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Abstract 

Background  The two-way partial AUC has been recently proposed as a way to directly quantify partial area 
under the ROC curve with simultaneous restrictions on the sensitivity and specificity ranges of diagnostic tests or clas-
sifiers. The metric, as originally implemented in the tpAUC​ R package, is estimated using a nonparametric estimator 
based on a trimmed Mann-Whitney U-statistic, which becomes computationally expensive in large sample sizes. (Its 
computational complexity is of order O(nxny) , where nx and ny represent the number of positive and negative cases, 
respectively). This is problematic since the statistical methodology for comparing estimates generated from alterna-
tive diagnostic tests/classifiers relies on bootstrapping resampling and requires repeated computations of the estima-
tor on a large number of bootstrap samples.

Methods  By leveraging the graphical and probabilistic representations of the AUC, partial AUCs, and two-way partial 
AUC, we derive a novel estimator for the two-way partial AUC, which can be directly computed from the output 
of any software able to compute AUC and partial AUCs. We implemented our estimator using the computationally 
efficient pROC R package, which leverages a nonparametric approach using the trapezoidal rule for the computa-
tion of AUC and partial AUC scores. (Its computational complexity is of order O(n log n) , where n = nx + ny.). We 
compare the empirical bias and computation time of the proposed estimator against the original estimator provided 
in the tpAUC​ package in a series of simulation studies and on two real datasets.

Results  Our estimator tended to be less biased than the original estimator based on the trimmed Mann-Whitney 
U-statistic across all experiments (and showed considerably less bias in the experiments based on small sample sizes). 
But, most importantly, because the computational complexity of the proposed estimator is of order O(n log n) , rather 
than O(nxny) , it is much faster to compute when sample sizes are large.

Conclusions  The proposed estimator provides an improvement for the computation of two-way partial AUC, 
and allows the comparison of diagnostic tests/machine learning classifiers in large datasets where repeated computa-
tions of the original estimator on bootstrap samples become too expensive to compute.

Keywords  ROC curve, AUC​, Partial AUC​, Diagnostic testing, Machine learning performance metric

Background
Motivation
Diagnostic tests based on continuous scales play a 
critical role in clinical practice, where at-risk individu-
als from a population are often screened for a disease 
using the results of quantitative laboratory tests  [1]. 
Similarly, computer aided diagnostic technologies 
based on machine learning  [2] (ML) are increasingly 
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becoming an useful tool to aid clinicians in their deci-
sion making process [3–7].

However, before a new diagnostic test or ML based 
diagnostic classifier can be deployed in clinical prac-
tice it is essential to evaluate its accuracy and compare 
its performance against established methods. For diag-
nostic tests based on continuous measurements, a pos-
itive test result is obtained when the measurement is 
above a given threshold. Similarly, for ML based clas-
sifiers, a positive diagnosis is obtained when the ML 
algorithm prediction (usually reported as the probabil-
ity that the individual has the disease) is above a given 
threshold. The receiver operation characteristic curve 
(ROC) [8] plots the false positive rate (FPR) against the 
the true positive rate (TPR) across all possible thresh-
old levels and is a widely used technique for visualizing 
the trade-offs between FPR and TPR at any threshold 
level of interest in both diagnostic testing based on 
continuous scales [9–13] and machine learning evalu-
ations [8]. The area under the ROC curve (AUC) is the 
most widely used criterium to summarize the informa-
tion provided by the ROC curve across all thresholds.

For every diagnostic test/classifier there is a cost-
benefit analysis necessary for evaluating the costs of 
false positives versus false negatives. These costs can 
sometimes be measured economically as in unnec-
essary medical care costs for false positives, but also 
translate to societal and individual costs such as psy-
chological strain due to false positive diagnosis or the 
ethical concerns due to the direct harm caused by a 
false negative diagnosis (which might lead to poor 
prognosis or even the death of the individual). As a 
consequence, in many applications, it is important 
to simultaneously maintain a low FPR and high TPR, 
and regulatory or policy making bodies may have pre-
defined criteria for the allowable TPR and FPR in vari-
ous scenarios based on the healthcare economics of 
false positive and false negative outcomes. For exam-
ple, the World Health Organization (WHO) has set 
minimal requirements for community-based tuber-
culosis screening at sensitivity (TPR) above 90% and 
specificity (1-FPR) above 70%  [14]. For SARS-CoV-2 
diagnostics, the WHO requirements for antigen-
detecting rapid diagnostic tests are sensitivity above 
80% and specificity above 97% [15]. Thus, in evaluating 
diagnostic tests/classifiers, we may only be interested 
in comparing their performances within the regulatory 
guideline bounds.

When clear guidelines exist, there is an advantage to 
compare different classifiers in a limited region of the 
ROC space instead of over the entire range.

The current two‑way partial AUC estimator, and it’s 
limitations
The two-way partial AUC  [16] (tpAUC) has been pro-
posed as a way to directly quantify the area under the 
ROC curve satisfying explicit constraints in both the 
TPR and FPR ranges. Previous approaches in the litera-
ture [17–21] focused on quantifying partial area under 
the ROC (pAUC) by directly restricting the FPR range, 
but only indirectly controlling for the TPR. However, as 
illustrated in  [16], this indirect approach can be prob-
lematic making diagnostic test comparisons less effi-
cient and, in some circumstances, leading to incorrect 
conclusions (see the illustrative examples presented 
in [16] for further details).

Yang et  al.  [16] proposed a non-parametric estima-
tor for the tpAUC based on a trimmed version of the 
Mann-Whitney U statistic  [22] and implemented the 
method in the R  [23] package tpAUC​. Based on this 
estimator, the authors also described a bootstrap  [24] 
based testing approach, based on a asymptotic con-
fidence interval, to compare two tpAUCs. In practice, 
an important caveat of the tpAUC estimator proposed 
by [16] (which is this paper will be denoted as the “orig-
inal estimator”, ̂tpAUCo ) is that it is computationally 
expensive to calculate for large datasets. (Its compu-
tational complexity is of order O(nx ny) , where nx and 
ny represent the number of positive and negative cases 
in the dataset, respectively.) Furthermore, because 
the statistical approach for comparing two tpAUCs 
requires bootstrap resampling, the approach can 
quickly become computationally impractical as sample 
sizes increase.

