
BioMed Central

BMC Medical Informatics and 
Decision Making

ss
Open AcceSoftware
A software tool for creating simulated outbreaks to benchmark 
surveillance systems
Christopher A Cassa*1,2,4, Karin Iancu2, Karen L Olson1,3 and 
Kenneth D Mandl1,3

Address: 1Children's Hospital Informatics Program, Informatics Program – Mandl Group, 1 Autumn St, #721, Children's Hospital Boston, Boston, 
MA 02115, USA, 2Clinical Decision Making Group, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of 
Technology, Cambridge, MA 02139, USA, 3Harvard Medical School, Boston, MA 02115, USA and 4Harvard/MIT Division of Health Sciences and 
Technology, Cambridge, MA 02139, USA

Email: Christopher A Cassa* - cassa@mit.edu; Karin Iancu - karini@alum.mit.edu; Karen L Olson - karen.olson@childrens.harvard.edu; 
Kenneth D Mandl - kenneth_mandl@harvard.edu

* Corresponding author    

Abstract
Background: Evaluating surveillance systems for the early detection of bioterrorism is particularly
challenging when systems are designed to detect events for which there are few or no historical
examples. One approach to benchmarking outbreak detection performance is to create semi-
synthetic datasets containing authentic baseline patient data (noise) and injected artificial patient
clusters, as signal.

Methods: We describe a software tool, the AEGIS Cluster Creation Tool (AEGIS-CCT), that
enables users to create simulated clusters with controlled feature sets, varying the desired cluster
radius, density, distance, relative location from a reference point, and temporal epidemiological
growth pattern. AEGIS-CCT does not require the use of an external geographical information
system program for cluster creation. The cluster creation tool is an open source program,
implemented in Java and is freely available under the Lesser GNU Public License at its Sourceforge
website. Cluster data are written to files or can be appended to existing files so that the resulting
file will include both existing baseline and artificially added cases. Multiple cluster file creation is an
automated process in which multiple cluster files are created by varying a single parameter within
a user-specified range. To evaluate the output of this software tool, sets of test clusters were
created and graphically rendered.

Results: Based on user-specified parameters describing the location, properties, and temporal
pattern of simulated clusters, AEGIS-CCT created clusters accurately and uniformly.

Conclusion: AEGIS-CCT enables the ready creation of datasets for benchmarking outbreak
detection systems. It may be useful for automating the testing and validation of spatial and temporal
cluster detection algorithms.
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Background
The public health information infrastructure is yielding
real-time access to health data, enabling new approaches
to surveillance for infectious outbreaks. Prior to the labo-
ratory confirmation or physician diagnosis of an infec-
tious disease, ill persons may exhibit behavioral patterns,
symptoms, signs, or laboratory findings that can be
tracked through a variety of data sources. The process of
monitoring these data is often referred to as syndromic
surveillance [1-3].

Real time outbreak detection algorithms tend to focus on
the temporal and spatial patterns of cases. Some detection
routines, such as Cusum [4], look at just one type of pat-
tern, while others, such as the Space-Time Scan Statistic
[5] incorporate both. What these algorithms have in com-
mon is an underlying model of typical, or baseline pat-
terns, and the goal of detection is to recognize
perturbations from the baseline [1]. The outbreak detec-
tion performance of a surveillance system can be meas-
ured in terms of its ability to distill "signal" (a cluster of
cases in time and/or space) from noisy baseline.

Benchmarking the performance of detection algorithms
requires training and validation data. When real data are
not available, simulated data are often used [6,7]. Simu-
lated outbreaks must reflect the diversity of threats that a
surveillance system is expected to encounter and detect,
whether these outbreaks occur naturally or are man-made.

Our approach to validating detection algorithms is to use
semi-synthetic data, that is, authentic baseline data
injected with artificial signals [8]. These signals are
defined by a controlled feature set of variable parameters
such as the size, location, shape, and duration of simu-
lated outbreaks. Here we describe a software tool, the

AEGIS Cluster Creation Tool (AEGIS-CCT), that enables
users to create simulated clusters with controlled feature
sets, varying the desired cluster radius, density, distance,
and relative location away from a central point. AEGIS-
CCT does not require the use of an external geographic
information system (GIS) program for cluster creation.

