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Abstract
Background: When developing multivariable regression models for diagnosis or prognosis,
continuous independent variables can be categorized to make a prediction table instead of a
prediction formula. Although many methods have been proposed to dichotomize prognostic
variables, to date there has been no integrated method for polychotomization. The latter is
necessary when dichotomization results in too much loss of information or when central values
refer to normal states and more dispersed values refer to less preferable states, a situation that
is not unusual in medical settings (e.g. body temperature, blood pressure). The goal of our study
was to develop a theoretical and practical method for polychotomization.

Methods: We used the overall discrimination index C, introduced by Harrel, as a measure of
the predictive ability of an independent regressor variable and derived a method for
polychotomization mathematically. Since the naïve application of our method, like some existing
methods, gives rise to positive bias, we developed a parametric method that minimizes this bias
and assessed its performance by the use of Monte Carlo simulation.

Results: The overall C is closely related to the area under the ROC curve and the produced
di(poly)chotomized variable's predictive performance is comparable to the original continuous
variable. The simulation shows that the parametric method is essentially unbiased for both the
estimates of performance and the cutoff points. Application of our method to the predictor
variables of a previous study on rhabdomyolysis shows that it can be used to make probability
profile tables that are applicable to the diagnosis or prognosis of individual patient status.

Conclusion: We propose a polychotomization (including dichotomization) method for
independent continuous variables in regression models based on the overall discrimination index
C and clarified its meaning mathematically. To avoid positive bias in application, we have
proposed and evaluated a parametric method. The proposed method for polychotomizing
continuous regressor variables performed well and can be used to create probability profile
tables.
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Background
In modern diagnostic and descriptive prognostic research,
regression models are often used to model an illness-
related outcome based on a number of independent
regressor variables, also referred to as diagnostic indica-
tors or prognostic predictors [1]. Such regressor variables
can be categorical or numerical. From the vantage point of
applicability in a clinical setting, categorization (often
dichotomization) of continuous independent variables
can be useful. Obtaining a prediction at the bedside with-
out computer is easier with a prediction table based on
categorized variables than with a prediction formula.
Even if calculation is not problematic, table presentation
of the risks has the practical advantages that (1) repeated
use of the table will give physicians an intuitive feel for the
disease risk, and (2) even if the value of one or two of the
prognostic variables is not available, physicians can
obtain a probability range corresponding to the patient's
risk by referring to the most extreme cases in the table.

Depending on the setting, several different approaches
have been proposed for dichotomization. One popular
method is to find a cutoff point to discriminate whether a
patient belongs to a normal group or a disease group
based on the observed value of a predictive factor. This
type of discriminant function analysis was first developed
by R.A. Fisher [2] in 1930's. The Mahalanobis distance [3]
can be used to find the optimal cutoff point if the variable
distributes normally.

Another solution, sometimes used in clinical chemistry, is
to find a cutoff point that maximizes the sum of sensitivity
(SE) and specificity (SP) [4,5]. There are different versions
of this approach where one can maximize the weighted
sum of SE and SP, or maximize the SE while fixing SP to
an acceptable value [6,7]. Cantor claimed that these meth-
ods have been used in many published articles without
giving a theoretical foundation or scientific justification
[8].

Yet another straightforward and popular method is to
select a classification that maximizes a measure of differ-
ence between the two groups, such as the p-value of a chi
square statistic [9,10]. This method, sometimes called the
minimum p-value approach, has been described and used
for the prognosis of cancers [11,12]. Several authors have
pointed out that the naïve selection used in this method
overestimates the significance of the predictor or indica-
tor's relationship to the dependent variable because of
multiple testing, and several adjustment methods of the
observed p-values have been proposed [9-18].

Besides using the data at hand to come to a dichotomiza-
tion of continuous variables, it is also possible to use
profit (benefit) or loss (cost) information. In that case, the

optical cutoff point is defined so as to maximize the
expected utility. Metz showed that the optimal point is the
spot on the ROC curve at which the slope is (L/B)(1-p)/p,
where B is the net benefit of treating diseased individuals,
L the net loss of treating non-diseased individuals, and p
the prevalence of the disease under study [19]. Neverthe-
less, Cantor et al., in a review of studies in the medical lit-
erature that referred to "ROC" and "cutoff", found that
only a few articles included a L/B ratio in the analysis for
determining an optimal cutoff point [8].

The above methods all concern dichotomization. How-
ever, when central values refer to normal states and dis-
persed values to diseased states, two (or more) cutoff
points are necessary to discriminate these states. Conse-
quently, one is inevitably faced with the challenge of poly-
chotomization. Unfortunately, methods for
polychotomization are less developed. Although Krist-
jansson et al. [20] described a method for choosing opti-
mal cutoff points in a screening test with a continuous
score to divide people into a number of disease categories,
their method is not applicable to polychotomization of
regressor variables in regression models; their criterion
loses its meaning in this setting.