Our contribution
To circumvent this problem, in this paper we propose a 
computationally efficient estimator of tpAUC, denoted 
as the “proposed estimator”, ̂tpAUCp , which can be 
directly computed from the output of any software able 
to compute the standard (“full”) AUC and the standard 
partial AUC metrics [17], which only impose restrictions 
in either the FPR (specificity) or the TPR (sensitivity) 
ranges, but not on both simultaneously. We implemented 
our estimator using the computationally efficient 
pROC  [25] R package, which implements a nonparamet-
ric approach based on trapezoids, rather than (trimmed) 
Mann-Whitney U statistic estimators, for the computa-
tion of AUC and partial AUC scores. We compare the 
computation time and the empirical bias of the original 
and proposed estimators in a series of simulation studies. 
Furthermore, we use two real datasets to illustrate the 
computational efficiency of the proposed estimator (as 
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opposed to the original one) when performing the statis-
tical comparison of two tpAUCs from different classifiers 
built on the same dataset (which requires bootstrapping).

Our empirical comparisons show that the proposed 
estimator tended to be less biased than the original one 
across all experiments (and showed considerably less bias 
in the experiments based on small sample sizes). But, 
most importantly, it can be orders of magnitude faster to 
compute than the original estimator when sample sizes 
are large.

Technical background
Before we present our proposed estimator, in the rest of 
this section we first review the mathematical definitions 
and key properties of the concepts of: (i) area under the 
curve (AUC); (ii) partial area under the curve (pAUC); 
and (iii) two-way partial area under the curve (tpAUC). 
We start by introducing some notation.

Notation
Throughout the text X represents a continuous test result 
for the positive cases, e.g., subjects that have a disease, 
while Y represents the test result for the negative cases, 
e.g., non-disease subjects. (In the context of machine 
learning applications, X and Y represent the confidence 
score, i.e., the predicted probability of the positive class, 
generated by a ML algorithm.) For any threshold c, a sub-
ject is classified as a positive case if its test result (confi-
dence score) is larger than c. Let F(x) and G(y) represent, 
respectively, the cumulative distribution functions of the 

X and Y variables, while SF (x) and SG(y) represent the 
respective survival functions. Then the true positive rate 
(TPR) at a threshold c, denoted by TPR(c), is defined as,

while the corresponding false positive rate (FPR) at the 
threshold c, denoted by FPR(c), is defined as,

Note the TPR is also denoted as sensitivity (SENS) 
of the test/classifier, while the specificity (SPEC) cor-
responds to 1− FPR , so that SENS(c) = TPR(c) and 
SPEC(c) = 1− FPR(c).

Throughout the text we let Dk = {Xi,Yj} , i = 1, . . . , nx , 
j = 1, . . . , ny , represent a dataset containing nx positive 
cases and ny negative cases, and we assume that the  
cases are statistically independent of each other. We let 
ŜF ,nx and ŜG,ny represent, respectively, the empirical  
versions of the survival functions SF and SG , so that for 
any u ∈ [0, 1] we have that Ŝ−1

F ,nx
(u) = X(⌊(1−u)nx⌋) and 

Ŝ−1
G,ny

(u) = Y(⌊(1−u)ny⌋) , where X(i) and Y(j) represent the 
associated order statistics, and ⌊N⌋ represents the largest 
integer smaller than N.

The area under the ROC curve (AUC)
For any given threshold c, the costs and benefits of a diag-
nostic test (or classifier) are associated with a given FPR/
TPR (specificity/sensitivity) pair. The ROC curve plots the 
{FPR(c),TPR(c)} pairs for all possible threshold values 

(1)TPR(c) ≡ P(X > c) ≡ SF (c) = 1− F(c) ,

(2)FPR(c) ≡ P(Y > c) ≡ SG(c) = 1− G(c) .

Fig. 1  ROC curves. Panels a and b show, respectively, the ROC curve defined in terms of FPR/TPR and specificity/sensitivity. In this illustrative 
example, the ROC curve was parameterized according to the binormal ROC model [18], where X ∼ N(1.5, 1) , Y ∼ N(0, 1) , 
SF (c) = �((µx − c)/σx) = �(1.5− c) , SG(c) = �((µy − c)/σy) = �(−c) , and �(.) represents the cumulative distribution function of a standard 
normal random variable. (Further details about the binormal ROC model are presented in the Bias comparison section.) In this example, we adopt 
c = 1.1 , so that the FPR value in panel a (red arrow) is u = SG(1.1) = 0.136 and the respective ROC value (blue arrow) 
is ROC(0.136) = � 1.5− S−1

G (0.136) = 0.655  



Page 4 of 17Chaibub Neto et al. BMC Medical Informatics and Decision Making           (2024) 24:57 

c (as illustrated in Fig.  1a) and provides a visual descrip-
tion of the trade-offs between sensitivity and specific-
ity as c changes. (Equivalently, the ROC curve can also be 
defined in terms of specificity and sensitivity by plotting 
{SPEC(c), SENS(c)} for all possible threshold values c, as 
shown in Fig. 1b.)

Mathematically, for any given threshold c we can describe 
the ROC curve as a function of the respective FPR value 
u = SG(c) as ROC(u) = SF (c) = SF

(

S−1
G (u)

)

 , where 
S−1
G (.) represents the inverse function of the survival func-

tion SG(.) . Figure 1a provides an illustrative example where 
the red arrow represents the FPR value (u) associated with 
the threshold c while the blue arrow shows the respective 
ROC value as a function of u. (Note that c represents a 
threshold with values ranging in the support of the X and Y 
variables and, contrary to u, it can assume values outside 
the [0, 1] range.)

Often times, it is unclear how to choose a threshold c and 
it is desirable to adopt a summary measure that aggregates 
information across all possible threshold values. The AUC, 
defined as,

summarizes information across all thresholds and is the 
most commonly used metric of accuracy in diagnos-
tic tests (and is also widely adopted in machine learn-
ing applications). A well known statistical property of 
the AUC is that it corresponds to the probability that 
a classifier will rank a randomly chosen positive case 
higher than a randomly chosen negative one, that is 
AUC = P(X > Y ) [8, 11].