Implementation
Functional specifications
AEGIS-CCT can create single patient clusters as well as sets
of patient clusters based on a simple geographical model.
Cluster data points are outputted as comma separated var-
iable (CSV) files, and can optionally be appended to an
existing file, supplied by the user. The tool can also gener-
ate different sets of clusters that range in value over a sin-
gle parameter to rigorously validate detection algorithms.
To create individual clusters, the user can vary a number
of relevant outbreak parameters (Table 1). AEGIS-CCT
creates at least two output files each time it is executed,
with file names specified by the user. One is a cluster data
file that contains the artificial cluster data, and the other is
a record file describing the session cluster parameters. The
data file contains a cluster point identification number
(assigned numerically from 0 to the number of points
minus 1), the latitude and longitude of the cluster point,
and the relative date of the cluster point. When generating
a series of n clusters, the program automatically generates
n files with appended identifiers, each as separate data
files.

The AEGIS-CCT is a Java package including a geospatial
engine and a user interface created using the Swing
toolkit. The source for the entire package is provided
under the Lesser GNU Public License [9] on a source-
forge.net development site [10]. Full details and updates
to AEGIS-CCT can be obtained online [11].

Table 1: Parameters that can be altered when creating a single cluster.

Parameter Description

Cluster ID Number User specified reference or identification number for each cluster
Number of Points in the cluster Number of patients or points in the generated cluster.
"Reference Point" GIS Location The latitude-longitude coordinates of a reference point, which could be a hospital or a primary care 

facility, for example.
Maximum cluster radius The distance between the outermost point in the cluster and the center of the cluster.
"Angle" from the reference point The angle of the cluster measured counter-clockwise from due east of the reference point as zero 

degrees, using unit circle convention.
Distance from the reference point The distance between the center point of the cluster and the reference point.
Numbers of Days the Cluster should span The number of days from when the first person shows symptoms to when the last person does.
Date Algorithm This specifies which of the three models of temporal progression to use. Additional models can be 

incorporated into the software.
Description and output filenames The user can specify where the cluster data and user-specified cluster description will be written.
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Geocoding and precision of location
Programmatic methods were implemented to assign lati-
tude-longitude coordinates to simulated cluster points,
taking into account physical earth surface distances and
not relying on external GIS software. Inside an AEGIS-
CCT GIS class, there are three primary methods to handle
these conversions. The first is a method to find the dis-
tance between two locations, which uses the specific lati-
tude-longitude of the reference point to create a ratio of
degrees per meter for north-south latitude and east-west
longitude. Artificial data points are created 0.05 degrees to
the north or east, and the corresponding physical dis-
tances (x, y) are calculated using the Haversine Formula,
described below. The ratio is then computed, dividing the
artificial data point distance by the calculated physical dis-
tance in meters on the Earth's surface. A second method
finds a point that is a specific physical distance, measured
at a specified angle, from a reference point. The angle is
measured from the Euclidian x-axis and increased in a
counter-clockwise form. The output is a second GIS data
point related to the reference point by the angle and dis-
tance specified by the user. The third method finds the
number of degrees of latitude and longitude per unit of
physical distance in each respective direction.

GIS precision
Placing patients on a map requires consideration of earth
curvature and precise latitudes and longitudes. Spherical
equations break down significantly at small distances, but
the Haversine formula [12] provides computationally
exact results in almost all circumstances. For this calcula-
tion, Earth has radius R, and the locations of two points in
spherical coordinates (latitude and longitude) have
names [lon1, lat1] and [lon2, lat2]. The Haversine For-
mula is calculated using the following code:

dlon = lon2 - lon1;

dlat = lat2 - lat1;

a = (sin(dlat/2)) ̂ 2 + cos(lat1) * cos(lat2) * (sin(dlon/2))
^2;

c = 2 * atan2(sqrt(a), sqrt(1-a));

d = R * c;

This implementation was quality tested for accuracy using
a series of latitude-longitude pairs from a sample dataset,
measuring distances between two data points. Those
results were identical with distances calculated by com-
mercially-available GIS software.

Geotemporal progression
Outbreaks vary in their temporal progressions or epi-
demic curves. Three such progressions were implemented
in AEGIS-CCT as date algorithms to model the ways in
which a disease might manifest in a population over time:
a random, a linear, and an exponential growth spread.
Additional epidemiological date algorithms can be added
by other users to the AEGIS-CCT by implementing a
method to assign a specific temporal distribution within
an array in Java.