The major goal of our study is to develop a theoretical and
practical method for polychotomization. We propose a
novel approach for independent continuous variables in
regression models based on the overall discrimination
index C introduced by Harrel et al. [21,22]. We will show
that this index is closely related to the area under the ROC
curve for the original continuous variable and that the
resulting categorized variables have predictive properties
comparable to the original continuous variable. However,
the naïve search of the maximum C index gives rise to pos-
itive bias, not unlike the minimum p-value approach [9-
18] or the method of maximizing the sum of the sensitiv-
ity and specificity [4,5]. We therefore propose a paramet-
ric version in which the estimates of the predictive
performance and cutoff points are both essentially unbi-
ased. We evaluate this method and present means and
standard deviations of predictive performance and cutoff
point estimates for typical cases via Monte Carlo simula-
tion. Finally, we provide a simple application example
with a predictive regression model for rhabdomyolysis
and show how our method can be used to create a proba-
bility profile table.

Methods
The categorization criterion
We assume there is an existing predictive model based on
patients that belong to either a normal group or a diseased
group and that the distribution of the relevant independ-
ent continuous variable X is known or that we have obser-
vations on it. Our goal is to find a method of optimal
Page 2 of 13
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2006, 6:41 http://www.biomedcentral.com/1472-6947/6/41
polychotomization for this continuous variable with a
minimum loss of predictive ability. This involves making
the number of possible patient's profiles finite, and
replacing the regression formula with a table of the risk
probabilities for all patient profiles. Different from most
previously developed approaches we have no a priori
intention to categorize the variable into two classes and
we assume that it might be necessary to compare categori-
zations to three or more classes.

For this discussion we need a measure to evaluate the pre-
dictive power of a predictive variable. Our choice for a
measure of predictive power is the overall discrimination
index C [21-24], or the 'pair consistency probability', as
we like to call it. This measure refers to the probability that
the relative position of single normal-disease pair values is
consistent with the relative position of their values of cen-
tral tendency.

Without losing generality, we assume that the central
value of the distribution of the random variable X in the
group of healthy cases is smaller than the central value in
the group of diseased cases. Next we take a sample xi[h]
from the healthy group and another sample xi[d] from the
diseased group randomly. Then the pair (xi[h], xi[d]) is con-
sidered consistent if xi[h] <xi[d], tied if xi[h] = xi[d], and incon-
sistent if xi[h] > xi[d] and the pair consistency probability C is
defined as:

where pcon and ptied denote the probabilities that the pair is
consistent and tied respectively.

Next, if we let fh represent the probability density function
(PDF) of X in the healthy group and fd represent the PDF
of X in the diseased group, and let z represent a cutoff
point for dichotomization, then the true positive fraction
Tp and false positive fraction Fp are defined by

In the case that the variable is continuous, as z increases,
Tp and Fp both decrease continuously. The ROC curve
[19,25] can be depicted as the trace of points (Fp , Tp ).
Green and Swets [25] demonstrated that

This means that the pair consistency probability is equiv-
alent to the area under the ROC curve for continuous var-
iables. We will demonstrate that this relation also holds
for polychotomized variables, and that the pair consist-
ency probability C is a good measure to compare the pre-
dictive ability with the original continuous variable.

Optimal cutoff point for dichotomization
First, we discuss our method for dichotomization in
which a continuous independent variable in a predictive
model is categorized to one of two classes by a cutoff
point. If we denote the value of the cutoff point z and
assume that X is continuous in both the healthy and the
diseased groups, that is, P(x[h] = z) = 0 and P(x [d] = z) = 0,
the results of random pair sampling are classified into the
following four cases:

x[h] <z and x[d] <z,  tied

x[h] <z and x[d] > z,  consistent

x[h] > z and x[d] <z,  inconsistent

x[h] > z and x[d] > z,  tied.

Let α denote the probability that x[h] is greater than z, and
β denote the probability that x[d] is less than z. Assuming
that the central value of the distribution of the random
variable X in the group of healthy cases is smaller than the
central value in the group of diseased cases, we have

Then the probability of a consistent pair becomes

pcon = (1 - α)(1 - β),

and the probability of a tied pair becomes

ptied = (1 - α) β + α (1 - β).

Assigning these probabilities into (1), we have

C = 1 - (α + β)/2.  (3)

It follows that the highest pair consistency probability is
achieved when the sum of the two types of errors, α + β, is
minimized. Since sensitivity is (1 - β) and specificity is (1 -
α), we have

C = (sensitivity + specificity)/2.  (4)

Therefore the highest pair consistency probability is
achieved when the sum of sensitivity and specificity is
maximized.
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Figure 1 illustrates the changes of C when fh and fd are nor-
mal. Let z be the cutoff point where fh and fd cross between
two peaks. If the cutoff point is shifted to the right from z,
then α will decrease and β will increase. In this case, since
fd is greater than fh in this interval, the increase of β is
greater than the decrease of α. If the cutoff point is shifted
to the left, then the opposite is true. Therefore, the sum of
the two types of errors, α + β, occupies the local minimum
at the point where fh and fd intersect between the peaks. If
fh and fd are unimodal and cross only at one point, α + β
occupies the true minimum at the cross point.

