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Abstract
Background: Time series methods are commonly used to detect disease outbreak signatures
(e.g., signals due to influenza outbreaks and anthrax attacks) from varying respiratory-related
diagnostic or syndromic data sources. Typically this involves two components: (i) Using time series
methods to model the baseline background distribution (the time series process that is assumed
to contain no outbreak signatures), (ii) Detecting outbreak signatures using filter-based time series
methods.

Methods: We consider time series models for chest radiograph data obtained from Midwest
children's emergency departments. These models incorporate available covariate information such
as patient visit counts and smoothed ambient temperature series, as well as time series
dependencies on daily and weekly seasonal scales. Respiratory-related outbreak signature
detection is based on filtering the one-step-ahead prediction errors obtained from the time series
models for the respiratory-complaint background.

Results: Using simulation experiments based on a stochastic model for an anthrax attack, we
illustrate the effect of the choice of filter and the statistical models upon radiograph-attributed
outbreak signature detection.

Conclusion: We demonstrate the importance of using seasonal autoregressive integrated average
time series models (SARIMA) with covariates in the modeling of respiratory-related time series
data. We find some homogeneity in the time series models for the respiratory-complaint
backgrounds across the Midwest emergency departments studied. Our simulations show that the
balance between specificity, sensitivity, and timeliness to detect an outbreak signature differs by the
emergency department and the choice of filter. The linear and exponential filters provide a good
balance.

Background
Well-known, as well as previously uncharacterized infec-
tions continue to   (re)emerge around the globe. To avoid

casualties from outbreaks of these   infections and from
the potential criminal uses of bioagents, surveillance   sys-
tems are needed that have the capacity to identify such

Published: 5 October 2007

BMC Medical Informatics and Decision Making 2007, 7:28 doi:10.1186/1472-6947-7-28

Received: 12 January 2007
Accepted: 5 October 2007

This article is available from: http://www.biomedcentral.com/1472-6947/7/28

© 2007 Craigmile et al.; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 20
(page number not for citation purposes)

http://www.biomedcentral.com/1472-6947/7/28
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17919318
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Medical Informatics and Decision Making 2007, 7:28 http://www.biomedcentral.com/1472-6947/7/28
outbreaks   accurately and rapidly.  The accuracy and time-
liness of biosurveillance   systems rests on the ability to
model the uncertainty, severity, and   aberrancy of clinical
symptoms that are likely to portend disease   outbreaks as
expressed through the data monitoring system.  Shmueli
[1] summarizes the problems that biosurveillance sys-
tems, in general, pose to   traditional statistical monitor-
ing: (a) biosurveillance data may not be   independent or
stationary; (b) non-traditional data are assumed to con-
tain   earlier signature of an outbreak but this signal is
weaker compared to   actual diagnosis data; (c) since there
are no data that contain   bioterrorist outbreaks, outbreak
patterns particularly as they would   manifest in non-tra-
ditional data streams are unknown; (d) biosurveillance
data are assumed to have no bioterrorist outbreaks, but
the natural   outbreaks add up to the background noise.
The key issue at hand is to   design statistical modeling and
detection methods that can address these   problems.  

Among children, respiratory symptoms are an attractive
target for surveillance. These are a prominent feature of
many childhood epidemics and an early presentation of
diseases like avian influenza, severe acute respiratory syn-
drome (SARS), and inhalational anthrax that have
recently come to the public's attention. Unfortunately,
respiratory complaints are also a feature of many com-
mon childhood illnesses, reducing the ability of biosur-
veillance systems to detect epidemics of greater public
health concern. What is needed, therefore, is clinical
information that is readily accessible and pre-processed in
a manner that reflects the severity and aberrancy of respi-
ratory symptoms. Using such data, discrimination
between common childhood diseases and more serious
respiratory epidemics would be possible.

Chest radiographs (X-rays), because they are readily avail-
able and are generally ordered by clinicians to evaluate
respiratory complaints that are atypical or severe, have the
potential to act as such a bio-monitoring and validation
tool. In addition, detection based on models of radio-
graph ordering can indicate when in-depth follow-up is
needed, as may occur when ordering of radiographs by cli-
nicians is excessive for a given time of the year. Such in-
depth review of radiographs may confirm clinical suspi-
cions of an emerging epidemic or signal the need to per-
form a targeted review of medical charts to identify
anomalous findings or groupings of aberrant findings that
might herald the early stages of a respiratory-related out-
break.

In this article we consider time series methods for the
modeling and detection of respiratory-related outbreak
signatures based on chest radiograph ordering patterns
from a number of pediatric emergency departments (EDs)
located in the Midwestern region of the United States.

These models include ambient temperature records col-
lected in each city, as a covariate. We use the temperature
series as a surrogate measure of the annual influenza sea-
son. Also, a patient visit count series is included in the
models to account for variations between-EDs (like ED
sizes) and within-EDs (day-of-week, for example).
Addressing the fact that the underlying process is neither
"independent or stationary", our interest is to model the
underlying "respiratory-complaint background", using
the available covariates and significant temporal depend-
encies present in the data. Without modeling the spatial
dependence directly, we investigate whether or not there
is evidence of spatial homogeneity in the statistical mod-
els across cities. We use filter-based prediction methods to
indicate evidence of respiratory-related outbreaks (e.g.,
due to anthrax attack) using chest radiograph data. We
describe the form and function of various filters that are
commonly used to detect outbreak signatures. Using a
stochastic model for an anthrax attack, we assess the per-
formance of these methods. Since there are no data that
contain outbreak patterns, the use of a model is key to
providing realistic outbreak patterns that can accurately
be used to evaluate these statistical detection methods.