Empirical (nonparametric) AUC estimates can be effi-
ciently computed from empirical ROC curves using the 
sum of trapezoids [8] as implemented in the pROC [25] R 
package. (As described in [8], the computational complex-
ity of the AUC estimation is of order O(n log n) , where 
n = nx + ny .) Importantly, it has been shown by Bam-
ber  [26] that, in the special case that the continuous test 
results (or confidence scores) have no ties, the AUC can 
also be estimated using the Mann-Whitney U-statistic [22],

where nx and ny represents the number of positive and 
negative cases, respectively, and 11{A} represents an indi-
cator function assuming value 1 if event A occurs and 0 
otherwise. (This estimator, however, has computational 
complexity of order O(nxny).)

(3)AUC =

∫ 1

0
ROC(u) du =

∫ 1

0
SF

(

S−1
G (u)

)

du ,

(4)ÂUC =
1

nx ny

nx
∑

i=1

ny
∑

j=1

11{Xi > Yj} ,

The partial area under the curve (pAUC)
In some applications, the interest does not lie in the 
entire range of FPR (or TPR) values, but in only a portion 
of the ROC curve. In these situations, we can use the par-
tial area under the curve (pAUC) [17, 18, 27, 28] to sum-
marize the information across the portion of the ROC 
curve that are of interest. As described in [17], the pAUC 
can be defined both in terms of restricting the FPR (or 
specificity) ranges or the TPR/sensitivity ranges. When 
focusing on the FPR range [u0,u1] the pAUC is defined 
as [17],

Note that the partial AUC focusing on FPR 
can be re-expressed in terms of specificity as, 
pAUCfpr(u0,u1) = pAUCsp(1− u0, 1− u1).

When focusing on sensitivity, the pAUC focusing on 
the TPR range [u′0,u

′
1] is given by [17],

Similarly to the full AUC, empirical (nonparametric) 
partial AUC estimates can be efficiently computed from 
empirical ROC curves. In the pROC R package, par-
tial AUCs are computed by ignoring trapezoids outside 
the partial range and adding partial trapezoids with lin-
ear interpolation when necessary  [25]. Furthermore, as 
described in [17], the partial AUCs can also be estimated 
nonparametrically using trimmed versions of the Mann-
Whitney U-statistic as,

(5)pAUCfpr(u0,u1) =

∫ S−1
G (u0)

S−1
G (u1)

P(X > z) g(z) dz

(6)= P
[

X > Y , S−1
G (u1) ≤ Y ≤ S−1

G (u0)
]

.

(7)pAUCse

(

u′0,u
′
1

)

=

∫ S−1
F (u′0)

S−1
F (u′1)

P(Y < z) f (z) dz

(8)= P
[

X > Y , S−1
F

(

u′1
)

≤ X ≤ S−1
F

(

u′0
)

]

.

(9)
p̂AUCfpr(u0,u1) =

1

nx ny

nx
∑

i=1

ny
∑

j=1

11
{

Xi > Yj ,

Ŝ−1
G,ny

(u1) ≤ Yj ≤ Ŝ−1
G,ny

(u0)
}

,

(10)
p̂AUCse

(

u′0,u
′
1

)

=
1

nx ny

nx
∑

i=1

ny
∑

j=1

11
{

Xi > Yj ,

Ŝ−1
F ,nx

(u′1) ≤ Xi ≤ Ŝ−1
F ,nx

(u′0)
}

.
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The two‑way partial area under the curve (tpAUC)
In practice, we are often interested in areas of the ROC 
space where a diagnostic test performs above pre-spec-
ified sensitive and specificity thresholds or, equivalently, 
above a pre-specified TPR and below a pre-specified FPR. 
The tpAUC, first proposed in [16], represents an intuitive 
performance measure which captures partial area under 
the ROC with explicit restrictions on both TPR and FPR. 
For instance, suppose that we are only interested in sensi-
tivity (TPR) values above the threshold bse , and specificity 
values above the threshold bsp (or, equivalently, on FPR 
values below the threshold bfpr = 1− bsp ), so that we are 
only interested in the area in the ROC space confined to 
the red rectangle in Fig.  2. Then, the tpAUC as defined 
in  [16] corresponds to the area under the ROC curve 
(Area A) inside the red rectangle.

From Fig. 2a, we see that, graphically, the tpAUC (Area 
A) corresponds to the pAUCfpr(u0,u1) (Area A + Area B) 
minus the Area B,

where u1 = 1− bsp = bfpr corresponds to the upper 
bound on the FPR and u0 = cfpr = SG

(

S−1
F (bse)

)

 corre-
sponds to the FPR value associated with the sensitivity 
bound bse . Hence, from Eq. (5), we have that the tpAUC 
can be expressed mathematically as,

(11)
tpAUC = (Area A + Area B)

︸ ︷︷ ︸

pAUCfpr (u0,u1)

− Area B
︸ ︷︷ ︸

(u1−u0)bse

since S−1
G (u1) = S−1

G

(

1− bsp
)

 and 
S−1
G (u0) = S−1

G

(

SG

(

S−1
F (bse)

))

= S−1
F (bse).

As described in  [16], the tpAUC can also be inter-
preted probabilistically as,

and can be estimated nonparametrically using the 
trimmed Mann-Whitney U statistic estimator,

implemented in the tpAUC​ R package.
Furthermore, reference [16] also describes a bootstrap 

assisted approach for computing asymptotic confidence 
intervals for the difference between two tpAUCs (so that, 
different diagnostic tests/classifiers constructed in the 
same dataset can be compared statistically).

(12)

tpAUC(1− bsp, bse) =

∫ S−1
F (bse)

S−1
G (1−bsp)

SF (z) g(z) dz

︸ ︷︷ ︸

Area A + Area B

−

− [1− bsp − SG(S
−1
F (bse))]bse

︸ ︷︷ ︸

Area B

,

(13)P
[

X > Y ,X ≤ S−1
F (bse),Y ≥ S−1

G (1− bsp)
]

,

(14)
̂tpAUCo =

1

nx ny

nx
∑

i=1

ny
∑

j=1

11
{

Xi > Yj ,

Xi ≤ Ŝ−1
F ,nx

(bse),Yj ≥ Ŝ−1
G,ny

(1− bsp)
}

,

Fig. 2  Graphical representation of the two-way partial AUC. In both panels, Area A represents the tpAUC. Panel a shows the ROC curve defined 
in terms of FPR and TPR (sensitivity) where the sum of Areas A and B represents the partial AUC focusing on the FPR, and u0 = cfpr = SG

(

S−1
F (bse)

)

 

corresponds to the FPR value at the sensitivity threshold of bse and u1 = bfpr = 1− bsp . Panel b shows the ROC curve defined in terms of specificity 
and sensitivity where the sum of Areas A and B represents the partial AUC focusing on specificity, and csp = 1− SG

(

S−1
F (bse)

)

 corresponds 

to the specificity value at the sensitivity threshold of bse
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Methods
In this section we describe the proposed tpAUC esti-
mator (as well as, an alternative estimator that can be 
marginally faster to compute).