For the random algorithm, a random number is generated
that falls within the range of the number of days in the

An example of the linear date algorithm estimation for thirty points spanning three daysFigure 1
An example of the linear date algorithm estimation for thirty 
points spanning three days. The x-axis represents the day 
number.

An example of the exponential date algorithm estimation for thirty points spanning three daysFigure 2
An example of the exponential date algorithm estimation for 
thirty points spanning three days. The x-axis represents the 
day number.
Page 3 of 7
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2005, 5:22 http://www.biomedcentral.com/1472-6947/5/22
cluster, producing a random distribution. For the linear
distribution, the day value is divided by the total day val-
ues and multiplied by the total number of points to deter-
mine the fraction of the total points to be injected each
day. Scaling by a multiplier can alter the rate of linear
growth. Similarly for the exponential distribution, the
numerical value of e(multiplier * day number) is divided by the
sum of e(multiplier * day number), for all day values. This ratio is
then multiplied by the total number of points to deter-
mine the number of points that occur each day. Examples
of the linear and exponential growth modified probability
distribution estimations for date distribution are pre-
sented in Figures 1 and 2.

Results
Analysis of accuracy and uniformity of patient cluster data
Semi-synthetic datasets created by the cluster generator
fall within a specified set of parameter-based boundaries.
Cluster data points are created randomly within the
domain defined by those parameters, so it is important to
verify that the clusters are accurately created and are close
to uniformly generated.

To measure the uniformity of generated clusters, 10 test
clusters were created with 100 points in each cluster. The
centroid of each set of cluster points was then calculated
and compared to the specified center point of that cluster.
In every case, the cluster centroid was within five percent
of the specified cluster radius, in distance, from the speci-
fied center point. This result demonstrates that the data-
sets are uniform, within a small threshold, when they
contain a sufficient number of points, as would be
expected with a random distribution.

To measure the accuracy of the geocoding engine, 360
clusters were made, forming a circle, around a single

center point, varying the angle evenly (one degree added
per cluster,) and they each had a cluster center point that
fell precisely along the circle defined by all points at the
same radial distance from the original counterpoint. This
same test was conducted at five randomly selected lati-
tude-longitude locations and the same results were
obtained.

Sample cluster parameters and output
Two sample scenarios are described below, and their
parameters are listed in Table 2. The first example demon-
strates the creation of a single artificial cluster and the sec-
ond example demonstrates the creation of several clusters
at various angles around a single reference point. The first
cluster includes cases in a simulated outbreak spanning
five days.

The single linear time-growth cluster was placed approxi-
mately 1600 m due north of a center point at longitude -

Table 2: Example of single cluster parameters and multiple cluster parameters.

Parameter Type of Cluster
Single Cluster Set of Clusters Varying Angle

Cluster ID 100 101 [1:4]
Number of Points in Cluster 30 30
Reference Point Latitude 42.35666 42.35666
Reference Point Longitude -71.09516 -71.09516
Cluster Radius 600 m 400 m
Angle from reference point 90 [varies, see below]
Distance from reference point 1600 m 3000 m
Number of Days 5 5
Time-growth Pattern Linear Linear
Cluster Description Linear time-growth cluster north of center point Varied angle around center point and created 4 clusters.
Number of Clusters N/A 4
Minimum Angle N/A 0
Maximum Angle N/A 270

Table 3: Sample output to a comma separated value file from 
AEGIS-CCT. Note: Values are point identification number, 
longitude, latitude and day number.

0,-71.09600452536358,42.37455407329273,1
1,-71.10149672138236,42.365894560466806,1
2,-71.0954755413253,42.373890954435524,2
3,-71.08968377859539,42.37242100053542,2
4,-71.09281946336338,42.36955324904336,2
5,-71.09564524977307,42.371694560897,2
6,-71.09345472615571,42.370979504450304,3
7,-71.09983295495935,42.369683605959985,3
8,-71.09781606117451,42.37282397457113,3
9,-71.09685871099056,42.37540065852763,3
10,-71.0921214185705,42.37216701505921,3
... (to point with ClusterID 29)
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71.09516 and latitude 42.35666. AEGIS-CCT outputted a
CSV file and partial results are listed in Table 3. There are
two points on the first day, four on the second day, six on
the third day, linearly increasing to include thirty patient
points by day 5.