Generation and meaning of the ROC straight line graph 
for a dichotomous variable
As we have described earlier, when the independent vari-
able is continuous, Tp and Fp both decrease continuously
and the ROC curve can be depicted as the trace of points
(Fp , Tp ). But what happens to the ROC curve when the
variable is dichotomous? Let z0 represent the cutoff point
and Fp0 and Tp0 denote the false positive and true positive
fractions for z0, respectively. Unlike the continuous varia-
bles, only three points (1, 1), (Fp0, Tp0) and (0, 0) are
depicted in Fp - Tp coordinates and we cannot obtain a
true curve (see Figure 2). We jointed these points with
straight lines, and labelled this graph the ROC straight line
graph. Then area A under the ROC straight line graph
becomes:

A = Fp0Tp0/2 + (1 - Fp0)Tp0 + (1 - Fp0)(1 - Tp0)/2

= 1 - (α + β)/2 = C.  (5)

This means that for a dichotomous variable, the area
under the ROC straight line graph for a dichotomous vari-
able is, analogous to the case with a continuous variable,
equivalent to the pair consistency probability C. There-
fore, finding a cutoff point that maximizes C is equivalent
to the problem of finding the point (Fp0 , Tp0 ) on the orig-
inal ROC curve that maximizes the area A under the ROC
straight line graph.

Optimal cutoff points for polychotomization
Next, consider the polychotomous case. Again, let x[h] be a
sample from the continuous random variable X in the
healthy group and x[d] a sample from the same variable in
the disease group, both taken randomly. Let z0 = -∞, zn = ∞
and z1, z2,..., zn-1 be cutoff points where z1<z2 <...<zn-1. We
define that

H P z x z f x dx k nk k h k hz

z
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The ROC curve and ROC straight line graph for the sample distributions in Figure 1Figure 2
The ROC curve and ROC straight line graph for the 
sample distributions in Figure 1. The ROC curve was 
derived from the distributions in Figure 1 and a ROC straight 
line graph for the cutoff point z0, which gives the maximum C, 
was also plotted. Filled part A shows the area under the ROC 
straight line graph.

Sample illustration of the change of pair consistency probabil-ity CFigure 1
Sample illustration of the change of pair consistency 
probability C. Lower curves: sample illustration of the proba-
bility density functions in the healthy group (fh) and in the dis-
eased group (fd); Upper curve: pair consistency probability C 
(=(1- (α + β)/2)) as a function of cutoff point z. The sum of 
the two types of errors, α + β, takes a local minimum at the 
point where fh and fd intersect.
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Then the probabilities for tied and concordant pairs
become

and the pair consistency probability C can be calculated
from equation (1).

We also define

Tpk = P (x[d] > zk) and Fpk = P (x[h] > zk)  (k = 0,..., n).

The points (Fpk, Tpk) lie on the original ROC curve, and
the set of points (Fpk, Tpk) jointed by straight lines yields
the ROC straight line graph. Let A represent the area under
the ROC straight line graph and Ak represent the area
under the line whose ends are (Fpk-1, Tpk-1) and (Fpk, Tpk).
As illustrated in Figure 3, the area Ak is

Therefore,

Then we have

Again, the pair consistency probability C for the polychot-
omized variable is equivalent to the area under its ROC
straight line graph, and the problem of finding the opti-
mal cutoff points that maximize C is mathematically
equivalent to finding the set of edge points of the ROC
straight line graph that maximizes the area A under that
graph.

Optimal cutoff points for variables for which normal and 
diseased cases have a common central tendency
There are many predictive variables whose central values
refer to a normal state and whose more dispersed values
refer to less preferable states. In the example of rhabdomy-
olysis prognosis that will follow later, body temperature,
pulse rate, plasma sodium, and plasma pH are such varia-
bles. For these predictors, we need to find at least two cut-
off points to discriminate normal and abnormal states. If
we denote the values of the cutoff points z1 and z2 (z1 <z2),
and regard the value between these two cutoff points as
normal, then type I error α and type II error β become:

and

The pair consistency probability C can now be calculated
with equation (3) and the combination of cutoff points
(z1, z2) which maximizes (3) becomes the solution. In
case of categorization of the variable into more than three
states, we can define the optimal combination of cutoff
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Area Ak under the ROC straight line graphFigure 3
Area Ak under the ROC straight line graph. The filled 
part shows the area Ak under the ROC straight line graph 
with end points (Fpk-1, Tpk-1) and (Fpk, Tpk).
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points as follows: Let zn = -∞, wn = ∞ and z1, z2,..., zn-1, w1,
w2,..., wn-1 be cutoff points where zn-1 <...<z2 <z1 <w1 <w2
<...<wn-1, and

Then the probabilities for tied and concordant pairs
become

and the pair consistency probability C can be calculated
from equation (1). The combination of cutoff points that
maximizes C becomes the solution.