The proposed tpAUC estimator ( tpAUCp)
Here, we describe a novel (and straight forward) esti-
mator of tpAUC that can be directly computed from 
the output of any software that can estimate pAUCsp , 
pAUCse and the total AUC​. For its derivation, consider 
the graphical representations (and respective probabil-
istic interpretations) of the AUC​, pAUCsp , pAUCse , and 
tpAUC​ quantities presented in Fig. 3.

Figure  3a shows the graphical representation of 
pAUCsp restricted to the specificity interval [1, bsp] 
(blue area), while Fig. 3b shows the graphical represen-
tation of pAUCse restricted to the sensitivity interval 

[bse, 1] (red area). (To simplify the exposition we drop 
the integration intervals from the notation and repre-
sent pAUCsp(1, bsp) by pAUCsp and pAUCse(bse, 1) by 
pAUCse ). Figure  3c shows the representation of both 
quantities, simultaneously, and clearly shows that the 
tpAUC​ (colored area in Fig.  3d) corresponds to the 
intersection of the pAUCsp (blue area) and pAUCse (red 
area) depicted in Area I.

From Fig. 3c, we also have that,

(15)pAUCsp = Area I + Area II ,

(16)pAUCse = Area I + Area III ,

(17)AUC = Area I + Area II + Area III + Area IV ,

(18)Area IV = bsp bse ,

Fig. 3  Graphical representation of the partial AUCs and the two-way partial AUC. a Partial AUC focusing on specificity ( pAUCsp ), showing the area 
restricted to specificity values greater or equal to 0.6 (i.e., bsp = 0.6 ). b Partial AUC focusing on sensitivity ( pAUCse ), showing the area restricted 
to sensitivity values greater or equal to 0.75 (i.e., bse = 0.75 ). c Simultaneous representation of both pAUCsp and pAUCse . d Two-way partial AUC 
(tpAUC​) as the intersection of pAUCsp and pAUCse
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so that it is easy to see that,

Hence, we see that tpAUC​ can be computed accord-
ing to Eq. (19) whenever the intersection of the pAUCsp 
and pAUCse areas is not empty, but will be zero when-
ever the pAUCsp and pAUCse areas do not intersect or, 
equivalently, if the ROC curve does not pass through the 
area of interest in the ROC space defined by the upper 
left corner rectangle corresponding to sensitivity val-
ues greater or equal to bse and specificity values greater 
or equal to bsp (e.g., the red rectangle in Fig.  3d). As 
described in Fig. 4a, this condition can be tested by sim-
ply checking whether the specificity value corresponding 
to the sensitivity threshold bse , defined mathematically 
as, csp = 1− SG(S

−1
F (bse)) , is smaller than the specificity 

threshold bsp . Therefore, an alternative expression for the 
tpAUC​ is,

Observe that Eq. (20) has the following probabilistic 
interpretation. Let E1 and E2 represent the following events,

(19)

tpAUC = pAUCsp + pAUCse − (AUC − bse bsp)

= (Area I + Area II)+ (Area I + Area III)−

− (Area I + Area II + Area III + Area IV− Area IV)

= Area I .

(20)

tpAUC =

{

0 , if csp < bsp

pAUCse + pAUCsp − (AUC − bse bsp) , if csp ≥ bsp .

then, if events E1 and E2 are not mutually exclusive, it fol-
lows from the definition of the probability of the intersec-
tion of two events that,

where it is easy to see that P(E1 ∪ E2) = AUC − bse bsp 
since E1 ∪ E2 corresponds, graphically, to the 
colored area (i.e., Area I + Area II + Area 
III) in Fig.  3c that can also be reexpressed as 
(Area I + Area II + Area III + Area IV) - Area IV = AUC − bse bsp . On 
the other hand, if E1 and E2 are mutually exclusive than 
P(E1 ∩ E2) = tpAUC = 0.

The expression for tpAUC in Eq. (20) immediately sug-
gests the following estimator,

where ĉsp = 1− ŜG,ny(Ŝ
−1
F ,nx

(bse)) corresponds to the 
estimated specificity at the sensitivity bound bse (in our 
implementation we use the coords function from the 
pROC R package to compute this value).

(21)E1 =
{

X > Y ,Y ≥ S−1
G (1− bsp)

}

,

(22)E2 = {X > Y ,X ≤ S−1
F (bse)} ,

(23)
P(E1 ∩ E2)
︸ ︷︷ ︸

tpAUC(1−bsp ,bse)

= P(E1)
︸ ︷︷ ︸

pAUCsp

+ P(E2)
︸ ︷︷ ︸

pAUCse

−P(E1 ∪ E2)
︸ ︷︷ ︸

AUC−bse bsp

,

(24)

t̂pAUCp =

{

0 , if ĉsp < bsp

p̂AUCse + p̂AUCsp −
(

ÂUC − bse bsp

)

, if ĉsp ≥ bsp

Fig. 4  Conditions under which tpAUC = 0 . Panel a shows that because the ROC curve is monotonic it follows that the curve will not cross the 
region of interest (red rectangle) if the specificity at the bse sensitivity, denoted by csp and highlighted by the blue arrow, is smaller than bsp . Panel b 
shows the equivalent condition in terms of sensitivity values, where we see that the ROC curve does not cross the region of interest if the sensitivity 
at the bsp specificity, cse , is smaller than bse . When these conditions hold, we have that the tpAUC is 0. In our implementation, we check the condition 
in panel a
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An alternative tpAUC estimator ( tpAUCa)
From Fig.  2, it is easy to see that an alternative way to 
compute the tpAUC (area A) using the output of any 
software that can estimate pAUCfpr and also cfpr (i.e., the 
FPR value that corresponds to the sensitivity threshold 
bse ) is to directly estimate the tpAUC by subtracting the 
area B (the rectangle given by (bfpr − cfpr)bse ) from the 
pAUCfpr(cfpr , bfpr) which corresponds to the sum of areas 
A and B. In other words, we can directly estimate tpAUC 
using the alternative estimator,

or alternatively in terms of specificity as,

where ĉsp = 1− ĉfpr . Since this alternative estimator does 
not require the computation of the AUC​ and pAUCse its 
computation can be potentially faster than of tpAUCp.