Reis, Mandl, and others use time series methods to detect
evidence of disease outbreaks at Boston Children's Hospi-
tal [2-4], modeling specific clinical complaints as deter-
ministic trend and seasonalities plus a stationary
autoregressive moving average (ARMA) process. They
repeat this process for the visit counts instead of consider-
ing a joint modeling procedure. The detection algorithm
filters one-step-ahead prediction errors [5], and looks for
values in this residual process that exceed a predetermined
threshold. Their simulations are based on less realistic
deterministic outbreak models. Ivanov, et al. [6] use the
Exponentially Weighted Moving Average smoother to
measure timeliness, sensitivity, and specificity of free-text
chief complaints (information describing patient's status
on the ED visit). They indicate that the methods are good
for detecting relatively large seasonal outbreaks, but not
for small outbreaks. Burkom, et al. [7] extend this
approach using Bayes Belief Networks to improve detec-
tion sensitivity and timeliness. There are also a number of
wavelet-based and smoothing-based methods that can be
used to monitor and detect abnormalities of unknown
form, occurring over different time scales [1,8,9]. The use
of scan statistics [10-12] has also gained popularity in
recent years. Many of the methods based on scan statistics
use fixed-effect models for biosurveillance (also see, e.g.,
[13] and [14] for other methods based on fixed-effect
models).

Our manuscript is organized as follows: we start by sum-
marizing the data of interest, and propose a statistical
model for the ED data in each city. Using the growing lit-
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erature on the subject, we outline a stochastic model for
an anthrax outbreak along with a healthcare utilization
model for simulating people entering the ED. We then
describe the methodology and theory for detecting unex-
pected outbreak signatures in time series sources using fil-
ters. We examine the form and function of the filters used
for detection. In the results section, we explore the time
series models obtained for each Midwest ED included in
our study. We assess these detection methods using a sim-
ulated anthrax attack, and we end with a discussion.

Methods
A chest radiograph model for respiratory-complaints
The data of interest consist of daily counts of ED visits and
chest radiographs taken between January 1st, 2003 and
September 9th, 2004, in five metropolitan children's hos-
pitals in the Midwest of the USA (Minneapolis/St. Paul,
Milwaukee, Chicago, Akron, and Columbus), supple-
mented with time series of daily average temperature,
obtained from the Average Daily Temperature Archive at
The University of Dayton [15]. These series are shown in
Figure 1. There seems to be strong seasonal component in
the chest radiograph and visit series, for all the cities,
which is negatively correlated with temperature. Although
it could be argued that we do not have enough years of
data to prove this empirically, it is expected that a higher
number of respiratory complaints is associated with
colder temperatures.

We now discuss two aspects of the statistical model for
these daily chest radiograph counts: distribution and
scale. Although the outcome variable of interest is counts,
like other researchers in the field [1-4,6-9], we model the
data using a Gaussian rather than Poisson process. The
reasons are: (i) A normal approximation to the Poisson
random variable is reasonable when the mean number of
radiograph counts is large, as in this study; (ii) Gaussian
time series models are easier to fit, diagnose, and inter-
pret; (iii) The theory for filter-based methods commonly
used for detecting the outbreak signature in such data is
well developed for Gaussian processes. In some applica-
tions, count data are transformed when Gaussian models
are used. Transformations, such as log or square root, are
used to parameterize multiplicative models or to stabilize
the variance. We use the original scale instead of trans-
forming the data, like other researchers in the area, for
ease of interpretation. This is especially important when
we analyze filter-based detection methods in this article.
For the same reason, we do not model the number of
chest radiographs per daily ED visits (i.e., the proportion
of radiographs). The filter-based theory, allows us to
directly assess the effect of additive stochastic outbreaks
signatures upon the radiograph series.

In our study, the first ten months of data (Jan to Oct,
2003) were used as the training set, while the remaining
ten months (Nov, 2003 to Sep, 2004) were used, as a test
dataset, to evaluate the model and detection methods.

Since the goal is to predict the number of chest radio-
graphs, for each city we fit a linear time series regression
model, using the number of chest radiographs as the
response, and the number of visits and temperature as
predictor variables. We smooth the temperature series,
because we believe that long-range temporal trends are
more predictive of chest radiograph counts. Let {Rk,t}
denote the number of chest radiographs for the ED in city
k (k = 1, 2, ..., 5) on day t and let

Rk,t = β0,k + βV,k Vk,t + βT,kTk,t + Xk,t. (1)

Here {Vk,t} are the visit counts for city k and {Tk,t} is the
smoothed time series of temperatures for city k, filtered by
taking a thirty day moving average to remove intra-month
variation. To complete the model we assume that {Xk,t} is
a zero mean stationary time series (we discuss the conse-
quences of this assumption in the Discussion), that we
shall represent using a seasonal autoregressive integrated
moving average process (SARIMA). The SARIMA model
(defined in the Appendix) allows for simultaneous mod-
eling of dependencies on both the day as well as the
weekly seasonal scales. To aid in the comparison of the
dependencies across cities, the order of the time series
model, as determined by choosing the autoregressive (pk
and Pk) and moving average orders (qk and Qk), will be the
same for each city k.

A stochastic model for an anthrax outbreak
We now propose a simple stochastic model for an inhala-
tional anthrax outbreak, based on the work of Buckeridge,
et al. and Brookmeyer et al. [16,17]. As proposed by these
authors, our model incorporates two elements:

1. A stochastic model of infection and progression of the
disease.

2. A model of health-care-utilization that, on a day-by-
day-basis, tracks the behavior of each infected individual.

Any inhalational anthrax outbreak starts with the disper-
sion of the anthrax spores. Once spores are inhaled by a
subject, in the incubation stage spores either germinate or
are cleared out the lung. For the spores that germinate dur-
ing incubation, the later stages of the disease are the pro-
dromal and fulminant stages, followed by death.
Buckeridge, et al. [16] model the spread of spores over a
grid covering the Norfolk, Virginia region using a Gaus-
sian plume model. Their model considers the source and
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Time series plotsFigure 1
Time series plots. For each of the five metropolitan children's hospitals, plots of the daily chest radiograph counts (left), daily 
ED visit counts (middle) and daily temperature (right). The vertical dotted line indicates the separation between the training 
and test data.
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strength of the anthrax attack, along with prevalent wind
directions.