The output CSV can be imported into a GIS analysis tool.
A map made from AEGIS-CCT output using MapPoint
2002 (Microsoft Corporation, Redmond, WA) is pre-
sented in Figure 3. The temporal progression (linear-
growth algorithm) is indicated by the shaded color of
coordinate points for each simulated case as shown in the
legend. The temporal growth pattern of a similar injected
linear-growth cluster spanning 7 days (containing a total
of 56 points) is graphed when appended to a low-volume
week (120 visits, 07/15-21/2001) and a high-volume
week (472 visits, 01/14-20/2001) in Figure 4.

In the second example, the angle around the center point
was varied, creating a series of four clusters. The series
cluster generator automatically created four files, and each
file was imported into MapPoint, and charted in a differ-
ent color, as shown in Figure 5.

The CCT can create new data files or it can append cluster
data to an existing file. The artificial portion of a semi-syn-
thetic dataset can then be automatically combined with
baseline patient distributions by specifying a file that con-

A single linear time-growth cluster north of center pointFigure 3
A single linear time-growth cluster north of center point.

Artificially-Injected Temporal Cluster into Low and High-Vol-ume Weeks of Children's Hospital Boston ED Visit Data: An artificially-generated cluster (dashed line at bottom) contain-ing a total of 56 additional points, linearly increasing in magni-tude over a 7 day span, was added to two separate weeks of Children's Hospital Boston temporal visit dataFigure 4
Artificially-Injected Temporal Cluster into Low and High-Vol-
ume Weeks of Children's Hospital Boston ED Visit Data: An 
artificially-generated cluster (dashed line at bottom) contain-
ing a total of 56 additional points, linearly increasing in magni-
tude over a 7 day span, was added to two separate weeks of 
Children's Hospital Boston temporal visit data. The first 
week of data was from a low-volume week, containing a total 
of 120 authentic patient visits with an additional 56 artifi-
cially-generated visits while the second series contains a total 
of 472 authentic visits with the same 56 artificially-generated 
visits appended. While growth in the low-volume week is vis-
ible by inspection, it is difficult to notice the artificially added 
visits in a higher-volume week.

Creation of a series of four clusters around the center point (with the angle variedFigure 5
Creation of a series of four clusters around the center point 
(with the angle varied.)
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tains the baseline data. In future versions, the CCT may
provide an xml schema to which input baseline data files
should conform.

Limitations
AEGIS-CCT does not yet have built-in procedures to gen-
erate more complicated time-series or spatial distribu-
tions. Extensibility was taken very seriously when creating
AEGIS-CCT, and sufficient abstractions were made to
allow for ease of adding additional models. The generator
is also extensible in other ways so that additional param-
eters can be added if they are easily computable. Parame-
ters can be added or deleted by updating the GUI and
modifying the GenerateCluster method in the main
geospatial class. Potential areas for expansion in future
versions include log-linear and logarithmic time-series
models as well as Gaussian spatial distributions. It will be
necessary to determine what the most pertinent and phys-
ically realistic models of syndromic spread are. Once the
most realistic scenarios are assessed and modeled, they
can be programmatically implemented and incorporated
into the cluster creation tool. As long as these
distributions can be implemented using Java methods, it
is possible to quickly add another temporal distribution
to AEGIS-CCT.

Conclusion
Evaluation of surveillance systems for the early detection
of outbreaks is particularly challenging [13] when the
systems are designed to detect events for which there are a
few or no historical examples. Some real-time surveillance
systems are designed to provide early warning of a
biological attack. Fortunately, few people have been
infected with biological warfare agents, although there are
notable exceptions. For example, residents of Sverdlovsk
were exposed in 1979 during an accidental release of
anthrax from a weapons plant [14] and there were eleven
infections, resulting in five deaths in the Florida, New
York and Washington DC mailed-anthrax attacks in 2001
[15]. In the absence of sufficient real outbreak data, meas-
uring the detection performance of a system requires sim-
ulation. AEGIS-CCT enables the ready creation of datasets
for benchmarking outbreak detection systems.

Availability and requirements
Lists the following
* Project name: AEGIS Cluster Creation Tool

* Project home page: http://sourceforge.net/projects/
chipcluster/

* Operating system(s): Platform independent

* Programming language: Java

* Other requirements: Java 1.3.1 or higher

* License: e.g. GNU LGPL

* Any restrictions to use by non-academics: none

List of abbreviations
GIS – Geographical Information Systems

GUI – Graphical User Interface

CSV – Comma-Separated Values
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