Results
In this section we present four sets of experiments com-
paring the tpAUC estimators described in this paper. 
We start by presenting some initial comparisons (based 
on simulated data) between the original and proposed 
estimators, followed by more systematic comparisons of 
the computation time requirements of the original, pro-
posed, and alternative estimators, and a more system-
atic comparison of the bias of the original and proposed 
estimators. In our final set of experiments, we use two 
real datasets to illustrate the computational complexity 
of the original estimator when performing the statistical 

(25)

̂tpAUCa

=

{

0 , if ĉfpr > bfpr

p̂AUCfpr

(

ĉfpr , bfpr
)

−
(

bfpr − ĉfpr
)

bse , if ĉfpr ≤ bfpr
,

(26)

t̂pAUCa =

{

0 , if ĉsp < bsp

p̂AUCsp

(

ĉsp , bsp
)

−
(

ĉsp − bsp
)

bse , if ĉsp ≥ bsp
,

comparison of two tpAUCs from different classifiers built 
on the same dataset.

Initial comparisons
We initially compared the original estimator based on the 
trimmed Mann-Whitney U statistic estimator, ̂tpAUCo , 
presented in Eq. (14) against the proposed estimator, 
̂tpAUCp , presented in Eq. (24) in 9 initial experiments 

encompassing all the combinations of sample sizes set 
to 100, 1,000 or 10,000 cases and the proportion of nega-
tive and positive cases set to (90%, 10%), (50%, 50%), and 
(10%, 90%), as described in Table 1.

Each simulation experiment was composed of 1,000 
replications where the data from each replication was 
generated from the binormal ROC model  [18] using 
a different set of parameters randomly sampled from 
the distributions, µy ∼ U(0, 2) , µx ∼ µy + U(0.1, 1.1) , 
σy ∼ U(0.5, 1.5) , and σx ∼ U(0.5, 1.5) , and the sensitivity 
and specificity thresholds where randomly selected from 
the distributions bse ∼ U(0.2, 0.8) and bsp ∼ U(0.2, 0.8) . 
The tpAUC estimates and computation time associated 
with these initial experiments are reported in Figs. 5 and 6.

Figure  5 presents scatterplots of the tpAUC estimates 
obtained with the original and proposed estimators. 
While the estimates tend to be very close for larger sam-
ple sizes (see Fig. 5d, e, and f, and, especially, Fig. 5g, h, 
i), we observed a fair amount of discrepancy for the esti-
mates based on small sample sizes (Fig. 5a, b, and c) and, 
in particular, for unbalanced proportions of negative and 
positive cases (Fig.  5a and c). These initial experiments 
suggest that either one or both of these estimators tended 
to be fairly biased for small sample sizes. Additional sim-
ulation experiments conclude that it is actually the origi-
nal estimator that shows higher bias than the proposed 
estimator in this case (see the “Bias comparison” subsec-
tion below).

Figure  6 presents the computation times for the 
original (Fig.  6a) and proposed (Fig.  6b) estimators. 
(Computation times correspond to the “user” time 
reported by the system.time function from R 
base.) Each panel reports boxplots for all 9 experi-
ments grouped by their sample sizes ( n = 100 for 
experiments 1, 2, and 3, n = 1, 000 for experiments 
4, 5, and 6, and n = 10, 000 for experiments 7, 8, and 
9) and also color coded according to the proportion 
of negative and positive cases (orange boxplots for 
experiments with 90%/10% negative/positive cases, 
purple boxplots for experiments with 50%/50% nega-
tive/positive cases, and black boxplots for experi-
ments with 10%/90% negative/positive cases). All 
experiments reported in this section (and throughout 

Table 1  Simulation experiments. nx and ny represent the number 
of positive and negative cases, respectively

ny nx n Panel in Fig. 5

experiment 1 90 10 100 (a)

experiment 2 50 50 100 (b)

experiment 3 10 90 100 (c)

experiment 4 900 100 1,000 (d)

experiment 5 500 500 1,000 (e)

experiment 6 100 900 1,000 (f )

experiment 7 9,000 1,000 10,000 (g)

experiment 8 5,000 5,000 10,000 (h)

experiment 9 1,000 9,000 10,000 (i)
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the paper) were performed on a Windows machine 
with processor Intel(R) Core(TM) i7-7820HQ CPU @ 
2.90GHz 2.90 GHz and 64 GB of RAM. The compu-
tation time reported for the ̂tpAUCp estimator corre-
sponds to the sum of the time taken for: (i) estimating 

the ROC curve; (ii) estimating the specificity value 
corresponding to the sensitivity threshold (for check-
ing whether the ROC crosses the area of interest); 
and (iii) the estimation of the p̂AUCse , p̂AUCsp , and 
ÂUC  quantities.

Fig. 5  Comparison the tpAUC estimates. Panels a to i present scatterplots of the tpAUC estimates based on the original (x-axis) and proposed 
(y-axis) estimators across the nine initial experiments described in Table 1. The estimates tend to get very close (bottom panels) as sample size 
increases. Results from each experiment were based on 1,000 replications (see main text for details)
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Figure  6a shows a very sharp increase in computa-
tion time for the original estimator when the sample 
size increases to 10,000. Interestingly, we observed that, 
within each sample size group, the original estimator 
tended to spent considerably more time to compute the 
results of the experiments based on a balanced propor-
tion of negative and positive cases (purple boxplots) 
relative to the experiments with unbalanced propor-
tions (orange and black boxplots). (E.g., for n = 10, 000 , 
note how the original estimator took much longer to 
compute the results from experiment 8 compared to 
experiments 7 and 9.)

On the other hand, Fig.  6b shows that the computa-
tion times for the proposed estimator show only a slight 
increase in computation time with increasing sample sizes, 
and only take a fraction of a second to compute the tpAUC 
even for n = 10, 000 (note the different scales in the y-axis 
of Fig. 6a and b). Also, observe that the quantized compu-
tation times observed in Fig.  6b (at 0.00, 0.01, 0.02, 0.03, 
0.04, and 0.05 seconds) represent an artifact of the preci-
sion with which timing results are reported by the sys-
tem.time function. Despite this coarse precision, the 
results still clearly illustrate that the computational com-
plexity of the proposed estimator is considerably smaller 
than the original one. In the next subsection, we present 
some additional computation time experiments.

