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Abstract

Background: The key aim of triage in chest pain patients is to identify those with high risk of adverse cardiac
events as they require intensive monitoring and early intervention. In this study, we aim to discover the most
relevant variables for risk prediction of major adverse cardiac events (MACE) using clinical signs and heart rate
variability.

Methods: A total of 702 chest pain patients at the Emergency Department (ED) of a tertiary hospital in Singapore
were included in this study. The recruited patients were at least 30 years of age and who presented to the ED with
a primary complaint of non-traumatic chest pain. The primary outcome was a composite of MACE such as death
and cardiac arrest within 72 h of arrival at the ED. For each patient, eight clinical signs such as blood pressure and
temperature were measured, and a 5-min ECG was recorded to derive heart rate variability parameters. A random
forest-based novel method was developed to select the most relevant variables. A geometric distance-based machine
learning scoring system was then implemented to derive a risk score from 0 to 100.

Results: Out of 702 patients, 29 (4.1%) met the primary outcome. We selected the 3 most relevant variables for
predicting MACE, which were systolic blood pressure, the mean RR interval and the mean instantaneous heart rate. The
scoring system with these 3 variables produced an area under the curve (AUC) of 0.812, and a cutoff score of 43 gave a
sensitivity of 82.8% and specificity of 63.4%, while the scoring system with all the 23 variables had an AUC of 0.736, and
a cutoff score of 49 gave a sensitivity of 72.4% and specificity of 63.0%. Conventional thrombolysis in myocardial
infarction score and the modified early warning score achieved AUC values of 0.637 and 0.622, respectively.

Conclusions: It is observed that a few predictors outperformed the whole set of variables in predicting MACE within
72 h. We conclude that more predictors do not necessarily guarantee better prediction results. Furthermore, machine
learning-based variable selection seems promising in discovering a few relevant and significant measures as predictors.
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Background
Chest pain is one of the leading causes of visits to the
emergency department (ED) [1]. Patients with chest pain
present a wide range of risk for death and adverse cardiac
events [2]. Of great concern is the risk of cardiac arrest
that accounts for the majority of early deaths in patients
with acute myocardial infarction (AMI) and other adverse
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cardiac events [3]. Significant hospital resources are dedi-
cated to these high risk patients. Therefore, accurate risk
stratification of chest pain patients for the prediction of
major adverse cardiac events (MACE) could play an es-
sential role in supporting clinical decisions that allow
timely intervention for preventable and treatable compli-
cations. It could also allow management of low-risk pa-
tients without unnecessary admissions, investigations
and monitoring, hence reducing the strain on limited
ED resources. Such a risk stratification tool would be
useful for chest pain patients presenting to the ED [3].
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Various systems exist for stratifying the risk of acute
coronary syndromes (ACS) [4-6]. The thrombolysis in
myocardial infarction (TIMI) [5] score and the Global
Registry of Acute Coronary Events (GRACE) [6] score
were developed to predict the risk of death, reinfarction
and revascularization. TIMI and GRACE scores have
been validated on an unselected population of chest pain
patients at the ED for predicting adverse events. How-
ever, both risk scores are often not applicable at the first
presentation [7] as not all the variables are measured
routinely in the ED. The modified early warning score
(MEWS) is another popular tool in Commonwealth
countries to identify patients at risk of deterioration
[8,9]. Its process of risk evaluation involves assessment
of vital signs and accurate prediction requires some
prior training [10]. Furthermore, the above mentioned
scoring systems use predefined predictive variables, pro-
hibiting them from adopting new variables that are clin-
ically significant for risk stratification. Several limitations
have been reported in current risk scores for prediction
of cardiovascular complications [11,12].
Most scoring systems use clinical vital signs such as