Parametric method for estimating cutoff points and 
predictive performance
The polychotomization methods proposed in the previ-
ous sections have been developed under conditions where
the exact distribution of a prognostic or diagnostic factor
in a population is known. However, in research practice
we work with samples and we need to discuss whether our
methods can be applied in situations involving parameter
uncertainty. Although some methods were developed for
correct estimation of the pair consistency probability C in
these situations, including non-parametric ones [22-24],
none of them addressed the estimation of cutoff points
and they can therefore not be applied to our setting.

The challenge we are faced with is that if we repeat the
evaluation of the pair consistency probability to find opti-
mal cutoff points, for instance by increasing the possible
value of the cutoff point with a certain step, it gives rise to
estimation error just like the minimum p-value approach
[9-18] and would mistakenly lead to an optimistic conclu-
sion on the predictive performance of the model in future
observations.

It is clear that we need a practical method that does not
suffer from this over-estimation bias. In this paper we
show that if fh and fd can be transformed to normal distri-
butions, a parametric method provides essentially unbi-
ased estimators of predictive performance and cutoff
points.

Our method is based on the following:

a) the assumption that the probability density functions
of an independent variable on the healthy and disease
groups, fh and fd, are both normally distributed or can be
transformed to a normal distribution,

b) the estimation of the means and standard deviations of
fh and fd, mh, sh, md, and sd from sample data,

c) the localization of the optimal cutoff points based on

the estimated distributions  and , and

d) the calculation of the predictive performance based on
the estimated cutoff points.

Distributions of the estimators for the cutoff point and the 
pair consistency probability
If fh and fd are both normal and sh = sd, then the two curves
intersect at x = (mh + md)/2. The pair consistency probabil-
ity C takes the maximum value at this point as mentioned
earlier. In the case that sh is not equal to sd, the two curves
intersect at the following two points:

and the point that is located between mh and md can be
used to calculate the true maximum value of the pair con-
sistency probability C with equations (2) and (3). As it is
difficult to evaluate the statistical properties of the above
formulae analytically, even for the simplest dichotomiza-
tion case, we performed a Monte Carlo simulation to
assess the estimation of the cutoff points and the corre-
sponding C. For these purposes, a custom simulation pro-
gram was written in the programming language Pascal
with the following characteristics:

a) the assumption that fh and fd are both normal,

b) generation of samples of healthy and disease groups,
each with a given number of measurements, by randomly
generating the value of the prognostic variable,

c) estimation of the optimal cutoff points and pair con-
sistency probability C by naïve stepwise repeated search,
in which the cutoff point is changed with a certain small
step Δz and the corresponding C is evaluated based on the
sample data to find a point which gives the maximum C.
In case of polychotomization, this step is iterated for every
combination of possible cutoff values,

d) estimation of the parameters of fh and fd and calculation
of the optimal cutoff points based on the estimated distri-
butions (including the corresponding predictive ability
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C), in which cutoff points are searched numerically in the
same manner as the above stepwise repeated search based
not on the sample data but on the estimated PDFs,

e) repeat the above sample generation and estimating
steps 10,000 or 100,000 times for each of various combi-
nations of population parameters.

Extension for multiple associated independent variables
Thus far, we have discussed a method for selecting cutoff
points that maximizes the predictive ability of each prog-
nostic variable individually. When a regression model has
more than one explanatory variable, the version of our
method presented in this article can only be applied if the
variables are not associated (no correlation and no inter-
action). Since associations between prognostic variables
are common, our method requires a multivariable exten-
sion in which cutoff points are found while taking such
associations into account.

Our maximum C index approach can be applied to multi-
variate scenario if the distributions of a number of prog-
nostic variables for healthy and diseased groups can be
described by multivariate normal distributions and if the
calculation times are acceptable [26]. However, because
we are still in the process of assessing the performance of
multivariable extensions and comparisons with other
approaches, we will only give a short summary below:

a) determine the regression model that best fits the obser-
vations,

b) estimate the multivariate normal distribution parame-
ters from the observed data,

c) for a set of categorized variables defined by a combina-
tion of cutoff points, calculate the regression equation and
evaluate its overall C index (based not on the observed
data but on the estimated distributions),

d) iterate (c) systematically for every combination of cut-
off points and select the combination of cutoff points
which gives the maximum overall C index for the regres-
sion equation.

Results
Evaluation of the parametric method by Monte Carlo 
simulation
In this section, we present an evaluation of our parametric
method, together with the naïve application of a stepwise
repeated search based on multiple evaluations. In the
absence of a standard method for polychotomization, the
latter is currently probably the first choice for researchers,
mainly due to its simplicity.

