface is shown 
in Fig.  3. No difference was observed between annotat-
ing raw sentences or pre-annotated sentences on inter-
annotator agreement or model performances (data not 
shown).

Evaluation metrics
There are several evaluation metrics commonly used to 
evaluate the performance of named entity recognition 
(NER) systems. In this work, we selected three metrics: 
precision, recall, and F1 score.

Precision is the number of correctly predicted entities 
(true positives) divided by the total number of predicted 
entities. Measures how many of the entities predicted by 
the model are correct. Recall the number of true positives 
divided by the total number of actual entities. Measure 
how many of the actual entities were correctly predicted 
by the model. The F1 score is the harmonic mean of pre-
cision and recall and is often used as a single metric to 
evaluate the overall performance of an NER system. It 

Table 3 Total number of documents annotated by each 
annotator

Annotator n1 n2 Total

1 187 140 327

2 195 171 366

3 226 177 403

4 192 151 343

5 200 161 361

6 185 148 333
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considers both the precision and recall of the model and 
is a good overall measure of performance.

The metric equations are shown in Table 4, where TP 
(true positive) is the number of entities that the model 
can correctly predict. FP (false positive) is the number 
of irrelevant entities that the model recognizes. FN (false 

negative) is the number of correct entities that the model 
does not predict.

Statistics of the de‑identification dataset
Our data source contains more than 900  K EHRs. We 
split the documents into sentences and filtered out sen-
tences that do not contain any of our targeted entities 
in the automatic annotated dataset. The dataset is rich 
in terms of PII instances belonging to our eight classes. 
Some statistical data on the de-identification dataset are 
reported in Table  5. In addition, the frequency of enti-
ties in the training and manual test datasets is shown in 
Fig. 4.

Table 5 provides the number of sentences that contain 
at least one of the target entities and number of mentions 

Fig. 3 Annotator UI for manual annotation

Table 4 Evaluation Metrics Equations for NER

Metric Equation

Precision P = TP/(TP+ FP)

Recall R = TP/(TP+ FN)

F1-Score F1 = 2 ∗ P ∗ R/(P+ R)

Table 5 Statistical data concerning the de-identification dataset

Data split/annotation method #Sentences #DOCTOR #PATIENT #DATE #VILLE #ZIP #STR #EMAIL #PHONE

training/automatic 4,948,186 3,883,360 1,853,646 4,948,519 2,544,287 1,305,402 1,165,009 276,208 2,210,577

validation/automatic 608,305 479,821 229,925 607,383 315,771 162,791 144,654 35,288 271,081

test/automatic 620,581 489,008 232,030 620,028 322,279 165,492 147,432 35,322 276,873

test/manual 23,196 1206 510 2078 764 293 234 96 545 
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for each entity class for different splits of the de-identifi-
cation dataset.

The entity distribution analysis reveals quite simi-
lar  patterns in the training and manual test datasets. In 
both datasets, DATE entities are quite frequent, rep-
resenting 27.2% and 36.2% respectively. This high fre-
quency underlines the importance of dates in EHRs. 
Another important similarity is observed in the distribu-
tion of DOCTOR entities. In the training dataset, they 
represent 21.4%, and in the test dataset, 21.0%. This con-
sistent representation of DOCTOR entities indicates the 
significant presence of health professional mentions in 
both datasets.

This uniform distribution also extends to other entity 
classes such as VILLE, PHONE, PATIENT, ZIP, STR and 
EMAIL, for which the distribution percentages remain 
consistent between the two datasets.

Inter‑annotator agreement
The concordance on the annotation task was evalu-
ated on a set of 51 documents corresponding to 51 dif-
ferent patients. In total, there were 2,647 sentences and 
20,570 tokens. The 51 documents belonged to 27 differ-
ent types of medical documents. Examples of document 
types include "Emergency Admission", "Surgical Reports", 
"Administrative", "Letters to the Patient", and more. The 
goal is to reflect the consistency of annotations between 
different annotators for each specific category of medical 
document.