heart rate, respiratory rate, blood pressure, temperature
and pulse oximetry for risk stratification model deriv-
ation [13], but these physiological measures might not
correlate well with short- or long-term clinical outcomes
[14,15]. Furthermore, conventional statistical scoring
systems are usually not readily adaptable to new vari-
ables [16]. Motivated by the flexibility of machine learn-
ing (ML) techniques, we have previously developed an
intelligent scoring system [17] for predicting acute cardiac
complications and discovered that rapid non-invasive bed-
side heart rate variability (HRV) combined with clinical
signs showed improved prediction performance when
compared with the MEWS [10]. However, redundant in-
formation likely exists within these predictive variables as
not all the variables may contribute to the prediction [18].
Machine learning-based variable selection has been widely
used in bioinformatics [19] but received little attention in
medical research where traditional statistical methods play
a dominant role [20]. In this study, we aim to discover the
most relevant variables from HRV and clinical signs for
the prediction of MACE using machine learning. We will
compare the aforementioned ML score [17] using the
selected variables with TIMI and MEWS scores by
conducting the receiver operating characteristic (ROC)
analysis for performance evaluation [21].

Methods
Study design
This was a prospective observational study on a conveni-
ence sample of 702 patients presenting to the ED of
SGH, a tertiary hospital in Singapore, serving more than
135,000 patients in the emergency care setting annually.
Patients who were at least 30 years of age and with un-
differentiated non-traumatic chest pain were included in
the study. Monitoring was done with an ECG sensor
(Vernier Software & Technology, Portland, OR) and a
data acquisition device (NI USB-6215, National Instru-
ments, Austin, TX) over an uninterrupted recording
period of 5 minutes. Patients were excluded if their ECG
recordings contained sustained arrhythmias or large seg-
ments of noise or artifact. Patients who were transferred
to another hospital or discharged against medical advice
within 72 h of arrival at the ED were also excluded. Fol-
lowing the guidelines by the Task Force of the European
Society of Cardiology and the North American Society
of Pacing and Electrophysiology [22], a total of 15 HRV
parameters shown in Table 1 were computed. During
recording of patients’ ECG, their clinical signs were
measured by attending nurses or physicians. Eight clinical
signs were used, including systolic blood pressure (BP),
diastolic BP, respiratory rate, heart rate, Glasgow coma
scale (GCS), temperature, pain score (1–10), and oxygen
saturation (SpO2). Demographic data such as age, race,
gender, and medical history were also retrieved from the
ED charts.
Patients were followed up to discharge from hospital

or in-hospital death. The primary outcome was defined
as a composite of four major adverse cardiac events
(MACE) within 72 h of patient’s arrival at the ED. MACE
in this study included death, cardiac arrest, sustained
ventricular tachycardia (VT), and hypotension requiring
inotropes or intra-aortic balloon pump (IABP) insertion.
The outcomes were retrieved from the ED charts and out-
come decisions were made by physicians.
Ethics approval was obtained from the Singapore Health

Services (SingHealth) Centralized Institutional Review
Board (CIRB Ref: 2009/871/C) with a waiver of patient
consent. This study was conducted from March 2010
to April 2012 at the Emergency Department (ED) of
Singapore General Hospital (SGH).

Predictive variable selection
Variable selection in statistics and machine learning is
a process of determining a subset of relevant variables
for model construction. Irrelevant variables usually do
not contribute to model building and may even degrade
the prediction performance. Automatic variable selection
methods have been widely adopted in clinical studies such
as for predicting acute myocardial infarction mortality [23].
We have previously studied the use of combined HRV

parameters and clinical signs for patient outcome predic-
tion [17,24] where each variable was assumed to equally
contribute to model building. These studies could be re-
fined by means of variable selection such that predictive
variables are individually evaluated for their correlations
to the primary outcome. Refinement of the model required



Table 1 List of HRV parameters and their definitions

HRV parameter (unit) Definition

aRR (s) Average width of the RR interval

STD (s) Standard deviation of all RR intervals

avHR (beats/minute) Average of the instantaneous heart rate (HR)

sdHR (beats/minute) Standard deviation of the instantaneous HR

RMSSD (s) Root mean square of differences between adjacent RR intervals

NN50 (count) Number of consecutive RR intervals differing by more than 50 ms

pNN50 (%) Number and percentage of consecutive RR intervals differing by more than 50 ms

Triangular index Total number of all RR intervals divided by the height of the histogram of intervals