Additional computation time comparisons
To more systematically compare the computation times of 
original and proposed estimators we performed additional 

computation time experiments spanning a wider range of 
sample sizes. Additionally, we compare the proposed esti-
mator (Eq. 24) to the alternative estimator, described in Eq. 
(26), which can be potentially faster to compute. (For this 
alternative estimator, the reported computation time cor-
responds to the sum of the time taken for: estimating the 
ROC curve; estimating the specificity value corresponding 
to the sensitivity threshold; and estimating of the p̂AUCsp 
if necessary. Note, as well, that we only report the compu-
tation time comparison because the estimates generated 
by the alternative and proposed estimators are identi-
cal.) We performed two sets of experiments. In the first, 
we investigated the computation times over 24 simulation 
experiments across a grid of sample sizes ranging from 
100 to 20,000. In these first experiments, we simulated 
data from the binormal ROC model [18] adopting µx = 2 , 
σx = 1.5 , µy = 0 , σy = 1 , bsp = 0.6 , and bse = 0.6 , with an 
equal proportion of positive and negative cases and each 
experiment was replicated 100 times. Figure 7 reports the 
results. Panel a compares the original (red) and proposed 
(blue) estimators and shows a sharp increase in compu-
tation time for the original estimator (it can take over 1 
minute for n = 20, 000 ) while the proposed estimator still 
takes only a fraction of a second at this sample size. Panel 
b compares the proposed (blue) and the alternative (green) 
estimators. The blue and green solid lines represent the 
average computation time across the 100 experiment rep-
lications and shows that the alternative estimator tended 
to be slightly faster on average. This difference, however, is 
very small. (Note the small scale in the y-axis.)

Fig. 6  Computation time comparison. Panel a shows boxplots of the computation time for the original estimator for all 9 experiments 
grouped by their sample sizes and color coded according to the proportion of negative and positive cases. Panel b shows the analogous results 
for the proposed estimator. Note the different scales in the y-axis of panels a and b. The boxplots report the computation time across the same 
1,000 replications of each one of the 9 experiments presented in Fig. 5 (and described in Table 1)
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In the second set of experiments, we investigated 
the computation times over sample sizes ranging from 
10,000 to 100,000. The data was generated as in the 
first series of experiments, except that, due to the long 
computation times required by the original estimator, 
we only performed a single replication per sample size. 
Figure  8 presents the results and panel a shows that 
the original estimator can take over 25 minutes (1,500 
seconds) to compute for n = 100, 000 , while panel b 
shows that the computation times of the proposed and 
alternative estimators are comparable and take only a 

fraction of the time required by the original estima-
tor (with the alternative estimator tending to be only 
slightly faster).

Bias comparison
As illustrated in the initial experiments based on small 
sample sizes (Fig. 5 a, b, and c) the tpAUC estimates gen-
erated by the original and proposed estimators can differ 
substantially suggesting that one (or both) of them might 
be fairly biased for small sample sizes. In order to inves-
tigate this issue, we systematically compared the bias of 

Fig. 7  Additional computation time experiments for sample sizes increasing from 100 to 20,000. Panel a reports boxplots (over 100 
replications) of the computation times taken by the original (red) and proposed (blue) estimators. Panel b presents the analogous comparison 
between the proposed (blue) and the alternative (green) estimators

Fig. 8  Additional computation time experiments for sample sizes increasing from 10,000 to 100,000. Panel a reports the computation times taken 
by the original (red) and proposed (blue) estimators. Panel b presents the analogous comparison between the proposed (blue) and the alternative 
(green) estimators
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the estimators in a series of simulation experiments over 
a range of sample sizes and proportions of negative and 
positive cases across 16 different combinations of sensi-
tivity and specificity thresholds. But before we describe 
the simulation study design and results, we first describe 
how we estimated the bias from the tpAUC estimators.

By definition, the bias of an estimator θ̂ is given by,

where θ corresponds to the true parameter value. In 
order to compare the bias of the original and proposed 
tpAUC estimators, we conducted a Monte Carlo study 
where we simulate multiple datasets from a binormal 
ROC model [18] and compare the average of the empiri-
cal estimates against the true tpAUC value.

Under the binormal ROC model, the positive and nega-
tive cases are distributed, respectively, according to 
X ∼ N

(

µx, σ
2
x

)

 and Y ∼ N
(

µy, σ
2
y

)

 so that the true posi-
tive and false positive rates are given respectively by,

where �(.) represents the cumulative distribution func-
tion of a standard normal random variable.

Re-expressing the general definition of the pAUCfpr in 
Eq. (12) in terms of the binormal ROC model we have 
that,

where φ(.) represents the probabil-
ity density function of a standard normal 

(27)Bias(̂θ) = E[̂θ ] − θ ,

(28)
SF (c) ≡ P(X > c) = 1− P(X ≤ c)

= 1−�

(

c − µx

σx

)

= �

(

µx − c

σx

)

,

(29)
SG(c) ≡ P(Y > c) = 1− P(Y ≤ c)

= 1−�

(

c − µy

σy

)

= �

(

µy − c

σy

)

,

(30)

(Area A + Area B) = pAUCfpr(u0,u1)

=

∫ S−1
F (bse)

S−1
G (1−bsp)

SF (z) g(z) dz

=
1

σy

∫ µx−σx�
−1(bse)

µy−σy�−1(1−bsp)
�

(

µx − z

σx

)

φ

(

µy − z

σy

)

dz ,

variable, and the integration limits in the above equation 
follow from the fact that, u = SG(z) = �((µy − z)/σy) , 
so that z = S−1

G (u) = µy − σy�
−1(u) , and u′ = SF (z

′) =

�((µx − z′)/σx) , so that z′ = S−1
F (u′) = µx − σx�

−1(u′) . 
Hence, S−1

G (1− bsp) = µy − σy�
−1(1− bsp) and 

S−1
F (bse) = µx − σx�

−1(bse).
Similarly, the Area B in Eq. (12) is re-expressed as,

and the true tpAUC is obtained by solving the integral in 
Eq. (30) using numerical integration and computing the 
Area B in Eq. (31) analytically, and then subtracting the 
latter value from the former.