The Fleiss kappa coefficient was used to measure 
the overall inter-annotator agreement. A value of 0.93 
(95% CI: 0.922–0.939) was obtained, indicating a very 
good level of agreement. In addition, the concordance 
was evaluated for each pair of annotators as well as for 
each label and each document type. The results of this 
analysis are presented in Table 6 and 7, and the detailed 

Fig. 4 PII Entity distribution in the training and manual test dataset

Table 6 Agreement between annotators

Annotator 1 Annotator 2 Annotator 3 Annotator 4 Annotator 5 Annotator 6

Annotator 1 1 (1,1) NA NA 0.909 (0.861,0.956) 0.880 (0.843,0.916) 0.97 (0.952,0.987)

Annotator 2 1 (1,1) 0.874 (0.784,0.965) 0.965 (0.942,0.988) 0.893 (0.868,0.917) 0.962 (0.945,0.978)

Annotator 3 1 (1,1) 0.986 (0.968,1) 0.928 (0.905,0.952) 0.943 (0.908,0.978)

Annotator 4 1 (1,1) 0.861 (0.817,0.904) 0.961 (0.937,0.985)

Annotator 5 1 (1,1) 0.91 (0.871,0.949)

Annotator 6 1 (1,1)
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annotator concordances by type of document are avail-
able in (Additional file 2). The results showed a high level 
of concordance for all types of tags and documents, with 
concordance measures ranging from 0.87 to 1. The con-
cordance was highest for the PHONE and EMAIL tags, 
while the lowest concordance was for the PATIENT tag. 
Regarding the document types, the annotations showed 
the highest concordance for emergency reports, opera-
tive reports, administrative documents, and letters to 
patients.

Results
In this section, we present the results of our study, 
including the evaluation results of all tested models on 
the manually annotated test dataset, the performance 

Table 7 Agreement between annotators for each tag

Tag Fleiss

O 0.93 (0.922,0.939)

STR 0.96 (0.945,0.976)

ZIP 0.895 (0.847,0.942)

VILLE 0.947 (0.922,0.973)

PATIENT 0.887 (0.852,0.922)

DATE 0.948 (0.929,0.967)

DOCTOR 0.949 (0.935,0.963)

PHONE 0.992 (0.986,0.998)

EMAIL 1 (1,1)

Fig. 5 Evaluation results of all tested models
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per entity class of the best model and the rule-based 
approach and the detailed performance results of our 
best model for different types of medical documents.

Evaluation results
The microaveraged F1 scores for all examined models 
and embeddings on the manually annotated test dataset 
are illustrated in Fig.  5. The figure provides a compre-
hensive comparative analysis of performance metrics—
Precision, Recall, and F1 score—specifically focusing on 
micro-average results across various models evaluated 
on the manually annotated dataset. The assessed models 
encompass a diverse range of approaches, including the 
utilization of Bi-LSTM-CRF with various embeddings 
(Flair, FastText, BERT, Camembert, and FlauBERT…), 
fine-tuned language models (BERT, Camembert, and 
Flaubert), and a rule-based system.

The results of our study indicate that the best-perform-
ing model in terms of F1 score is "BiLSTM-CRF + Fast-
Text + Flair" with a significant F1 score of 0.9696. This 
model combines both FastText and Flair embeddings and 
outperforms the other models. The rule-based system 
achieves interesting results, with an F1 score of 0.9365. 
However, some deep learning-based models outperform 
it, indicating the advantage of pretrained embeddings 
and neural network architecture (BI-LSTM + CRF) for 
the NER task.

mBERT and CamemBERT perform well with F1 
scores of 0.9340 and 0.9338, respectively, demonstrating 
the effectiveness of transformer-based language mod-
els for named entity recognition. The combination of 
embeddings (FastText + Flair) generally improves model 
performance, as shown by the higher F1 scores of the 
"BiLSTM-CRF + FastText + Flair" model.

The results suggest that combining different types of 
embeddings and using deep learning models can signifi-
cantly improve the performance of named entity recogni-
tion systems, outperforming rule-based systems for this 
particular de-identification dataset.

Performance results per entity class
To further analyze the results, we examined the perfor-
mance per entity class of the best model and compared 
it with the rule-based approach. The Detailed Results 
Obtained by the Best Model Bi-LSTM + CRF with Stacked 
FastText + FLAIR Embedding are presented in Table 8.

The detailed evaluation results obtained by the rule-
based system are presented in Table 9.

The performance of each class for the best model 
shows that the model performs exceptionally well for 
classes such as "DATE", "CITY", "ZIP" and "EMAIL" with 

F1 scores of 0.9832, 0.9954, 0.9862 and 0.9896, respec-
tively. For other classes, such as "DOCTOR", "PHONE", 
"PATIENT" and "STR", the model achieves good F1 
scores ranging from 0.9256 to 0.9414.