TINN Baseline width of a triangle fit into the RR interval histogram using a least squares

LF power (ms2) Power in low frequency range 0.04-0.15 Hz

HF power (ms2) Power in high frequency range 0.15-0.40 Hz

Total power (ms2) Total power estimated from RR intervals

LF norm (n.u.) LF power in normalized units: LF/(Total power-VLF) × 100

HF norm (n.u.) HF power in normalized units: HF/(Total power-VLF) × 100

LF/HF Ratio of LF power to HF power

VLF: Very low frequency power in range ≤ 0.04 Hz.
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a novel variable selection method as the distribution of
our data was imbalanced; relatively few patients met
the primary outcome (29 out of 702). Data imbalance
compromises the performance of most machine learn-
ing algorithms [25].
In this study, we proposed a novel variable selection

framework based on ensemble learning, in which ran-
dom forests (RF) [26] was chosen as the independent
variable selector for creating the decision ensemble,
where the number of trees was 500. RF is an ensemble
learning method for classification and regression. It
combines many binary decision trees built using sev-
eral bootstrapped learning samples and choosing ran-
domly at each node a subset of explanatory variables
[27]. The RF approach has been shown to be effective
in variable selection [27,28].
Our proposed variable selection framework is elabo-

rated as follows. Firstly, 29 out of 673 patients (without
MACE) were randomly selected and combined with all
29 patients (with MACE) to construct a new subset, on
which RF was used to pick eight top-ranked variables.
Secondly, the above random sampling process was repeated
500 times to create an ensemble of top-ranked variables.
Thirdly, variables in the ensemble were accumulated and
sorted according to their corresponding occurrences. As a
result, a total of 500 individual models were created by RF,
with each picking eight variables to form an ensemble of
predictors. In this particular study, eight top-ranked
variables were determined as potential predictors of the
primary outcome. To optimize the selected variables
for future validation, 10-fold cross-validation was imple-
mented to avoid over-training during model construction.
Lastly, the statistical significance of each variable was
measured. If any one of the eight selected variables was
not significant in terms of p-value, it was excluded.
Figure 1 depicts the variable selection method.
The classification and regression training package [29]

in R programming language was used to implement RF
for variable selection. Data were imported into R from a
CSV file where all variables were in continuous format
and the primary outcome was in categorical format.

Risk score prediction
Variable selection was the process of choosing a set of
variables for the subsequent risk prediction. In this study,
a machine learning (ML) based intelligent scoring system
[17] (subsequently referred to here as the ML score) was
implemented to build prediction models. The ML method
examines geometric distances in Euclidean space between
a testing sample and the training samples and produces a
score on the possibility that the outcome of the testing
sample approximates to the primary outcome. The ML
method is illustrated in Figure 2 and is briefly described
as follows: Firstly, the selected variables were converted
into interval [−1, 1] with min-max normalization [30].
Secondly, cluster centers for both positive samples
(patients with MACE) and negative samples (patients
without MACE) were calculated based on Euclidean
distance, and an initial score for a testing sample was
derived by measuring distances between the testing
sample and two cluster centers. Lastly, the support
vector machine (SVM) [31] was implemented to fine-
tune the risk score. Details of the ML method are
described in [17].



Figure 1 Variable selection algorithm. This algorithm creates 500 data subsets for subsequent analysis. Each subset combines 29 patients with
MACE and 29 randomly selected patients without MACE. Then, the algorithm runs random forest on each subset to pick 8 top-ranked variables.
Having 500 sets of top-ranked variables, the algorithm sorts them according to their corresponding occurrence in the ensemble and chooses 8
variables with the highest appearance. The selection is refined by means of the statistical significance of each individual variable.
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In this study only a set of the selected variables was fed
into the learning model for risk prediction, which was dif-
ferent from our previous ML method [17] that utilized all
variables (15 HRV parameters and eight clinical signs) as
the input. The output risk score ranges from 0 to 100 with
0 indicating no risk and 100 indicating the highest risk of
MACE within 72 h. To compare the ML score with
existing clinical scores, TIMI and MEWS scores were
also derived for each patient.
Figure 2 Flowchart of the machine learning-based risk scoring
method.
Statistical analysis
Continuous variables were presented as means (standard
deviation) or medians (interquartile range) and were
analyzed using the Mann–Whitney test. SPSS version 17.0
(SPSS Inc., Chicago, IL), MATLAB R2009a (Mathworks,
Natick, MA), and R version 2.15.1 (R Foundation, Vienna,
Austria) were employed for data analysis.
Performance evaluation was carried out with the leave-