Instead of using the region-based approach of Buckeridge,
et al., we use the individual-based infection scheme of
Brookmeyer, et al. [17]. Although it is known that anthrax
spores can survive for long periods of time in the environ-
ment, we consider a small scale scenario. Since the popu-
lation of interest is the individuals attending children's
emergency departments, we assume an outbreak that
affects a fixed number, N say, of children. Brookmeyer, et
al. [17] define the infection probability of an individual
exposed to inhalational anthrax using a competing risk
model, modeling the dynamics of spore clearance and
germination. Let θ represent the hazard rate per unit time
(days, say) that a spore is cleared from the lung and λ be
the rate of germination. Suppose that each individual
inhales a dose of D spores. Then, the probability that at
least one spore germinates is called the attack rate (AR)
and is calculated using a Poisson approximation, as

AR = 1 - e-Dλ/(λ+θ).

For a given attack rate, the probability that at least one of
the D spores germinates within t days is given by

F(t) = 1 - (1 - AR)(1-exp(-(λ+θ)t)).

Note that the limit, limt → ∞ F(t) = AR. Based on a statistical
analysis of an anthrax outbreak that occurred in Sverd-
lovsk, Russia, Brookmeyer, et al. [17] estimate hazard
rates of between 0.05 and 0.11 for θ (which is compatible
with θ = 0.07 obtained from animal studies for an AR of
0.5). The value of λ is not estimated in their data analysis
– based on animal studies they found that the rate λ lies
between 5 × 10-7 and 10-5. Buckeridge, et al. [16] propose
log normal models for the duration of the prodromal and
fulminant stages, based on the 2001 anthrax attack in the
United States. The median duration of the prodromal
stage was 12.18 days, with a dispersion of 1.41, and the
median duration of the fulminant stage was 1.5 days with
a dispersion again of 1.41.

Next, we describe a simplified health-utilization model
for people entering the ED, based on ideas discussed in
[16]. During the incubation stage, we assume that no
infected people enter the ED. Non-infected people that
enter the ED for other chest problems are part of the back-
ground data. During the prodromal and fulminant stages
we assume a simple Markov model of utilization: each
infected subject is a Bernoulli event, independent across
days. At the prodromal stage people enter the ED with
probability Pd on a weekday and Pw on weekends. At the
fulminant stage the probability of entering the ED, Pf say,
is larger than the probabilities in the prodromal stage. The

reason is that at the fulminant stage, the anthrax symp-
toms are similar to those of a heart attack and therefore
people enter the ED with higher probability. The differen-
tiation between weekday and weekend is irrelevant at this
stage. We suppose that a small percentage of people in the
prodromal or fulminant stages are misdiagnosed and thus
need to re-enter the system. Also, we assume that people
can potentially be misdiagnosed a maximum of two times
during the same attack (10% in the first visit and 5% in
the second visit). The probabilities of entering the ED after
being misdiagnosed are increased by an additive factor, C,
for every additional entry. Our model allows for a small
probability of drop-out, to account for other ways of leav-
ing the system (e.g., pharmacy visit). The health-utiliza-
tion model could easily be extended to include, e.g.,
varying probabilities of entering the ED by stage/time,
and/or more advanced ways to exit the system.

Filter-based outbreak signature detection
The main idea of filter-based methods is to create a detec-
tion process {Dk,t}, for each time point t, which is a
weighted average of the diagnostic or syndromic data to
be used for the detection of an outbreak signature. The
weights that appear in {Dk,t} are defined using the form of
the time series model and a filter, {al} say. Extreme posi-
tive values of the detection process at a time point indicate
a possible outbreak signature. The definition of the detec-
tion processes has its origin in process control [5], and is
popularly used in the context of biosurveillance [1-4,6,8].
Naturally, the form of the filter has an important effect in
the detection process.

A common parametric approach that we follow in this
study is to first obtain the residual process by subtracting
off the non-stationary part of the model (i.e., the effect of
the covariates). We then define the filter {ck,j}, that first
decorrelates (whitens) this residual process using the one-
step-ahead prediction errors and second filters this whit-
ened series using {al} to yield the detection process {Dk,t}.
Commonly used examples of the filter {al} include the
differencing, moving average, or exponential filter. For a
fixed value of α, let 1 - α denote the specificity (the prob-
ability of no detection, when there is no actual outbreak
signature). We declare evidence of an outbreak signature
at time t if the detection process at that time point, Dk,t,
exceeds a threshold τk,α, calculated using the data or the
process. Further details are given in the Appendix.

To understand the detection process {Dk,t} for different
choice of filters, {al}, one should consider the filter
involved in the calculation of {Dk,t} using the residual
series, {Xk,t}. Using the results from the Appendix, at time
point t,
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In this expression, {fk,l} is the filter defined by the convo-
lution of the filters {al} and {ck,l}. Hence, we conclude
that the detection of outbreaks not only depends on the
choice of filter, but on the statistical properties of the time
series model which defines {ck,l}. We will now focus on
the effect of {al} (we will investigate the effect of changing
the time series model in the Simulations section). As Reis,
et al did [2], we examine four different filters, {al}, each of
which is a form of difference filter. Each filter is an average
of a number of days close to the time point minus a
weighted average of the remaining values in the past:

1. 1-day filter: {al} = (1, 0, 0, 0, 0, 0, 0);

2. 7-day filter: {al} = (1, 1, 1, 1, 1, 1, 1)/7;

3. Linear filter: {al} = (7, 6, 5, 4, 3, 2, 1)/28;

4. Exponential filter: {al} = (64, 32, 16, 8, 4, 2, 1)/127.

The filters {fk,l} for the detection processes vary according
to the amount of autocorrelation within each time series.
As an illustration, Figure 2 displays the {fk,l} filter
obtained when m = 28 for each of the four {al} filters
defined above, using a SARIMA model based on the Akron
data (details of the SARIMA model are shown in the
Results section).
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Filter plotsFigure 2
Filter plots. Plots of the four filters {fk, l} that can be used to calculate the detection process Dk, t for the Columbus series. The 
number in parentheses after the filter name is τk, α, calculated using a normal approximation.
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1. When {al} is a 1-day filter, the {fk,l} filter consists of the
current time point of the process minus a smaller
weighted decaying average of the past values. The weekly
seasonal terms in the SARIMA model are reflected in this
filter.