Figures 4, 5, 6, illustrate the frequency distributions of the
estimates of predictive performance C for the repeated
search method and the parametric method for dichotomi-
zation (Figure 4), trichotomization (Figure 5), and poly-
chotomization into four categories (Figure 6), when fh and
fd are both normally distributed and nh = nd = 30. Since the
true values for the C were 0.722, 0.748 and 0.755 for
dichotomization, trichotomization and polychotomiza-
tion into four categories, the parametric method provides
essentially unbiased normally distributed estimators
(means and SDs: 0.725 ± 0.043, 0.751 ± 0.048, and 0.758
± 0.050), whereas the repeated search method has rela-
tively large positive biases (0.752 ± 0.048, 0.786 ± 0.051,
and 0.795 ± 0.053).

Figure 7 shows the frequencies of the optimal cutoff point
in dichotomization estimated by the each of two meth-
ods. Whereas the true cutoff point is 1.150, the estimated
values and their standard deviations are 1.175 ± 0.209
with the parametric approach and 1.071 ± 0.433 with the
repeated search method, which means the former pro-
vides a more accurate estimator for the cutoff point with
higher precision.

We repeated the above simulations for various nh and nd
(nh = nd) and Figure 8 and Figure 9 summarize the results.
The graphs show that the estimation by the parametric
method is almost unbiased even if the sample size is rela-
tively small, both for dichotomization (Figure 8) and tri-
chotomization for variables whose realizations in healthy
and diseased groups have a similar central tendency (Fig-
ure 9), whereas the naïve repeated search method shows

Distributions of estimated pair consistency probability C in 100,000 simulations of dichotomizationFigure 4
Distributions of estimated pair consistency probabil-
ity C in 100,000 simulations of dichotomization. The 
frequency distributions of the estimate of the pair consist-
ency probability C by the repeated search method (dotted 
line) and the parametric method (solid line) in 100,000 simu-
lations of dichotomization, with fh ~ N(0, 12), fd ~ N(1.5, 22) 
and nh = nd = 30. The class width for the graph is 0.0167.
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The frequency distributions of the estimated optimal cutoff pointFigure 7
The frequency distributions of the estimated optimal 
cutoff point. The frequency distributions of the optimal cut-
off points estimated by the repeated search method (dotted 
line) and the parametric method (solid line) in 100,000 simu-
lations of dichotomization for the same case in Figure 4 with 
fh ~ N(0, 12), fd ~ N(1.5, 22) and nh = nd = 30. The class width 
for the graph is 0.02.
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Changes of estimated pair consistency probability C in dichotomization as a function of sample sizeFigure 8
Changes of estimated pair consistency probability C 
in dichotomization as a function of sample size. 
Results from Monte Carlo simulation of the changes of the 
mean value of the estimated pair consistency probability C by 
the repeated search method (red line with squares) and the 
parametric method (blue line with circles) for various sample 
sizes each of which is calculated by 10,000 simulations of 
dichotomization with fh ~ N(0, 12) and fd ~ N(1.5, 22).
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Distributions of estimated pair consistency probability C in 100,000 simulations of trichotomizationFigure 5
Distributions of estimated pair consistency probabil-
ity C in 100,000 simulations of trichotomization. The 
frequency distributions of the estimate of the pair consist-
ency probability C by the repeated search method (dotted 
line) and the parametric method (solid line) in 100,000 simu-
lations of trichotomization, with fh ~ N(0, 12), fd ~ N(1.5, 22) 
and nh = nd = 30. The class width for the graph is 0.0167.

0

5000

10000

15000

0 0.2 0.4 0.6 0.8 1

parametric method

repeated search method

estimated C

true value = 0.748

fr
e

q
u

e
n

cy

Distributions of estimated pair consistency probability C in 100,000 simulations of polychotomization to four categoriesFigure 6
Distributions of estimated pair consistency probabil-
ity C in 100,000 simulations of polychotomization to 
four categories. The frequency distributions of the esti-
mate of the pair consistency probability C by the repeated 
search method (dotted line) and the parametric method 
(solid line) in 100,000 simulations of polychotomization to 
four categories, with fh ~ N(0, 12), fd ~ N(1.5, 22) and nh = nd = 
30. The class width for the graph is 0.0167.
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non-negligible bias even when the sample size is large (n
= 300).

Distributions of estimators from the parametric method
Table 1 shows how the pair consistency probability C
increases when the number of the cutoff point changes
from one to three for the case that x[h]~ N(0, 12) and x[d] ~
N(μd, 1.52). For instance, when the pair consistency prob-
ability for the original continuous variable is 0.8 (μd =
1.517), the pair consistency probability for the dichot-
omized, trichotomized and quatrochotomized variables
are 0.738, 0.775 and 0.787, respectively.

Table 2 summarizes the means and standard deviations of
the pair consistency probability C estimated by the para-
metric method for dichotomization when the sample

sizes of the two groups are equal (n = 10, 25, 50, 100, 200,
and 500) and σd = 1.5σh. Table 3 gives the results for tri-
chotomization when the continuous variable in healthy
and diseased cases has a common central tendency and
the sample sizes of the two groups are equal. These tables
can be used to evaluate the accuracy and precision of the
estimated predictive ability of C for various sample sizes.