one-out cross-validation (LOOCV) strategy to get unbiased
estimation of the model performance. In this study with
702 samples, 702 iterations were required for performance
evaluation. In iteration, one sample was used as the testing
sample while the remaining 701 samples were used for
training. The risk score prediction process was repeated
702 times so that each sample was tested individually. Risk
scores were then obtained for the entire dataset and a
threshold was derived to report sensitivity and specificity.
A package developed in MATLAB was used to analyze
ECG for HRV, calculate risk scores, and report prediction
performance measures. To further evaluate differences in
discrimination between models, pair-wise AUC compari-
sons using bootstrap method were performed with a ROC



Table 3 Outcomes of patients with MACE within 72 h of
arrival at the ED

Event Number of patients
(%)

One or more severe complications 29 (4.1)

Death 9 (1.3)

Cardiac arrest 10 (1.4)

Sustained ventricular tachycardia 8 (1.1)

Hypotension requiring inotropes or IABP
insertion

16 (2.3)

MACE: major adverse cardiac events; IABP: intra-aortic balloon pump.
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comparison package [32]. Statistical significance was set at
p-value <0.05.

Results and discussion
Results
A total of 702 patients were recruited for the study; 29
of them met the primary outcome (MACE within 72 h).
Characteristics of recruited patients are presented in
Table 2. Males made up 66% of the study cohort. Chinese,
Malay and Indian were the top three race groups, which
matched the demographics of Singapore. Medical history
of diabetes, stroke, chronic renal failure, congestive heart
failure and myocardial infarction were more frequently
observed in patients with MACE within 72 h than in
patients without MACE. Table 3 shows the outcomes of
patients with MACE within 72 h of arrival at the ED. It
is observed that patients who had MACE within 72 h were
more likely to develop one or more severe complications.
Figure 3 presents the 23 individual variables and their

corresponding occurrences in the ensemble for variable
selection. Systolic BP (SBP), avHR, aRR, diastolic BP (DBP),
triangular index (TI), LF/HF, HF power norm, and LF
power norm were the eight top-ranked predictors associ-
ated with the primary outcome. These selected variables
Table 2 Characteristics of the recruited patients

No MACE within 72 h MACE within 72 h

(N = 673) (N = 29)

Mean age (SD) 60.6 (13.0) 61.0 (11.6)

Male gender 445 (66.1) 18 (62.1)

Race

Chinese 434 (64.5) 20 (69.0)

Malay 132 (19.6) 6 (20.7)

Indian 89 (13.2) 2 (6.9)

Others 18 (2.7) 1 (3.4)

Medical history

Ischemic heart disease 292 (43.4) 10 (34.5)

Diabetes 241 (35.8) 13 (44.8)

Hypertension 432 (64.2) 17 (58.6)

Dyslipidemia 403 (59.9) 13 (44.8)

Stroke 50 (7.4) 3 (10.3)

Cancer 28 (4.2) 1 (3.4)

Chronic renal failure 79 (11.7) 9 (31.0)

Congestive heart failure 37 (5.5) 3 (10.3)

Respiratory disease 18 (2.7) 0 (0.0)

Myocardial infarction 96 (14.3) 6 (20.7)

PCI 149 (22.1) 4 (13.8)

CABG 62 (9.2) 1 (3.4)