2. When {al} is the 7-day filter, {fk,l} is a weighted average
of the last 7 days (with most weight on the current day),
minus a weighted decaying average of the remaining past
days. The weekly seasonal terms are not as strong, com-
pared to the filter that is the convolution of the 1-day fil-
ter.

3. When {al} is the linear filter, {fk,l} is an average of 6
days in the past. Far more weight is put on the current day
relative to the previous 6 days. From this we subtract an
average of values previous to the 6 days. Most of the
weight from the second average comes from around days
8–10 in the past.

4. When {al} is the exponential filter, {fk,l} is a combina-
tion of the 4 most recent days (mostly the current day,
very little by the fourth day). We subtract an average of the
past values (mostly days 6 – 11 in the past).

In Figure 2, the numbers within the parentheses at the top

of each panel show the value of the threshold τk,0.03, cal-

culated using the normal approximation used in the
Appendix (equation 10), assuming an innovation vari-

ance of  = 1 for the process. We examine the effects

upon the sensitivity, specificity, and timeliness to detect
anthrax outbreaks in the simulations that we present later.

Results
Time series modeling
We fit the chest radiograph model given by (1) to the first
ten months of data for each ED in city k. After specifying a
model for {Rk,t}, we have a regression model with time
series errors, that can be fit using standard maximum like-
lihood methods. We selected the order of the SARIMA
model for the time series errors, {Xk,t}, as defined by (4)
in the Appendix using standard identification techniques
based on the sample autocorrelation and partial autocor-
relation (e.g., [18]). To facilitate the comparison of the
time series models across cities, we restricted to same
order of model for each series. The orders pk = 1 and qk =
1, correspond to a single autoregressive and moving aver-
age term on the daily scale, equivalent to observing an
autoregressive process of first order with measurement
error ([19], Exercise 2.9). With a seasonal period of seven
days (s = 7), we set Pk = 1 and Qk = 1, so that the random
seasonal component is a combination of an autoregres-
sive and moving average term, each of first order over a
period of seven days. The seasonal component of the time

series model corresponds to an evolution of a first order
autoregressive process with a measurement error over the
weeks.

The model fit for the data in each city was assessed using
diagnostic plots (time series plots, normal quantile plots,
autocorrelation and partial autocorrelation plots, and the
spectral estimates) of the estimated innovations of the
time series component. Figure 3 shows some of these
diagnostic plots for the Akron data (the residuals plots for
the other cities were similar). Except for a few extremely
positive values, the estimated time series looks stationary.
The normal approximation is good, as evidenced by the
straight line on the normal quantile plot. The plots of the
sample autocorrelation and partial autocorrelations func-
tions of the time series innovations lie inside the dotted
confidence bounds for a white noise process (i.e., are sam-
ples of uncorrelated time series errors).

The parameter estimates for each city are summarized in
Table 1. The standard errors for each parameter are shown
in parentheses after each estimate. We note some homo-
geneities in the results across the EDs for each city. The

intercept of the model, , is positive for all cities, being

largest in magnitude for Columbus, and smallest in mag-

nitude for Chicago. The parameter estimate, , relat-

ing visit counts and the radiograph counts is significantly
different from zero, and positive, indicating, as one would
expect, that a large number of ED visits are associated with
a larger number of radiographs. The parameter estimate,

, relating the smooth temperature and radiograph

counts is negative, indicating a significant negative associ-
ation between these two quantities across all cities. The
values of the autoregressive and moving average term on

the daily scale (  and , respectively) are similar in

value across all cities. Comparing these parameters, we
can see that the strength of daily correlations is weakest
for Milwaukee. Except for Chicago, the weekly seasonal

autoregressive and moving average terms (  and ,

respectively) are similar in value. By looking at the point-
wise 95% confidence intervals for these two parameters,
we conclude that there is no significant weekly variation

in the Chicago series. As expected the values of , the

estimated variance of the time series innovations, differ by
city.

Simulations
In the simulations described in this section we used the
following experimental design. For each city, we fit the
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regression time series model using the first ten months of
data (training data). We used the second half of the data
from November 1st, 2003 onwards and added outbreak-
related counts to test for the detection of an outbreak sig-
nature.

We simulated an outbreak, as previously described, 500
times on 500 individuals using an attack rate of 0.5. The
first day of the outbreak was randomly picked from a uni-
form distribution in the period December 5th, 2003 to
June 22nd, 2004. (Making the earliest date later than
November 1st, 2003, guarantees enough data for the fil-
ter-based methods to work with a prediction window of m
= 28 days). In the absence of other information (e.g.,
Buckeridge, et al. [16] do not report their probabilities) we

set the ED utilization probabilities to be: Pd = 0.25 (week-
day entry probability at the prodromal stage); Pw = 0.4
(weekend entry probability at the prodromal stage) and Pf
= 0.80 (entry probability at the fulminant stage). The daily
drop-out probability was set at 0.05. We assumed that
with probability 0.9, the infected persons that enter the
ED for the first time during a given outbreak receive a
chest radiograph, i.e., 10% of the infected persons are mis-
diagnosed at the first visit. In a subsequent visit, 5% of the
infected persons that re-enter the ED are misdiagnosed.
The misdiagnosis additive factor, C, was assumed to be
0.05. We added the counts from the ED visits and subse-
quent number of chest radiographs generated from the
healthcare utilization model on each day during the out-
break period. Let {Ok,t} denote the number of chest radi-

Time series residual plotsFigure 3
Time series residual plots. Summary diagnostic plots of the time series residuals based on the first ten months of training 
data from the Akron ED.
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ographs attributable to the anthrax attack on day t. Since
each simulated outbreak will be different, we start by sum-
marizing the distribution of {Ok,t}. Figure 4 shows a plot
of the 0.025, 0.5 (i.e., median), and 0.975 quantiles calcu-
lated over the 500 simulated realizations for each day t.
Examining the progression of the quantiles over time
allows us to explore the center and tails of the extra radio-
graph count distribution. The counts increase rapidly in
the first week, then stay fairly constant (except for the
spikes), for a week and then slowly drop to zero after the
second week. The small spikes are due to the different
probabilities of entry in the prodromal stage. Although
the shapes at each quantile are similar, the magnitude and
duration of the extra radiographs counts differ. The counts
drop to zero at different time points for the different
quantiles. They drop to zero after 3 weeks for the 0.025
quantile, after 4 weeks for the 0.5 quantile, and after 7
weeks for the 0.975 quantile. These patterns in the
observed time-varying distribution of the outbreak signa-
ture are a strong motivation to not use deterministic out-
break patterns, as used by some authors, since
deterministic outbreak patterns do not give a realistic
assessment of detection methods.