We compared the bias of the original and proposed 
estimators in 6 simulation experiments with sample 
sizes set to either 100 or 1000 and with the proportion 
of negative and positive cases set to (90%, 10%), (50%, 
50%), and (10%, 90%), as described in Table 2.

Each experiment was composed of 100 distinct runs 
where for each run we: 

1	 Randomly sampled the parameter values from 
the binormal ROC model from the following uni-
form distributions: µx ∼ U(2, 3) , σx ∼ U(1, 2) , 
µy ∼ U(0, 1) , and σy ∼ U(1, 2);

2	 For each of the 16 different combina-
tions of sensitivity and specificity thresholds, 
(SENS, SPEC) = {(0.2, 0.2) , (0.2,  0.4), (0.2, 0.6), (0.2, 
0.8), (0.4, 0.2), (0.4, 0.4), (0.4, 0.6), (0.4, 0.8), (0.6, 0.2), 
(0.6, 0.4), (0.6, 0.6), (0.6, 0.8), (0.8, 0.2), (0.8, 0.4), (0.8, 
0.6), (0.8, 0.8)} , we did the following: 

a)	 Computed the true tpAUC value from the binor-
mal ROC model using Eqs. (30) and (31);

b)	 Generated 1000 datasets Dk = {Xi,Yj} , 
i = 1, . . . , nx , j = 1, . . . , ny , from the binormal 
ROC model  [18] where Xi and Yj are randomly 
drawn from the normal distributions 
Xi ∼ N

(

µx, σ
2
x

)

 and Yj ∼ N
(

µy, σ
2
y

)

 , and for 
each simulated dataset Dk we computed and 
stored the empirical tpAUC estimates ̂tpAUCo,k 
(Eq. 14) and ̂tpAUCp,k (Eq. 24);

(31)
Area B =

[

1− bsp − SG

(

S−1
F (bse)

)]

bse

=

[

1− bsp −�

(

µy − (µx − σx�
−1(bse))

σy

)]

bse ,

Table 2  Simulation experiments. nx and ny represent the number of positive and negative cases, respectively

experiment 1 experiment 2 experiment 3 experiment 4 experiment 5 experiment 6

ny 90 50 10 900 500 100

nx 10 50 90 100 500 900
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c)	 Estimated the bias of the original and proposed 
tpAUC estimators according to, 

Figure 9 reports the results from these experiments. Each 
panel presents boxplots (across the 100 replications) of the 
absolute value of the estimated bias against the 16 differ-
ent combinations of sensitivity and specificity thresholds. 
Overall the results suggest that the original estimator (red 
boxplots) tends to be more biased than the proposed one 
(blue boxplots). Observe, as well, that the amount of bias 
is considerably smaller for the experiments based on larger 
sample size ( n = 1, 000 ), presented in Fig. 9d, e, and f, when 
compared to the experiments based on smaller samples 
( n = 100 ) presented in Fig. 9a, b, and c. (Note the different 
scale in the y-axis for the top and bottom panels in Fig. 9).

(32)

̂Bias( ̂tpAUC) =
1

K

K
∑

k=1

̂tpAUCk − tpAUC .

Comparing the predictions of distinct classifiers
When comparing distinct classifiers built on the same 
dataset, the difference between the performance metric is 
a popular criterium for selecting the best classifier. To this 
end, Yang et al. [16] describe how to compute asymptotic 
confidence intervals for the difference of tpAUCs statistic,

where ̂tpAUCC1
 and ̂tpAUCC2

 represent the estimates 
obtained by the classifiers C1 and C2 , respectively.

However, because the predictions of classifiers trained 
in the same dataset tend to be correlated, the statis-
tics ̂tpAUCC1

 and ̂tpAUCC2
 are not independent and 

the asymptotic theory for the statistic ̂�tpAUC is non-
standard. To circumvent this problem, Yang et  al.  [16] 
(and  [17] in the context of the pAUC metric) described 
a bootstrap-assisted approach to calculate asymptotic 

(33)̂�tpAUC = ̂tpAUCC1
− ̂tpAUCC2

,

Fig. 9  Bias comparison experiments. Each panel presents boxplots reporting the absolute value of the estimated bias for the original (red) 
and proposed (blue) estimators (across 100 replications of each experiment described in Table 2) for 16 different combinations of sensitivity 
and specificity thresholds
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confidence intervals for the ̂�tpAUC statistic. Namely, the 
100(1− α) % confidence interval is given by,

where Z1−α/2 corresponds to the 1− α/2 quantile of a 
standard normal distribution and v2boot represents the 
nonparametric bootstrap [24] estimate of the variance of 
̂�tpAUC,

and B represents the number of bootstrap samples.
Clearly, because the bootstrap estimate v2boot requires 

the estimation of the tpAUC metric B times for 
each classifier C1 and C2 , we have that this procedure 
becomes computationally impractical for larger data-
sets when we use the original trimmed Mann-Whitney 
U statistic estimator in Eq. (14).

We illustrate this point using the Diabetic Retinopa-
thy [29] and the Sepsis Survival [30] UCI datasets [31]. 
The Diabetic Retinopathy is a moderate size dataset 
( n = 1, 151 ) containing features extracted from the 
Messidor image set  [32], including quality assessment, 
pre-screening, lesion-specific and anatomical compo-
nents. The classification task is to predict the presence 
or absence of diabetic retinopathy. The Sepsis Survival 
is a large dataset containing 110,341 sepsis hospitaliza-
tion records on 84,811 subjects. Each record contains 

(34)



�̂tpAUC − Z1−α/2

�

v2boot
nx + ny

, �̂tpAUC + Z1−α/2

�

v2boot
nx + ny





(35)

v2boot =
1

B

B
∑

i=1

(

̂�tpAUCi − B−1
B
∑

r=1

̂�tpAUCr

)2

,

the age, gender, and the sepsis episode number (since 
some individuals had multiple episodes of sepsis). To 
make sure that all data points were independent we 
only used the first record of sepsis of each individual 
in our analyses (so that n = 84, 811 ). The classification 
task was to predict if a subject died or survived based 
on their age and gender.