Data are shown as numbers (%) unless otherwise stated.
MACE: major adverse cardiac events; PCI: percutaneous coronary intervention;
CABG: coronary artery bypass graft.
were fed into the intelligent scoring system [17] for risk
prediction. Twenty-three variables consisting of 15 HRV
parameters and 8 clinical signs are shown in Table 4. A pre-
dictor is considered significant if it has a p-value of <0.05.
Temperature, oxygen saturation and pain score (clinical
signs), and STD, sdHR, RMSSD, pNN50, NN50, TINN,
HF power and Total power of HRV parameters were not
considered statistically significant. As observed in Figure 3
and Table 4, all eight top-ranked variables were significant
in terms of p-value. Ultimately, these eight variables were
chosen for model building and analysis.
The performance of the intelligent scoring system

with different numbers of selected variables is summa-
rized in Table 5. The order of variables was determined
from Figure 3 where each variable received its ranking
with the proposed variable selection algorithm as shown
in Figure 1. The combination of these variables therefore
may not reflect any clinical meanings. The ML score with
the top three selected variables was able to achieve the
highest AUC among all other variable combinations.
Figure 4 illustrates ROC curves produced by the ML
score with the top three variables and the ML score
with all 23 variables, TIMI score and MEWS score. A
cut-off score was determined by the point that was
nearest to the upper-left corner of the ROC curve. The
ML score with top three variables produced an AUC of
0.812 (95% CI: 0.716 - 0.908) and a cutoff score of 43
gave a sensitivity of 82.8% (95% CI: 69.0% - 96.5%) and
specificity of 63.4% (95% CI: 59.8% - 67.0%), while the
ML score with all 23 variables had an AUC of 0.736
(95% CI: 0.630 - 0.841) and a cutoff score of 49 gave a
sensitivity of 72.4% (95% CI: 56.1% - 88.7%) and specifi-
city of 63.0% (95% CI: 59.3% - 66.6%). The TIMI score
and the MEWS score achieved AUC values of 0.637
(95% CI: 0.526 - 0.747) and 0.622 (95% CI: 0.511 - 0.733),
respectively.
Furthermore, a linear logistic regression model with

forward selection was created where the predicted score
ranges from 0 to 1. Six variables including Glasgow Coma
Scale, respiratory rate, DBP, pain score, STD, and avHR
were chosen for model building. The regression score



Figure 3 Individual variables and their corresponding occurrences in the ensemble for variable selection. The occurrence indicates the total
number of appearance for a single variable in 500 random forest-based variable selectors. Therefore, the upper bound of the occurrence is 500.

Table 4 Measurements of HRV parameters and clinical signs of recruited patients

No MACE within 72 h (N = 673) MACE within 72 h (N = 29) p

Clinical signs

Glasgow Coma Scale 15 (15 to 15) 15 (15 to 15) 0.001

Temperature (°C) 36.4 (0.6) 36.4 (0.5) 0.871

Pulse rate (beats/minute) 79 (17) 86 (15) 0.008

Respiratory rate (breaths/minute) 18 (3) 20 (5) 0.010

Systolic BP (mmHg) 142 (28) 124 (31) 0.001

Diastolic BP (mmHg) 77 (15) 67 (17) 0.001

Oxygen saturation (%) 98 (4) 97 (4) 0.469

Pain score 2 (0 to 4) 3 (0 to 5) 0.358

HRV parameters

aRR (s) 0.831 (0.171) 0.723 (0.139) 0.001

STD (s) 0.038 (0.028) 0.034 (0.020) 0.657

avHR (beats/minute) 75.545 (15.862) 86.122 (15.927) 0.001

sdHR (beats/minute) 3.618 (2.735) 4.328 (2.886) 0.099

RMSSD (s) 0.037 (0.039) 0.039 (0.307) 0.376

pNN50 (%) 7.294 (12.617) 7.978 (9.695) 0.198

NN50 (count) 23 (41) 31 (44) 0.220

Triangular index 3.009 (1.233) 2.481 (0.969) 0.025

TINN 0.134 (0.086) 0.105 (0.069) 0.086

LF power (ms2) 0.128 (0.074) 0.106 (0.092) 0.024

HF power (ms2) 0.125 (0.075) 0.139 (0.080) 0.303

Total power (ms2) 0.489 (0.110) 0.434 (0.177) 0.054

LF power norm (n.u.) 51.173 (20.535) 40.947 (22.966) 0.020

HF power norm (n.u.) 48.827 (20.535) 59.053 (22.996) 0.020

LF/HF 1.641 (1.869) 1.018 (0.910) 0.021

Data are shown as mean (standard deviation) or median (interquartile range, 25th to 75th percentiles). The p-values are calculated from the Mann–Whitney test.
MACE: major adverse cardiac events; For HRV parameters, refer to Table 1.
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Table 5 Top selected variables and their prediction
performance