We declare that there is evidence of an outbreak signature
in the radiograph data at time t if the outbreak process
Dk,t, defined by (2), exceeds a given threshold, τk,α. Sup-
pose that {Yk,t} is the process defined as the sum of {Ok,t},
the extra radiograph counts attributable to the outbreak,
and the radiograph process {Rk,t} that follows model (1).
Removing the non-stationary part due to the estimated
effect of the covariates yields

By applying the filter to this series we obtain the detection
process that we would observe in the presence of extra
counts attributable to an outbreak:

To examine the effect of the filter upon the outbreak sig-
nature we examine the standardized quantity

for the filters that we defined previously. We set α = 0.03,
which corresponds to a false alarm rate of one per month
[2]. Then, as shown in the Appendix, the threshold, τk,α, is
chosen by solving P(Dk,t > τk,α) = α for τk,α. Either we can
estimate this value from the data using the 1 - α quantile
of the {Dk,t} process of non-outbreak-based training data,
or via a normal approximation, given by (10). There were
some differences between the values of τk,α for the two
methods in the simulations we studied. We chose the nor-
mal approximation method as it tended to preserve the
specificity across the filters and EDs that we considered.
Scaling gk,t by τk,0.03 and using the same simulated radio-
graph realizations due to the outbreak, allow us to com-
pare the filtered signals consistently across filters.

The filtered series will be different for each simulated out-
break pattern realization. Just as in Figure 4 with the radi-
ograph series, we calculate the 0.025, 0.5 (median), and
0.975 quantiles of the filtered radiograph series on each
day t, based on the model fit to the Akron ED series. Figure
5 shows the time-varying quantiles for each of the four fil-
ters. Relative to the no-outbreak situation, positive valuesW Y V T O Xk t k t k V k k t T k k t k t k t, , , , , , , , ,( ) .≡ − + + ≈ +β β β0
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Table 1: Parameter estimates obtained from the chest radiograph model for each of the different cities studied. The standard errors 
are shown in parentheses

Akron Columbus Milwaukee Chicago MinnStPaul

10.98 (2.51) 12.73 (1.71) 10.84 (2.14) 3.18 (1.68) 9.15 (2.86)

0.05 (0.01) 0.06 (0.00) 0.06 (0.01) 0.05 (0.01) 0.11 (0.01)

-0.15 (0.03) -0.24 (0.02) -0.14 (0.02) -0.05 (0.02) -0.22 (0.03)

0.91 (0.05) 0.92 (0.07) 0.79 (0.13) 0.96 (0.05) 0.95 (0.03)

-0.74 (0.07) -0.83 (0.11) -0.69 (0.14) -0.90 (0.07) -0.89 (0.05)

0.88 (0.16) 0.88 (0.04) 0.83 (0.25) -0.49 (0.34) 0.84 (0.08)

-0.84 (0.17) -0.99 (0.06) -0.77 (0.28) 0.42 (0.36) -0.73 (0.10)

10.71 18.09 12.45 6.46 18.33

ˆ
,β0 k

ˆ
,βV k

ˆ
,βT k

ˆ
,φk 1

ˆ
,θk 1

ˆ
,Φk 1
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,Θk 1
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denote those time points for which there would be a
greater chance of setting off a detection. Negative values
denote the time periods that would actually decrease the
chance of a detection. Except for the 0.975 quantile of the
1-day filter, each quantile of the filtered signal drops
below zero for a period, and stabilizes at zero after that.

There are some similarities in the shapes of the three
quantiles presented in Figures 4 and 5. Namely, the fil-
tered signals increase over the first week, and then slowly
decrease. The spikes in the distributions of the original sig-
nal are preserved for the 1-day filter, smoothed out for the
7-day filter, and partial smoothed over for the linear and
exponential filters. Smoothing out the spikes tends to lead
more sustained peaks (i.e., wider periods of higher sensi-
tivity). The power of detection is smaller for the 1-day and
7-day than the linear and the exponential (as witnessed by
smaller maximum heights in each of these stwo curves).
For all filters, a drop below zero occurs immediately after
the peaks; the counts go slowly back to zero. Periods for
which the filtered signals are below zero inhibit detection
and thus can mislead the prediction of the end of the out-
break signature.

We calculated the proportion of true non-detects in the
absence of an outbreak signature, based on the test data
(the specificity), as well as the proportion of true detects
during the outbreak (the sensitivity) averaging over the
500 simulated anthrax outbreaks, for each filter and city.
We calculated the actual specificity and sensitivity using
the test data, for values of α, in the range 0.01 to 0.10 in
steps of 0.005. Figure 6 displays the difference of actual
specificity (calculated using the training data) and the
nominal specificity (predetermined 1 - α) for different val-
ues of α. Curves above or below the horizontal dotted line

at zero, indicate departures from the nominal α. The Chi-
cago series preserves the nominal value of the specificity
(curves are clustered around the zero line). For the Minne-
apolis-St.Paul series the actual specificity is biased down-
wards, and for the other cities, the departure from the
nominal value changes as α increases. The choice of filter
affected the calibration. To understand the tradeoff
between the specificity and the  sensitivity we show the
receiver operator characteristic (ROC) curves,  for each
city, in Figure 7. For all cities, the 1-day filter has the poor-
est sensitivity. Except for Milwaukee, the 7-day filter tends
to have higher sensitivities compared to the other filters,
but also tends to have the poorest specificity. The expo-
nential filter balances the specificity-sensitivity tradeoff.