Example: Polychotomization of the prognostic factors of 
rhabdomyolysis
Rhabdomyolysis is a potentially lethal complication,
often observed in patients who have attempted suicide
with large doses of psychotropic drugs. Though it is
important to make the diagnosis and begin proper treat-
ment at an early stage, the diagnosis of rhabdomyolysis is
difficult unless specific enzymes and myoglobin in skele-
tal muscle are detected by laboratory tests.

To find prognostic variables of rhabdomyolysis at an out-
patient clinic where laboratory data are not available, we
previously evaluated 131 cases of acute drug toxicosis [27-
29] and found twelve variables to be significantly contrib-
uting to diagnosis of rhabdomyolysis (rhabdomyolysis
group: n = 34, non-rhabdomyolysis group: n = 97). For
this example, we selected three non laboratory data varia-
bles to predict the risk at the outpatient clinic: (1) qtc: ECG
QTc (non-dimensional); (2) t: time from taking the drug
to hospitalization (hours); and (3) bt, body temperature
(Celsius).

Applying the maximum pair consistency probability crite-
rion, the three continuous variables are categorized,
assuming that qtc is a normal variable, t a log-normal var-
iable and bt a variable with a common central tendency.
Table 4 shows the selected cutoff points and the changes
of the pair consistency probability. Comparing the pair
consistency probabilities of the categorized variable, we
can observe how predictive ability changes with polychot-
omization and the pair consistency probability C can be
used as a measure to evaluate the loss of predictive ability
by categorization.

Table 1: Changes of the pair consistency probability C by the number of cutoff points

μd* C** C1*** C2*** C3***

0.691 0.650 0.630 0.648 0.653
0.941 0.700 0.663 0.688 0.695
1.216 0.750 0.700 0.731 0.741
1.517 0.800 0.738 0.775 0.787
1.868 0.850 0.780 0.821 0.835
2.310 0.900 0.828 0.871 0.884
2.965 0.950 0.886 0.925 0.937

* Prognostic variables are assumed to satisfy x[h] ~ N(0, 12) and x[d] ~ N(μd, 1.52)
** Pair consistency probability for the original continuous variable
*** Pair consistency probabilities for the categorized variables where suffixes indicate the number of cutoff points

Changes of estimated pair consistency probability C in tri-chotomization as a function of sample sizeFigure 9
Changes of estimated pair consistency probability C 
in trichotomization as a function of sample size. The 
changes of the mean value of the estimated C for various 
sample sizes each of which is calculated by 10,000 simulations 
of trichotomization for a variable with a common central 
tendency with fh ~ N(0, 12) and fd ~ N(0, 22).
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Considering the predictive performance of the each of the
categorized variables and convenience in the clinical set-
ting, we finally chose the cutoff point values 0.45 for qtc,
5.0 and 12.0 for t, and 34.0 and 37.2 for bt. We then con-
verted the continuous variables to categorical variables.
Next, we applied the cross-split-half-method [30] to vali-
date the effectiveness of prediction by these variables with
logistic regression [31] and evaluated the amount of over
estimation of prediction performance by a single data set.
The estimated optimism for the overall C index was 0.018,
which is sufficiently small.

Example: Risk table for prognosis of rhabdomyolysis
Based on categorized variables, we obtained the new pre-
diction formula:

p = 1/(1 + exp(7.96 - 3.13QTC - 6.22T1 - 3.11T2 - 1.97BT)
 (8)

where QTC is ECG QTc (1 for more than or equal to 0.45
and 0 for less than 0.45), T1 is the time from drug inges-
tion to hospitalization (1 for more than or equal to 12
hours, 0 for otherwise), T2 is also the time from drug

ingestion to hospitalization (1 for less than 12 hours and
more than or equal to 5 hours, 0 for otherwise), and BT is
body temperature (1 for more than or equal to 37.2° or
less than or equal to 34.0°, and 0 for otherwise). Since the
overall index C for this formula was 0.945, we estimate
the predictive performance in future data will be around
0.927(= 0.945 - 0.018).

To ascertain the fitness of the selected regression model,
we conducted the Hosmer-Lemeshow goodness-of-fit test
[32] by dividing disease probability into eight classes. The
actual number of occurrences for each class showed good
agreement with the expected number of occurrences of
rhabdomyolysis (p = 0.618).