Selected variables for model building AUC AUC 95% CI

SBP 0.663 0.553 - 0.773

SBP, avHR 0.759 0.656 - 0.862

SBP, avHR, aRR 0.812 0.716 - 0.908

SBP, avHR, aRR, DBP 0.773 0.671 - 0.874

SBP, avHR, aRR, DBP, TI 0.763 0.660 - 0.865

SBP, avHR, aRR, DBP, TI, LF/HF 0.774 0.672 - 0.875

SBP, avHR, aRR, DBP, TI, LF/HF, HF norm 0.767 0.664 - 0.869

SBP, avHR, aRR, DBP, TI, LF/HF, HF norm, LF norm 0.768 0.666 - 0.870

Table 6 Pair-wise discrimination comparison of AUC values
of different risk prediction models

ML (Top 3) ML (All 23) TIMI MEWS

Method Diff. p Diff. p Diff. p Diff. p

ML (Top 3) - - - - - - - -

ML (All 23) 0.076 0.280 - - - - - -

TIMI 0.175 0.005 0.099 0.143 - - - -

MEWS 0.190 0.011 0.114 0.213 0.015 0.809 - -

Diff: AUC difference; p: the p-value of AUC difference between two models.
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yielded an AUC of 0.632 (95% CI: 0.564 - 0.7). A cutoff
score of 0.11 gave a sensitivity of 58.0% (95% CI: 47.3% -
68.8%) and specificity of 55.7% (95% CI: 51.8% - 59.6%),
respectively.
A pair-wise discrimination comparison of models is

presented in Table 6 describing the outcomes among
ML scores with and without variable selection, TIMI
score and MEWS score. From the pair-wise compari-
son, it is observed that ML score with variable selection
is correlated to ML score without variable selection
(AUC diff. 0.076; p-value 0.28), and performed better
compared to TIMI score (AUC diff. 0.175; p-value 0.005)
and MEWS score (AUC diff. 0.190; p-value 0.011).

Discussion
This study is a continuation of our previous work on
applying both HRV and clinical signs for outcome pre-
diction [10]. In this study, we investigated the use of
Figure 4 ROC curves of machine learning scores, TIMI and MEWS
scores in predicting MACE within 72 h.
variable selection to choose the most relevant predictors
of MACE within 72 h. The ML method was able to more
accurately identify patients who met the primary outcome
than MEWS and TIMI scores. Only 3 variables including
systolic BP, HRV parameters avHR and aRR were required
to achieve the best risk prediction performance. While
5-min ECG is not the standard of care, we have demon-
strated its feasibility and effectiveness of risk prediction.
The analysis of short recordings of ECG HRV has po-
tential to benefit triage in the ED, where timely response
is essential. Furthermore, only SBP instead of all eight
clinical signs is required for risk prediction, which dra-
matically simplifies the scoring system and saves a lot
of time in measurement.
Many scoring systems have been proposed to measure

the risk of adverse events in acute patients. However, no
study has yet been done on performance-driven model
building with random forest (RF)-based variable selec-
tion. With the RF technique, we derived a novel variable
selection process integrating the strengths of both ma-
chine learning and statistics. Artificial intelligence has
been used in the medical field for many years [16,33].
Due to the fact that positive samples (patients with
MACE) are a small proportion of the dataset, common
machine learning-based model building usually fails to
achieve effective risk analysis. The trained model tends
to over-fit due to the predominance of negative samples
(patients without MACE). Techniques for handling
imbalanced data has been well summarized in He and
Garcia [25]. Three major techniques are widely used,
namely: sampling methods, cost-sensitive methods,
and kernel-based and active learning methods. Each
type of method has its pros and cons. Because of its
simple yet effective structure, the sampling method
was adopted together with random forest to create a
novel variable selection algorithm.
A total of 23 variables consisting of 15 HRV and eight