Tables 2 and 3 display, respectively, the median and max-
imum detection times for each filter and city for our
model. The 1-day filter performed poorly. The other filters
are more comparable. We observed (results not shown)
that the time to detection increases if the attack rate is
reduced and also if the probabilities of entering the ED is
delayed.

We now compare the performance of our model, as
defined by equation (1), with three other models, in order
to investigate the effect of different covariates and time
series components upon outbreak signature detection.
Remember {Rk,t} are the number of chest radiographs for
the ED in city k on day t, {Vk,t} are the ED visit counts, and
{Tk,t} are the thirty day smoothed time series of tempera-
ture. For each day, t, and day of the week, d = 1, ..., 7, let
Dd,t be an indicator function that is one if that day is the
dth day of the week, and zero otherwise. The four models
we compare are:

1. Our covariates plus SARIMA errors model: Rk,t = β0,k +
βV,kVk,t + βT,kTk,t + Xk,t, where {Xk,t} is the SARIMA model
used in the Results section.

2. Covariates (with seasonality) with autoregressive mov-
ing average (ARMA) errors model:

,

where {Xk,t} is an ARMA model (equation (4), without

the Φk and Θk terms) with orders pk = 1 and qk = 1. Instead

of modeling the weekly effect using a random seasonal
component we use day-of-the week as a fixed effect (cov-
ariate).

3. Covariates and no time series errors:

,

R V T D Xk t k V t k t T k k t D d k d td k t, , , , , , , , , ,= + + + +=∑β β β β0 1
6

R V T D Xk t k V t k t T k k t D d k d td k t, , , , , , , , , ,= + + + +=∑β β β β0 1
6

Quantiles of the chest radiograph distribution attributable to an anthrax outbreakFigure 4
Quantiles of the chest radiograph distribution attrib-
utable to an anthrax outbreak. Plots of the day-by-day 
quantiles of the radiograph counts attributable to an anthrax 
attack, based on 500 simulated anthrax outbreaks.
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where {Xk,t} is a mean zero white noise process with inno-

vation variance .

4. No covariates and ARMA errors: Rk,t = β0,k + Xk,t, where
{Xk,t} is the same ARMA model as in Model 2.

Figure 8 displays the difference of actual specificity (calcu-
lated using the training data) and the nominal specificity
(the predetermined 1 - α) for different values of α for
these four models. For illustration we use the linear filter,
which represents a compromise between the actual specif-
icity and sensitivity (Across all four models, the 1-day fil-
ter always had specificities closest to nominal and the 7-

σk
2

Quantiles of the filtered chest radiograph distribution attributable to an anthrax outbreakFigure 5
Quantiles of the filtered chest radiograph distribution attributable to an anthrax outbreak. Plots of the day-by-
day quantiles of the filtered radiograph counts attributable to an anthrax attack, based on 500 simulated anthrax outbreaks. 
The filtering operation, as defined by (3), is based on the first ten months of training data from Akron, in combination with one 
of four filters (1-day, 7-day, linear and exponential). Each filtered signal is scaled by τk, 0.03, calculated using a normal approxima-
tion, for comparisons to be made across filters.
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The biases in the specificityFigure 6
The biases in the specificity. A plot of the actual specificity (the specificity calculated using the training data) minus the 
nominal specificity (1 - α) for different values of α. The value of the detection threshold τk,α, was calculated using a normal 
approximation.
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Receiver operating characteristic curvesFigure 7
Receiver operating characteristic curves. Receiver operating characteristic curves (averaged over 500 simulations of an 
anthrax outbreak) for the detection of the anthrax outbreak signature in the chest radiographs at each of the five metropolitan 
children's hospitals.
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day filter had specificities furthest away). Except for
Columbus, Model 1 achieved a specificity closer to the
nominal value across all EDs (Model 3 outperforms
Model 1 in Columbus). Except in Chicago, Model 4 had
the largest magnitude of bias.

Figure 9 compares the receiver operator characteristic
(ROC) curves for the four models across the five EDs
using the linear filter (Across all models, the sensitivity for
the 1-day filter was the lowest while the 7-day and linear
filters tended to have the highest sensitivity). To readily
compare the models, we use one minus the nominal spe-
cificity on the x-axis. Except for Akron and Minneapolis/
St. Paul, the random weekly and daily time series compo-
nents in Model 1 yield higher sensitivities, compared to
including a day-of-week covariate plus ARMA errors in
Model 2, and day-of-week covariate plus no ARMA errors
in Model 3. This is due to the insignificance of the day-of-
week fixed effect in Models 2 and 3. In Akron, Model 3 has
higher sensitivities than Model 1, suggesting that the time
series errors are less relevant in outbreak signature detec-
tion for the test data. In Minneapolis/St. Paul Models 1, 2,
and 3 have equivalent sensitivities. Across all cities either
Model 2 or Model 4 had the lowest sensivities, indicating
that these models are less reliable for outbreak signature
detection.

In terms of sensitivity, except for Chicago, Model 3 tended
to outperform Model 2 for all filters in the cities we stud-
ied. This is counter-intuitive, as we would expect that a
model that includes the significant ARMA time series
component (Model 2) should outperform one that did
not contain any time series components (Model 3). In
practice there is a tradeoff between estimation and predic-
tion. Table 4 displays the Akaike information criterions
(AICs) for the four models, fit to the training data of the
five EDs. For each ED, a smaller AIC denotes a model that
better fits the data. Model 3 performed better than Model
2 in one-step-ahead predictions (Figure 9), but Model 2
better explains the training data than Model 3 (Table 4).
Using the AIC we find Model 1 fits best to the training
data, even though it does not always yield the highest sen-
sitivity.

