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Abstract

Background: Several generic methods have been proposed to estimate transmission parameters during an
outbreak, especially the reproduction number. However, as of today, no dedicated software exists that implements
these methods and allow comparisons.

Results: A review of generic methods used to estimate transmissibility parameters during outbreaks was carried
out. Most methods used the epidemic curve and the generation time distribution. Two categories of methods were
available: those estimating the initial reproduction number, and those estimating a time dependent reproduction
number. We implemented five methods as an R library, developed sensitivity analysis tools for each method and
provided numerical illustrations of their use. A comparison of the performance of the different methods on
simulated datasets is reported.

Conclusions: This software package allows a standardized and extensible approach to the estimation of the
reproduction number and generation interval distribution from epidemic curves.
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Background
In 2009, the new influenza virus A/H1N1 rapidly spread
worldwide [1]. In the World Health Organization guid-
ance document [2] detailing the epidemiological para-
meters to quickly determine after identification of the
disease were: the incubation period, i.e. time between in-
fection and symptoms; the serial interval, i.e. time be-
tween symptoms onset in primary and secondary cases;
and the initial reproduction ratio, i.e. the average num-
ber of secondary cases per primary case. In a systematic
review of all articles presenting such estimates for the
2009 H1N1 influenza pandemic [3], we found high vari-
ability in the methods used to estimate the same
parameters.
Numerical differences in the reported estimates were

therefore due in part to the chosen method. Applying all
methods on the same dataset would help to understand
what variation is due to the method, and this will be
encouraged if the required code is widely distributed. It
is also worth noting that subtile variation arises from the
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reproduction in any medium, provided the or
actual implementation of the same methods. For ex-
ample, the initial “exponential growth rate” of the epi-
demic curve, used in the method described by Wallinga
& Lipsitch [4] has been estimated using linear regression
on logged incidence [5], Poisson regression on incidence
data [6] or renewal equations [7].
Authors may have provided code implementing their

methods, but no effort has yet been made to provide
end users with a unique framework, with standardized
approach allowing easy comparisons. To allow compari-
sons and provide more standardized approaches, we
developed an R package implementing five methods that
were the most commonly used during the 2009 H1N1
influenza pandemic. These methods are “plug-in” meth-
ods, requiring only data that are commonly recorded
during an outbreak (epidemic curve, serial interval), and
have been applied in a variety of situations.
After briefly recalling the principle of these methods,

we illustrate their use, propose some tools to critically
examine results and finally discuss applicability and
limitations.
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Implementation
We recall and describe the implementation of meth-
ods to estimate the serial interval distribution and
reproduction numbers in epidemics. We also propose
tools to explore the sensitivity of estimates to required
assumptions.

Defining a generation time distribution
The generation time is the time lag between infection in
a primary case and a secondary case. The generation
time distribution should be obtained from the time lag
between all infectee/infector pairs [8]. As it cannot be
observed directly, it is often substituted with the serial
interval distribution that measures time between symp-
toms onset. In our software package, the ‘generation.
time’ function is used to represent a discretized gener-
ation time distribution. Discretization is carried out on
the grid [0,0.5), [0.5, 1.5), [1.5, 2.5), etc.. . . where the unit
is a user chosen time interval (hour, day, week. . .). Sev-
eral descriptions are supported: “empirical” requiring the
full specification of the distribution, or parametric distri-
butions taken among “gamma”, “lognormal” or “weibull”.
In the latter case, the mean and standard deviation must
be provided in the desired time units.
A function (‘est.GT’) is also provided to estimate the

serial interval distribution from a sample of observed
time intervals between symptom onsets in primary cases
and secondary cases by maximum likelihood.

Estimation of initial reproduction numbers
Reproduction numbers may be estimated at different
times during an epidemic. In the following, we recall
methods for estimating the “initial” reproduction num-
ber, i.e. at the beginning of an outbreak, and for estimat-
ing the “time-dependent” reproduction number at any
time during an outbreak, as well as the required hypoth-
eses for the methods. Proposed extensions and options
implemented in the software are also presented.

Attack rate (AR)
In the classical SIR model of disease transmission, the
attack rate (AR : the percentage of the population even-
tually infected) is linked to the basic reproduction num-

ber [9], by R0 ¼ �
log 1�AR

S0

� �
AR� 1�S0ð Þ where S0 is the initial

percentage of susceptible population. The required
assumptions are homogeneous mixing, closed popula-
tion, and no intervention during the outbreak.