clinical signs were investigated for their associations with
the primary outcome. The results showed that several
HRV parameters and clinical signs were significant in
predicting MACE within 72 h. It has also been reported
that patients with “normal” vital signs may be more ill
than they appeared [34], and therefore predictors other
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than traditional vital signs are needed to increase the
chance of detecting critically ill patients. We have pre-
viously discovered that a combination of HRV and clinical
signs outperformed HRV alone and clinical signs alone
[17,24]. It is shown in this study that a few significant
predictors were able to improve performance as well as
to shorten decision making time. Both RF-based and
statistics-based (by means of p-value) variable selection
methods were able to pick up significant variables such
as SBP, avHR and aRR. It is worth noting that avHR
(average of the instantaneous heart rate) and aRR
(average width of the RR interval) were correlated and
both were selected for building the scoring model. In a
conventional statistics approach, these two variables
will not appear in the same prediction model. How-
ever, in a machine learning method, variable selection
is performance-driven where both prediction perform-
ance and statistical significance play important roles
in the selection process.
With these selected variables, triage (in terms of risk

prediction) can be done within a shorter time to deter-
mine priority of patients’ treatments. Fast response is of
great value in triage because resources are usually limited
for all patients to receive immediate attention. In this
scenario, a few yet significant variables will benefit the
triage from two aspects. From software modeling per-
spective, they will maintain a balance between model
complexity and prediction performance because including
too many predictors may lead to a loss in precision,
whereas omitting important variables may result in biased
prediction [23]. From hardware design perspective, fewer
variables that require lesser time and effort to obtain will
make a triage device simpler and faster in real-time usage.
Our study has several limitations. Since this is a single-

center pilot study at an acute tertiary hospital in Singapore,
the number of recruited patients is small and our findings
may not be generalizable to other populations. The end-
points in this study are heterogeneous while the event rate
is still low. This creates difficulty in associating predictive
variables with specific outcomes. The TIMI outcomes
(death, AMI, and revascularization within 30 days) might
be adopted to standardize model derivation and for
comparison across several risk scoring methods in
chest pain patients presented to the ED.
While we adopt random forest for variable selection,

there are several other techniques available for selecting
significant variables [18]. Small sample size may lead
to overestimation even though we have adopted the
leave-one-out cross-validation scheme. The ideal way
is to validate the method on a separate dataset. Given
more available data in the future, we will be able to de-
rive a model from one dataset and validate its per-
formance on another. Finally, in variable selection we
created the subsets by using 1:1 ratio between MACE
and no MACE patient groups, which may potentially
lead to bias.
In future work, exploration of other potential predict-

ive variables will be considered. Gender has been reported
to be useful for patient outcome prediction [35]; 12-lead
ECG changes and bedside qualitative cardiac troponin [36]
could also be added to the algorithm to enhance prediction
performance. Also, including demographic and medical
history variables in the predictive model may be useful.
In this study, eight top-ranked variables were chosen
where the number was empirically determined to create
a trade-off between accuracy and efficiency. Therefore,
finding a method to decide the optimal number of variables
is necessary so that the proposed variable selection method
can be generalized in other applications.
Conclusions
This study expands our understanding that only a few
predictors are needed in risk stratification of MACE
within 72 h. With the proposed variable selection method,
a machine learning scoring system outperforms traditional
risk stratification systems such as TIMI and MEWS. We
have seen that blood pressure and some HRV parameters
achieved better prediction performance than a larger set
of clinical signs and HRV parameters. It shows that more
predictors do not necessarily guarantee better prediction
results. Furthermore, variable selection presents potential
to simplify scoring systems with just a few relevant mea-
sures as predictors, and the machine learning based scor-
ing system demonstrates its adaptability to changes of
variables.
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