Discussion
Our intention in this study was to find a flexible set of sta-
tistical models that could be applied across a number of
emergency departments. We employ time series models
that include covariates, such as patient visit counts and
ambient temperature, as well as random seasonal terms.
We use chest-radiograph ordering data from emergency
departments of five regional Midwest children's hospitals
to detect signatures of respiratory outbreaks. We include
visit counts series as a covariate in the chest radiograph
model to account for variations due to, for example, ED

sizes, changes  of staff within the ED, and even some sea-
sonalities across the time  period of interest. We use the
temperature series as a surrogate measure of the influenza
season – the colder months in the western hemisphere.
This is a more accurate measure of the influenza season
than using a fixed covariate such as a sinusoid. To reflect
uncertainty in the variation of the influenza background
over seasons, these models allow for randomness in the
seasonal components. The use of random seasonal com-
ponents is an advantage over traditional fixed effect mod-
els, since temporal patterns are not assumed to repeat
precisely the same way. Thus, signature detection capabil-
ities are improved for the majority of EDs – sensitivity is
higher. For increased accuracy and timeliness, the use of
our model for the data analysis should represent one com-
ponent of an integrated detection system. Once a signal is
triggered by any of our models, we recommend the use of
clinical follow-up to corroborate or refute the emergence
of a bona fide epidemic. For example, radiographs and
medical charts will need to be reviewed to identify highly
anomalous findings or groupings of aberrant findings that
would be expected to be present at early stages of out-
breaks. We believe that the approach utilized in this work
will aid in this process and is more appropriate than mod-
els using fixed periodicities that do not have the ability to
capture the underlying variabilities across seasons.

Of note, our study shows that there are similarities in the
chest radiographs series from different EDs that can, for
the most part, be modeled by similar time series models.
Similarities of the time series model across EDs have a
number of ramifications for detection of outbreak signa-
tures. First, by borrowing information across the different
EDs we can build more complicated multivariate time
series models, possibly involving the joint modeling of
chest radiograph and visit counts across locations. Sec-
ond, we could use these models to jointly detect outbreak
signatures across large spatial regions. In this context, Dig-
gle et al. [20] use spatio-temporal Cox models to identify
anomalies (real and artificial outbreaks) in the space-time
distribution of gastrointestinal infections. But, some cau-
tion is needed because one potential drawback of aggre-
gating data spatially is that the chance of detection can be
reduced (data from unaffected areas will mask the out-
break signature, and increase the detection time) [21]. For
localized outbreaks, there is still some utility in building
models that borrow strength across EDs, even if the joint
detection of outbreak signatures is not meaningful. In
terms of these localized outbreaks, a geographically close
site could act as a benchmark to judge detections at other
sites. For example, under certain circumstances an epi-
demic detection signal triggered in Columbus, but not in
Akron, could imply that some unusual event had occurred
in Columbus. It should be noted, however, that even
though there are similarities in the time series models, our
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simulations demonstrate that the sensitivity and timeli-
ness to detect outbreak signatures using chest radiograph
counts were different across EDs. These differences may
limit the utility of our models in comparing signals across
different EDs.

Our study has a number of limitations. We assume that
the resulting series {Xk,t}, after accounting for these cov-
ariates, is stationary. We also ignore the fact that an indi-
vidual may have multiple ED visits. Furthermore, these
data do not contain any known anthrax outbreaks.
Instead, outbreak patterns are simulated using a simple
stochastic model. Although more care needs to be taken
when summarizing simulation results, we agree with
Buckeridge, et al. [16] and Brookmeyer, et al. [17] that sto-
chastic outbreaks are more realistic than deterministic
ones. Other results (not presented here) indicate that the
results are different (and possibly misleading) with a
smooth deterministic outbreak rather than a stochastic
one. We utilize the four filters used by Reis, et al. [2].
Although filter design is an active area of research, espe-
cially in engineering, we decided to only study these four
simple and fairly easy to understand filters. In the future
we could extend our analysis to different choices of filter.
We view wavelet-based biosurveillance methods [1,8] as
extensions of this idea to different linear time-invariant
filters. An important issue in filter-based-prediction meth-
ods is the choice of covariates and the correlation struc-
ture for the time series model. Clearly, the properties of
the time series model could change with time. One way to
improve the prediction of outbreak signatures is to use
time-varying models, with parameters that slowly evolve
over time. The use of time-varying parameter models is
analogous to a periodic review of the parameter values.
Window-based estimation methods could be used to re-

estimate the model parameters. In this case, the choice of
window length is critical as it represents a compromise
between the efficiency to estimate the model parameters,
and the sensitivity and specificity of detection. Other
issues to be taken into account include negative singular-
ities (as defined by [8]) that can cause a drop in the sensi-
tivity. Abnormal points (like holidays or severe weather)
can cause "false alarms". Our solution to this problem is
to jointly model chest radiograph and visit counts. So far,
we have assumed that the visit counts are observed with-
out error. Related to these issues, we are investigating
methods that can be used to incorporate the uncertainty
in parameter estimation upon the detection procedure.

Conclusion
We present in this paper a stochastic model of chest radi-
ograph ordering patterns and temperature as an adjunct to
a biosurveillance system for detecting emerging respira-
tory-related epidemics, focusing on a potentially high-
impact public health hazard such as inhalational anthrax.
We show that in time series analysis of respiratory-related
data it is important to capture important seasonal effects
that are present in such data, as well as to consider the
influence of important covariates that can be easily
obtained and incorporated into the models. We also dem-
onstrate the importance in assessing the sensitivity and
specificity of these methods, of utilizing more realistic sto-
chastic, rather than deterministic, models for outbreaks
patterns. We demonstrate spatial homogeneity in chest
radiograph data across EDs and suggest ways in which
these observations may be used to improve regional bio-
surveillance for (re)emergent infections.