Exponential growth (EG)
As summarized by Wallinga & Lipsitch [4], the expo-
nential growth rate during the early phase of an out-
break can be linked to the initial reproduction ratio. The
exponential growth rate, denoted by r, is defined by the
per capita change in number of new cases per unit of
time. As incidence data are integer valued, Poisson re-
gression is indicated to estimate this parameter [6,10],
rather than linear regression of the logged incidence.
The reproduction number is computed as R ¼ 1

M �rð Þ
where M is the moment generating function of the (dis-
cretized) generation time distribution. It is necessary to
choose a period in the epidemic curve over which
growth is exponential. We propose to use the deviance
based R-squared statistic to guide this choice. No as-
sumption is made on mixing in the population.
Maximum likelihood estimation (ML)
This model, proposed by White & Pagano [11], relies on
the assumption that the number of secondary cases
caused by an index case is Poisson distributed with
expected value R. Given observation of (N0,N1, . . .,NT)
incident cases over consecutive time units, and a gen-
eration time distribution w, R is estimated by maximiz-

ing the log-likelihood LL Rð Þ ¼
XT

t¼1
log

e�μtμt
Nt

Nt !

� �

where μt = R
P

i = 1
t Nt − iwi. Here again, the likelihood

must be calculated on a period of exponential growth,
and the deviance R-squared measure may be used to se-
lect the best period. No assumption is made on mixing
in the population.
The approach assumes that the epidemic curve is ana-

lysed from the first case on. If this is not the case, the ini-
tial reproduction number will be overestimated, as
secondary cases will be assigned to too few index cases: we
implemented a correction as described in Additional file 1:
Supplementary material S1. It is also possible to account
for importation of cases during the course of the epidemic.
Sequential bayesian method (SB)
This method, although introduced as “real-time bayes-
ian” by its authors, more exactly allows sequential
estimation of the initial reproduction number. It relies
on an approximation to the SIR model, whereby
incidence at time t + 1, N(t + 1) is approximately Poisson
distributed with mean N(t)e(γ(R − 1)) [12], where 1

γ the

average duration of the infectious period. The proposed
algorithm, described in a Bayesian framework, starts
with a non-informative prior on the distribution
of the reproduction number R. The distribution
is updated as new data is observed, using

P RjN0; . . . ;Ntþ1ð Þ ¼ P Ntþ1jR;N0;...;Ntð Þ P RjN0;...;Ntð Þ
P N0;...;Ntþ1ð Þ . In other

words, the prior distribution for R used on each new day
is the posterior distribution from the previous day. At
each time, the mode of the posterior may be computed
along with the highest probability density interval. As
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before, the method requires that the epidemic is in a
period of exponential growth, i.e. it does not account for
susceptible depletion; it implicitly uses an exponential
distribution for the generation time; and assumes ran-
dom mixing in the population.

Estimation of time dependent reproduction numbers (TD)
The time-dependant method, proposed by Wallinga &
Teunis [13], computes reproduction numbers by aver-
aging over all transmission networks compatible with
observations. The probability pij that case i with onset at
time ti was infected by case j with onset at time tj is cal-

culated as pij ¼ Ni w ti�tjð ÞX
i≠k

Niw ti � tkð Þ . The effective

reproduction number for case j is therefore Rj =
P

ipij,

and is averaged as Rt ¼ 1
Nt

X
tj¼tf gRj over all cases with

the same date of onset. The confidence interval for Rt
can be obtained by simulation. Correction for real time
estimation, where not yet observed secondary cases are
taken into account is possible [14]. It is possible to ac-
count for importation cases during the course of the
epidemic.
Table 1 Estimation of initial reproduction number by four
different methods over the same dataset

Method Default Optimal

R R
[ 95% CI ] [ 95% CI ]

EG 1.34 1.56
(optimal time window: 7:22) [ 1.33 ; 1.36 ] [ 1.50 ; 1.62 ]

ML 1.21 1.54
(optimal time window: 11:22) [ 1.16 ; 1.27 ] [ 1.42 ; 1.66 ]
Results
In the following, we assume that the incidence data is
provided on a daily basis, i.e. that the time unit is the
day. To use the maximum likelihood and time
dependent method, it will be necessary that the
generation time distribution is discretized using the
same time unit. The user may provide incidence data in
the following formats:

- Vector of dates of onset. A list of dates in character
or date format is required. An epicurve object from the
Epitools package [15] (epitools::epicurve) may also be
supplied.
- Vector of incidence counts. In this case, the
initial date and/or time step can be supplied
separately.