The rule-based system performs very well for some 
classes, such as "DATE", "PHONE", "ZIP" and "EMAIL", 
with F1 scores of 0.9950, 0.9918, 0.9585 and 0.9548, 
respectively. However, the rule-based system’s perfor-
mance was weaker for "PATIENT" and "STR", with F1 
scores of 0.6661 and 0.7538, respectively, indicating that 
there is a need for improvement.

In conclusion, the best-performing model is "BiLSTM-
CRF + FastText + Flair," which combines both FastText 
and Flair embeddings. It outperforms the other models 
and achieves an impressive microaveraged F1 score of 
96.96%. The rule-based system shows competitive results 
for some classes but lacks consistency across all classes 
compared to the best model.

Table 8 Detailed results obtained by the best model

Class Precision Recall F1‑score Support

DATE 0.9922 0.9745 0.9832 2078

DOCTOR 0.9283 0.9229 0.9256 1206

VILLE 0.9987 0.9921 0.9954 764

PHONE 0.9832 0.9670 0.9750 545

PATIENT 0.9726 0.9745 0.9736 510

ZIP 1.0000 0.9727 0.9862 293

STR 0.9520 0.9316 0.9414 234

EMAIL 0.9896 0.9896 0.9896 96

Micro avg 0.9756 0.9637 0.9696 5726

Macro avg 0.9771 0.9637 0.9713 5726

Weighted avg 0.9757 0.9637 0.9696 5726

Table 9 Detailed results obtained by the Rule-based system

Class Precision Recall F1‑Score Support

DATE 0.9927 0.9972 0.9950 2178

DOCTOR 0.9535 0.9196 0.9362 1293

VILLE 0.9713 0.9837 0.9775 860

PHONE 0.9967 0.9869 0.9918 612

PATIENT 0.5530 0.8375 0.6661 480

ZIP 0.9968 0.9231 0.9585 338

STR 0.9105 0.6431 0.7538 269

EMAIL 0.9135 1.0000 0.9548 95

micro avg 0.9275 0.9458 0.9365 6125

macro avg 0.9110 0.9114 0.9042 6125

weighted avg 0.9427 0.9458 0.9408 6125
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Performance results of the best model for different 
documents types
The detailed performance results of our best model 
("BiLSTM-CRF + FastText + Flair") for different types of 
medical documents are available in (Additional file  3). 
This file provides the performance metrics, specifically 
micro-average results across various types of medical 
documents.

The results of this evaluation on different types of 
medical documents reveal different levels of effective-
ness. In particular, the model achieves high scores for the 
following document types: “Surgical Reports”, with an 
F1 score of 0.9931. Similarly, in “Other Complementary 
Examination Report” the model performs exceptionally 
well, with an F1 score of 0.9902. In “Appointment letters”, 
the model achieve an F1 score of 0.9825. In addition, 
the model excelled in extracting PIIs from “hospital stay 
reports” and “discharge letters” with F1 scores of 0.9926 
and 0.9619, respectively.

On the other hand, for some document types, model 
performance declined, as shown by lower F1 scores. For 
“Entry letter”, “Patient Letters” and “External documents” 
the model show an F1 scores of 0.8148, 0.8778 and 
0.8108, respectively.

In conclusion, addressing these challenges is essen-
tial to improve the overall accuracy of the model and its 
applicability to a wide range of medical documents. This 
analysis underlines the importance of continuous moni-
toring and improvement of the model.

Discussion
In this study, we proposed a largely automated approach 
for the de-identification of French clinical reports using 
automatic annotation of medical text data based on regu-
lar rules and knowledge bases. We also proposed a solu-
tion for assisted and semiautomatic annotation of EHRs 
using the Prodigy annotation tool to reduce the cost of 
creating a reference corpus for the evaluation of our NER 
models.

It is important to note that our NER models were 
trained on only one type of document, namely, hospi-
tal discharge summaries. To study the generalizability of 
our models, we evaluated their performance on differ-
ent types of clinical documents, such as Administrative 
Records, Emergency Room Passes, Appointment Notices, 
and Discharge Letters. The results indicate a high level of 
agreement among the annotators, confirming the quality 
and reliability of the annotations made on this set of doc-
uments and providing a solid foundation for the evalua-
tion of our NER models.