Regardless of the choice of filter, our simulations demon-
strate that the specificity calculated using the training data

Table 2: Median time to detect an outbreak for each city and filter

1-day 7-day linear exponential

Akron 3 1 1 2
Columbus 1 1 1 1
Milwaukee 4 1 1 1
Chicago 2 1 1 1
Minn/St. Paul 2 1 1 1

Table 3: Maximum time to detect an outbreak for each city and filter

1-day 7-day linear exponential

Akron 9 9 7 7
Columbus 2 1 1 1
Milwaukee 9 7 7 7
Chicago 7 4 4 5
Minn/St. Paul 6 2 4 5
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The biases in the specificity for the four modelsFigure 8
The biases in the specificity for the four models. A plot of the actual specificity (the specificity calculated using the train-
ing data) minus the nominal specificity (1 - α) for different values of α using a linear filter, for four different models. The value 
of the detection threshold τk,α, was calculated using a normal approximation.
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Receiver operating characteristic curves for the four modelsFigure 9
Receiver operating characteristic curves for the four models. Receiver operating characteristic curves (averaged over 
500 simulations of an anthrax outbreak) for the detection of the anthrax outbreak signature in the chest radiographs at each of 
the five metropolitan children's hospitals using the four different models. The linear filter is used in each case.
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varied across the five EDs studied (Figure 6). The tradeoff
between specificity and sensitivity also varied by the ED
(Figures 6 and 7). The 1-day filter, while closely matching
the nominal specificity, performed poorly in terms of
maximizing the sensitivity to detect an outbreak signa-
ture. The 7-day filter, by smoothing over the outbreak sig-
nature (Figure 5), maximized the sensitivity, but at a
compromise to the actual specificity obtained (Figures 6
and 7). The linear and exponential filters provided a bal-
ance between the specificity and sensitivity. Detection
using our covariate-based seasonal time series model per-
formed well across all EDs compared with fixed-effects
regression models or time series models that omitted sea-
sonal terms and/or covariates (Figures 8 and 9).
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Appendix
The SARIMA model
In city k, we define a SARIMA (pk, 0, qk) × (Pk, 0, Qk) with
period of seasonality s for the time series {Xk,t} using the
notation of Section 6.5 of Brockwell and Davis [19]. Let-
ting B denote the backshift operator defined by BrZk,t = Br-

1 Zk,t-1 for r > 0, with B0 Zk,t = Zk,t, we define Xk,t by

φk(B)Φk(Bs)Xk,t = θk(B)Θk(Bs)Zk,t.

In this model the parameter s denotes the period of the
seasonality. The characteristic polynomials for the
SARIMA model are

The terms φk(z) and θk(z) define an autoregressive moving
average process on the unit time scale, whereas the terms
Φk(z) and Θk(z) define an autoregressive moving average
process on a time scale of s units. Thus we can model
dependencies simultaneously on two different time

scales. It is customary to restrict to the class of causal time
series models (e.g., [[19], Chapter 2]). The SARIMA model
is causal (i.e., can be represented in terms of a moving
average (MA) process of only past events) if φk(z) ≠ 0 and
Φk(z) ≠ 0, for complex valued z such that |z| ≤ 1.

To complete the model we assume that {Zk,t} is a mean

zero white noise process with innovation variance .

Filtering
A discrete-time filter is a set of coefficients, {fl : l = ..., -2, -
1, 0, 1, 2, ...}, where ∑l|fl| < ∞. The new time series {Yt}
obtained by filtering the time series {Xt} using {fl} is
defined by the convolution

for each t. The actual operation that a filter carries out
upon a time series depends on the values of the filter coef-
ficients. Simple examples of a filter include the differenc-
ing filter defined by

which corresponds to Yt = Xt - Xt-1 for each t, and the sim-
ple moving average filter of length 2M + 1 whose filter is
defined by

Thus, , for each t.

Suppose that the radiograph series {Rk,t} follows a time
series model given by (1). Let γX,k(·) denote the autocov-
ariance function of the stationary error component {Xk,t}.
Consider only the last m values of the process Rk,t, {Rk,t-1,
..., Rk,t-m}. Given the model parameters, by linearity of the
prediction operator, the best linear one-step predictor of
Rk,t is given by

where
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denotes the one-step ahead prediction for the SARIMA
process and {bk,1, ..., bk,m} are obtained from the solution
of the set of m linear equations:

The one-step prediction error process, {Ek,t} is

where we define ck,0 = 1 and ck,j = -bk,j for j = 1, ..., m. The
process {Ek,t} is a filtering of {Xk,t} and so if {Xk,t} is sta-
tionary, by the linear time invariant filtering result for sta-
tionary processes, {Ek,t} is also stationary ([18], Theorem
4.10.1). Moreover for large enough m, if {Xk,t} is an invert-
ible time series process then we can approximate {Xk,t} by
an autoregressive, AR(m) process ([18], Theorem 4.4.3).
Using this approximation we can argue that {Ek,t} is
approximately a mean zero Gaussian independent and
identically distributed process with variance gamma
γX,k(0).

Let {a0, ..., aL-1} denote a pre-specified filter of width L. We
define the detection process {Dk,t} by filtering the error
process {Ek,t} using this filter. Thus,

By the filtering result for stationary processes, stationarity
of {Xk,t} implies that {Dk,t} is also a stationary process.

For large enough m, since {Ek,t} is approximately a white

noise process,{Dk,t} is approximately a moving average

process of order L - 1 with coefficients θ0 = 1, θj = aj-1/a0 for

j = 1, ..., L - 1, and innovation variance .

We declare evidence of an outbreak signature (test posi-
tive), at time t if the observed detection value Dk,t is larger
than a given threshold. For a fixed value of α, let 1 - α
denote the specificity (the probability of a true-negative).
Similarly, the sensitivity is defined to be the probability of

true positive. The threshold, τk,α, is chosen by solving P
(Dk,t > τk,α) = α for τk,α. Either we can estimate this value
from the data using the 1 - α quantile of the {Dk,t} process
of non-outbreak-based training data, or if {Xk,t} is Gaus-
sian then for large m,

where Z is a standard normal random variable. The solu-
tion for the threshold under this approximation is

where Φ-1(·) denotes the inverse cumulative distribution
function for a standard normal random variable.

The filter-based detection method requires knowledge of
the "true" values of the model parameters. In our work, we
replace the parameters with their maximum likelihood
estimates.
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