Since all the three prognostic variables are categorized, the
number of patient profiles becomes twelve and the risk
probabilities of rhabdomyolysis for all possible patient
profiles can now be obtained by assigning a combination
of the values of categorized variables into regression for-
mula (8). This yields a risk table for rhabdomyolysis
occurrence (Table 5). For instance, if T, QTC and BT are
"++ ", "+ " and "- " respectively, we can read from the table

Table 3: Means and standard deviations of the estimates of C for a trichotomized variable

true C
n 0.650 0.750 0.850

10 0.671 ± 0.065 0.759 ± 0.057 0.854 ± 0.039
25 0.658 ± 0.042 0.754 ± 0.036 0.851 ± 0.024
50 0.654 ± 0.030 0.752 ± 0.025 0.851 ± 0.017
100 0.652 ± 0.022 0.751 ± 0.017 0.850 ± 0.012
200 0.651 ± 0.015 0.751 ± 0.012 0.850 ± 0.008
500 0.651 ± 0.010 0.750 ± 0.008 0.850 ± 0.005

Two samples of the size n from N(0, 12) and N(0, ) are generated by Monte Carlo simulation and the pair consistency probability C for the 

optimal trichotomized points is calculated by the parametric method. This step is iterated 10,000 times, producing means and standard deviations of 
C. The values of σd are 1.898, 3.133 and 6.150 for the true values of C 0.650, 0.750 and 0.850, respectively.

σd
2

Table 2: Means and standard deviations of the estimates of C for a dichotomized variable

true C
n 0.650 0.750 0.850

10 0.662 ± 0.079 0.760 ± 0.076 0.856 ± 0.062
25 0.655 ± 0.051 0.754 ± 0.048 0.852 ± 0.040
50 0.652 ± 0.036 0.751 ± 0.034 0.851 ± 0.028
100 0.651 ± 0.026 0.751 ± 0.024 0.851 ± 0.020
200 0.650 ± 0.018 0.750 ± 0.017 0.850 ± 0.014
500 0.650 ± 0.011 0.750 ± 0.011 0.850 ± 0.009

Two samples of the size n from N(0, 12) and N(μd, 1.52) are generated by Monte Carlo simulation and the pair consistency probability C for the 
optimal dichotomized point is calculated by the parametric method. This step is iterated 10,000 times, producing means and standard deviations of 
C. The values of μd are 0.840, 1.613 and 2.543 for the true values of C 0.650, 0.750 and 0.850, respectively.
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that the risk of rhabdomyolysis is 0.801. Repeated use of
this table over time will give physicians a "sense" of the
disease risk.

Discussion
The criterion for optimal categorization of continuous
variables in regression models may vary depending on the
object of the categorization, and there have been several
different approaches. Many of these approaches are inad-
equate for our purpose. We have proposed to use the over-
all discrimination index C introduced by Harrel and other
authors [21-24] as the measure for predictive performance
of a categorized variable. Since the overall discrimination
index C has a clear and straight forward meaning as the
pair consistency probability, it is intuitively logical to use
it as a measure for the predictive discrimination for poly-
chotomized variables.

Though mathematically distinct, our method has much in
common with previously developed methods [2-20,33-
38], which can be explained through the relations
between the pair consistency probability C, SE and SP,
and the area under the ROC straight line graph, as is
expressed in formulae (2) to (6). In addition, our ROC
straight line graph has a close relation with ordinal domi-
nance or the OD curve proposed by Darlington to visual-
ize the ordering feature of two comparative sets [39]. He
showed that the OD curve is a complete representation of
the rank-order properties of data and many statistical pro-
cedures follow naturally from assessment of the curve.
Bamber clarified the relation between the area above the
OD curve and a measure identical to the pair consistency
probability [40]. Our proof of formula (6) related to the
ROC straight line graph corresponds to Bamber's OD
curve related proof.

Monte Carlo simulation showed that the naïve search of
the maximum C index will give rise to an estimation bias,
which is very much like the positive bias that affects the
minimum p-value method. Such bias is also seen in the
method where the cutoff point is selected in a way that
maximizes the sum of SE and SP. Linnet and Brandt calcu-
lated the sample distribution of (SE + SP)/2 in the case of
dichotomization using computer simulation assuming
that distributions are normal, and evaluated the positive
bias induced by the selection of an optimal cutoff point
[4]. They found that estimates of test performance are too
optimistic when the sample size is small, with an average
positive bias up to 15% for a sample size of 25. We have
shown that this problem does not affect our proposed
parametric method.

Table 5: Probability profile table for rhabdomyolysis

T QTC BT risk

- - - 0.0003
- - + 0.0025
- + - 0.0079
- + + 0.0542
+ - - 0.0078
+ - + 0.0532
+ + - 0.152
+ + + 0.562

++ - - 0.149
++ - + 0.557
++ + - 0.801
++ + + 0.966

Abbreviations: T = time from taking the drug to arrival at hospital 
('++' for more than or equal to 12 hours, '+' for less than 12 hours 
and more than or equal to 5 hours, '-' for less than 5 hours); QTC = 
ECG QTc ('+' for more than or equal to 0.45, '-' for less than 0.45); 
BT = body temperature ('+' for more than or equal to 37.2° or less 
than or equal to 34.0°, '-' for otherwise).