Our experimental results showed that the proposed 
approach performed well in extracting PII from clinical 
notes in unstructured text, with an F1 score of 96.96% 

on average for the eight entity types considered. Our 
results also showed that our best deep learning-based 
model outperformed rule-based systems in terms of F1 
score (93.65%). Additionally, the results of this evaluation 
showed that our models were able to achieve high perfor-
mance on different types of clinical documents, strength-
ening their robustness and applicability in the healthcare 
domain.

Neural networks can incorporate sensitive information, 
particularly that designed for de-identification tasks. 
Hence, it is currently difficult to share such models out-
side the institution that owns the data used to train the 
model. One advantage of our approach is that it is fully 
automated, and the whole pipeline can be shared and 
used by anyone who wants to apply the process to its own 
data, with little adaptation.

Comparison to the state‑of‑the‑art
The heterogeneity of electronic health records (EHRs) 
can make the de-identification process much more com-
plex. In this work, we address this challenge by process-
ing more than 58 document types. Furthermore, while 
previous work on French clinical de-identification anno-
tates their corpus manually [4, 9], our approach uses dis-
tant supervision, which reduces both the cost and time 
required for annotation.

In addition, we present a comparative study of sev-
eral NER architectures for the French de-identifica-
tion task. Our results confirm the effectiveness of 
the stacked Flair and FastText embeddings combined 
with the Bi-LSTM + CRF architecture for extracting 
personal identifiable information from clinical text. 
Moreover, we extend our comparative study to the 
de-identification of Italian medical records [6]. The 
results obtained in their study confirm that the best-
performing model for this task also uses the combina-
tion of Flair and FastText embeddings, combined with 
the Bi-LSTM + CRF architecture. This finding demon-
strates the robustness of this approach for extracting 
personally identifiable information.

Although the extracted PII (personally identifiable 
information) is not quite the same in other French de-
identification systems, we can still compare common PII 
types. This analysis shows that our approach yields simi-
lar results to existing French de-identification tools who 
used manually annotated training bases [9], which dem-
onstrates the effectiveness of our method.

Limitations of our study
Our study demonstrated the feasibility and effectiveness 
of using distant supervised learning for the task of deiden-
tifying clinical data, which can help overcome the chal-
lenge of limited annotated data in the medical domain.
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However, there are some limitations. First, the clinical 
documents used in our study were retrieved from dif-
ferent sources, and the quality of the reports can vary. 
Certain medical reports are generally long and poorly 
formatted documents. The preprocessing of the data is 
therefore crucial, especially the sentence splitting step. 
In fact, in poorly formatted documents, sentences can 
be incomplete or improperly split, which can affect the 
quality of the annotations and the ability of the model to 
understand the context in which an entity is mentioned. 
This difficulty can be reflected in the quality of the de-
identification results and the overall performance of 
the model. Data preprocessing is also crucial for model 
deployment to ensure that data have the same struc-
ture when given to the model for new predictions on 
unknown examples.

Second, automatic labels are sometimes noisy, 
which can cause the model to learn incorrect con-
texts. We would like to improve the model with 
active learning steps to correct annotations that are 
incorrect or not detected during the initial training 
step [59].

The final limitation is to train the model on a cor-
pus from a single hospital, which may result in a lack of 
generalization. Next, we consider collaborative train-
ing across different hospitals by developing a federated 
method to solve our clinical de-identification problem in 
a distributed scenario [16].

Conclusion
In conclusion, our study provides a promising 
approach for the de-identification of French clini-
cal reports, which can facilitate the reuse of electronic 
health records for secondary purposes such as clinical 
research. Our study also highlights the importance of 
using advanced NLP techniques such as deep learn-
ing for effective de-identification, as well as the need 
for innovative solutions such as distant supervision to 
overcome the challenge of limited annotated data in the 
medical domain.

Our work demonstrates that despite the level of noise 
in the automatically annotated dataset, the trained NER 
model using the stacked Flair and FastText embeddings 
combined with the Bi-LSTM + CRF achieves good per-
formance. This is due to the large size of the automati-
cally annotated dataset.

Future work could further explore the scalability and 
generalization of the proposed approach and investigate 
its applicability in a collaborative study among multiple 
medical institutions.
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