For each of these datasets we trained a logistic regres-
sion [33] and a random forest [34] classifier (using 50/50 
training/test data split) and then compute 95% confi-
dence intervals for the �tpAUC statistic,

using the original and the proposed estimators of tpAUC. 
(We adopted the default tuning parameter values imple-
mented in the ranger  [35] R package for the random 
forest classification.) For both datasets we adopt sen-
sitivity and specificity thresholds set to 0.4 and Fig.  10 
presents the ROC curves based on the predicted prob-
abilities from the logistic regression and random for-
est classifiers. Table  3 reports the respective confidence 
intervals and the time spent in their calculation (along-
side the estimates of tpAUC using the logistic regression 
and random forest classifiers for both the original and 
proposed estimators). The reported results are based on 
B = 1, 000 sequentially run bootstraps for the estimation 
of v2boot.

Comparison of the estimates based on the original and 
proposed estimators show that the results are fairly close, 
and indicate that the logistic regression classifier is statis-
tically better than the random forest classifier, since for 
both datasets the 95% confidence intervals do not contain 

(36)�̂tpAUC = t̂pAUC logistic regression − t̂pAUCrandom forest ,

Fig. 10  Real data illustrations. Panel a compares the ROC curves generated from the predictions of a logistic regression and a random forest 
classifier on the Diabetic Retinopathy Debrecen dataset, while panel b presents the analogous comparison on the Sepsis Survival dataset. In 
both panels the red square captures the area of interest of the ROC space obtained by setting the sensitivity and specificity thresholds to bse = 0.4 
and bsp = 0.4 , respectively
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0. (Note that for the Sepsis Survival dataset, while the 
difference in the tpAUC estimates is very small, the dif-
ference is still statistically significant since the very large 
sample size leads to a very narrow confidence interval.)

Despite the fact that the results based on the origi-
nal and proposed estimators are quite similar, the 
computation times are drastically different. While the 
computation of the confidence interval based on the 
original estimator takes less than 6 minutes for the Dia-
betic Retinopathy dataset ( n = 575 ), it takes over 5.12 
days for the Sepsis Survival dataset ( n = 42, 405 ). On the 
other hand, the computation time based on the proposed 
estimator increases from 3.24 seconds in the Diabetic 
Retinopathy dataset to only 46.69 seconds in the Sepsis 
Survival dataset.

Discussion
It is well understood that the nonparametric estimators 
of AUC and pAUC tend to be systematically biased in 
small sample sizes, especially when the ROC operating 
points are not well spread out along the ROC curve [36]. 
However, as pointed in the literature  [17, 36, 37] the 
amount of bias becomes negligible as the sample size 
increases. Our bias comparison experiments (Fig.  9) 
also show a drastic reduction in bias when sample size 
increases from 100 to 1,000 for both the original and pro-
posed estimators suggesting that this observation also 
holds true for the tpAUC. The fact that the proposed esti-
mator tended to show smaller amounts of bias in com-
parison to the original estimator might be due to the fact 
that the pROC R package performs linear interpolation 

for adding partial trapezoids (when necessary) during the 
calculation of the partial AUCs.

But most importantly, our experiments and real data 
illustrations show that the computation of the pro-
posed estimator can be orders of magnitude faster than 
the original one. This result is not surprising given that 
the calculation of the proposed estimator leverages the 
computationally efficient routines implemented in the 
pROC R package (see the pROC package documenta-
tion for details). Note that the computational complexity 
of the proposed estimator in Eq. (24) is log-linear since 
its computation depends on the estimation of the ROC 
curve and of the AUC and partial AUCs scores (and all of 
these computations have O(n log n) complexity). On the 
other hand, the original estimator based on the trimmed 
Mann-Whitney U statistic in Eq. (14), has computational 
complexity of order O(nynx) as it relies on a double sum-
mation running across all (i, j) pairs for i = 1, . . . , nx and 
j = 1, . . . , ny . Note that this O(nynx) complexity is most 
expensive for balanced populations where nx = ny as cor-
roborated in our experiments (Fig. 6a), where the results 
from the experiments based on nx = ny took more time 
to compute.

We also compare the proposed estimator ( ̂tpAUCp , 
in Eq.  24) against the alternative estimator ( ̂tpAUCa , in 
Eq.  26), which is simply a direct implementation of the 
mathematical definition of tpAUC in Eq.  12 (originally 
proposed by  [16]) using the pROC package. Our com-
parisons (Figs. 7b and 8b) show that while the alternative 
estimator can be slightly faster than the proposed one, 
the small differences are unimportant in practice. (Note 

Table 3  Real data experiments. CI stands for confidence interval and rf and lr stand for random forest and logistic regression, 
respectively

UCI dataset Diabetic Retinopathy Sepsis Survival

total number of cases on test set 575 42,405

number of negative cases on test set 275 39,418

number of positive cases on test set 300 2,987

logistic regr. t̂pAUClr (original estimator) 0.216667 0.134550

logistic regr. t̂pAUClr (proposed estimator) 0.214788 0.123094

random forest t̂pAUCrf  (original estimator) 0.138909 0.124622

random forest t̂pAUCrf  (proposed estimator) 0.137091 0.121070

�̂tpAUC (original estimator) 0.077758 0.009929

�̂tpAUC (proposed estimator) 0.077697 0.002024

95% Confidence Interval (original estimator) (0.076342, 0.079173) (0.009889, 0.009968)

95% Confidence Interval (proposed estimator) (0.076326, 0.079068) (0.002019, 0.002029)

95% CI computation time (original estimator) 5.13 minutes 5.12 days

95% CI computation time (proposed estimator) 3.24 seconds 46.69 seconds
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that the  alternative estimator also has a O(n log n) com-
putational complexity.)

The R code used to implement the proposed estima-
tor and reproduce all the experiments presented in this 
paper is available in the github repository, https://​github.​
com/​echai​bub/​pROC_​based_​tpAUC. Additionally, the 
github repository https://​github.​com/​Sage-​Bione​tworks/​
tp_​AUC provides scripts to run the R code in the Python 
environment (using the rpy2 Python library1) and makes 
the proposed estimator available to the Python users 
community as well.

Conclusions
In summary, as clearly demonstrated by our synthetic 
and real data illustrations, our proposed tpAUC estima-
tor represents a computationally efficient alternative to 
the original estimator based on trimmed Mann-Whitney 
U statistic for moderate to large datasets, which also 
tends to be less biased in small datasets. But most impor-
tantly, the proposed estimator makes the calculation of 
bootstrap-based confidence intervals feasible, and opens 
the doors for the comparison of diagnostic tests/machine 
learning classifiers in large datasets where the serial com-
putation of the original estimator is impractical.
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