Table 4: Optimal cutoff points for the prognostic factors of 
rhabdomyolysis

4a Optimal cutoff points forqtc*

number of cutoff points z1 z2 z3 C

1 0.460 0.611
2 0.428 0.491 0.634
3 0.410 0.460 0.509 0.642

continuous 0.651

4b Optimal cutoff points fort** (hours)

number of cutoff points z1 z2 z3 C

1 7.74 0.751
2 4.99 12.16 0.795
3 3.91 7.88 15.75 0.810

continuous 0.829

4c Optimal cutoff points forbt*** (Celsius)

number of cutoff points z1 z2 C

2 33.9 37.2 0.640

continuous 0.675

Abbreviations: z1 = first cutoff point; z2 = second cutoff point; z3 = 
third cutoff point
* Cutoff points for qtc (ECG QTc) are searched by the parametric 
method for normally distributed variables.
** Cutoff points for t (time from drug ingestion to arrival at hospital in 
hours) are searched assuming t is distributed log-normally.
*** Cutoff points for bt (body temperature in degrees Celsius) are 
searched by the parametric method for variables with a common 
central tendency.
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However, there may be cases where a transformation to a
normal distribution does not work well. For such cases,
we conceive that approximation of distribution curve by a
more suitable function or a restricted cubic spline func-
tion [41] creates a workable situation. We are currently in
the process of evaluating this approach and the results will
be reported elsewhere.

To keep this introduction of the maximum C index
approach for polychotomizing predictive variables short
and readable, we have used an example in which a regres-
sion model without correlated independent variables and
without interaction fitted the observed data well (p =
0.618 by Hosmer and Lemeshow goodness-of-fit test)
[42,43]. However, if correlation and interaction are rele-
vant for the regression function, our maximum C index
approach must be extended to a multivariable setting.
Mazumdar extended a cutoff point search based on the
maximum chi-square method to a multivariable setting
[44], and showed that the cutoff points obtained by a
multivariable search were closer to the true cutoff points.

Another method that is appealing for regression settings
with correlated independent variables, is the so-called
'simplified integer score' method in which continuous
variables are transformed into semi-continuous interval
variables [41]. It has been used in numerous articles and
is based on the categorization of the continuous variable,
and the transformation of the products of the regression
coefficient and the value of the variable into integers. This
method is clinically useful and can be applied to the situ-
ation where explanatory variables are correlated. If the
number of variables is small enough and they have few
classifications, this method can also be used to create the
simple probability profile tables that result from our
approach. We are currently in the process of evaluating a
multivariable extension of the C index maximization
approach, including a comparison with this method.

Along with regression models, decision trees can also be
used in diagnostic or prognostic decision making [36].
Breiman et al. developed an approach called classification
and regression trees (CART) to build a decision tree for
medical diagnosis based on a training data set [41,45]. In
these decision trees, diagnosis is made by a sequential
decision making process, in which a question on an inde-
pendent variable is posed at each step and, depending on
the answer, a different "branch" of the tree is selected until
the final result is achieved. If an independent variable is
continuous, dichotomization (or polychotomization)
will be necessary to build a decision tree. Typically, the
cutoff points are found by maximizing the total utility of
decision scheme [46,47], which appears to be closely
related mathematically to our approach. Further study is
necessary to make a theoretical and practical comparison.

We have indicated that it is easier for most people to read
a probability profile table to obtain the risk probability

than to calculate the risk with a regression formula. Addi-
tionally, probability profile tables give physicians an intu-
itive feel for the disease risk. Even if the value of one or
two of the prognostic variables is not available, physicians
can obtain a probability range corresponding to the
patient's risk by referring to both the positive and negative
cases from the table. By making simplified risk tables in
advance, physicians can obtain the patient's risk from an
auxiliary table, even if the value of a predictor is missing.
Since the table presentation of probabilities has these
practical advantages, we believe our method for categoriz-
ing prognostic variables can be a helpful tool to make
diagnostic or descriptive prognostic research with regres-
sion models become more applicable in clinical practice.

Conclusion
We have proposed a new approach for polychotomization
(including dichotomization) of independent continuous
variables in regression models based on the overall dis-
crimination index C, or the pair consistency probability,
introduced by Harrel. We have shown that this index is
closely related to the area under the ROC curve for the
original continuous variable and that the resulting catego-
rized variables have predictive properties comparable to
the original continuous variable. We showed that the
naïve application of the method gives rise to positive bias,
not unlike the minimum p-value approach or the method
of maximizing the sum of sensitivity and specificity, and
we proposed a parametric version in which the estimates
of the predictive performance and cutoff points are essen-
tially unbiased. To evaluate the accuracy and precision of
the estimate of the predictive performance, we presented
tables of the means and standard deviations of the esti-
mate of predictive performance for typical cases by the use
of Monte Carlo simulation. Finally we provided an appli-
cation of our method to a prediction rule with continuous
predictor variables for rhabdomyolysis and showed that
our method for polychotomizing continuous regressor
variables can be a valid and useful tool to create probabil-
ity profile tables. All programs (and their source codes)
used in this study are available from the authors.
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