We now illustrate the use of the package using an ex-
ample dataset from the 1918 influenza pandemic [16],
then use simulation to compare methods. The code used
for this analysis is given in the Appendix.
SB 1.20 1.38
[ 1.11 ; 1.28 ] [ 1.25 ; 1.51 ]

TD 1.40 1.40
[ 1.09 ; 1.73 ] [ 1.09 ; 1.73 ]

See text for details regarding the methods. All estimates were obtained using
the first 32 days of data (default column) or the best fitting time window
(“optimal” column). For the SB method, the optimal reported estimate was
obtained on day 22, as this date best fits the end of the exponential growth
period. For the TD method, daily estimates were averaged over the 32 first
days.
Estimating reproduction numbers
The ‘estimate.R’ function applies the methods described
above to a given epidemic curve. Several methods
may be used at the same time by listing them in the
“methods” argument. In the session code presented in
the appendix, a generation time distribution typical of
influenza is defined, using a Gamma distribution with
mean 2.6 days and standard deviation 1 day [17]. An
example dataset (Germany.1918) is loaded from the
package.
Initial inspection of the incidence data shows that the

exponential growth period takes place during the first 30
days of the epidemic curve. Sensitivity analyses may help
refine the choice of an optimal time window for expo-
nential growth (see below). Here, we applied all methods
(except the attack rate) on the first 32 days (epidemic
peak) of the epidemic curve and reported estimates in
Table 1. Surprisingly, although the analysis uses the
same data, the estimates range in a relatively large inter-
val, with up to 15% variation (from 1.2 to 1.4). Moreover,
confidence or credible intervals do not always overlap
(Figure 1A). The fit of each model to the data is however
quite similar in all cases, except for the SB method
which fits very poorly (Figure 1B).
Sensitivity analysis
The EG and ML methods require the user to select the
time period over which growth is exponential. By default
this is taken as the time period from first case to the
date of maximum incidence. However, a better choice is
possible using the deviance R-squared statistic over a
range of possible time periods. The largest R-squared
value corresponds to the period over which the model of
analysis fitted the data best: we select this period to pro-
vide estimates. To look for this time period, the function
‘sensitivity.analysis’ systematically computes the deviance
R-squared statistic over a range of time periods chosen
by the user. A plot can be obtained that displays the lar-
gest R-squared value over time periods of increasing
length (see Figure 2A), and the corresponding estimates
can be displayed according to the chosen time window
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Figure 1 Estimates of the reproduction ratio and goodness of fit. A) Estimates of the reproduction ratio by four different methods (see text
for details). B) Observed incidence (step function) and model predicted incidence for each method.
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(Figure 2B). Here, this analysis shows that the portion of
the epidemic curve that best fitted exponential growth
in the EG method was of length 15, and more precisely
in this case between time units 7 and 22. The estimate
of the reproduction number was 1.56 [ 1.50 ; 1.62 ]. For
a large choice of time windows, the estimates of the
reproduction number remained within the 95%CI of
the best fit, suggesting that the estimate was robust to
change in the period of exponential growth. The
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user chosen generation time distribution. In our ex-
ample, we varied the generation time distribution for the
EG method (see Figure 3): as expected, the estimates
increased with the mean generation time [18]. Using the
same epidemic curve, the reported reproduction ratio
ranged between 1.3 and 2 when the mean generation
time goes between 1.5 and 5 days.

Comparison of methods
We conducted a simulation study to investigate how
estimates of the reproduction number changed with the
method of estimation, the role of over-dispersion in the
secondary cases distribution and of epidemic curve ag-
gregation at increasingly large time steps. Epidemics
were simulated using a branching process, with no re-
striction on the number of susceptibles to allow expo-
nential growth. For each case, the latent and infectious
period were sampled in distributions typical of influenza
(gamma distributions with mean+/−sd 1.6+/−0.3 days
for latency and 1+/−1 days for infectious period [19])
yielding a generation time interval with mean 2.6 days.
The epidemic was started with one incident case at time
t=0, then for each incident case, the number of second-
ary cases was sampled from a negative binomial distribu-
tion with mean β I and variance k β I, where I was the
individual’s duration of infectious period, β the effective
contact rate, and k the overdispersion parameter. The
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Figure 3 Sensitivity of the reproduction number to the choice of the
computed using different mean generation times. Confidence intervals are
actual time of infection of secondary cases was sampled
uniformly during the infectious period of the index case.
In this model, the reproduction number is R = β E(I), so
that it was possible to calibrate β to obtain the desired
value of R. We ran simulations with 3 values for R (1.5,
2 and 3) and overdispersion parameter k to 1 (no over-
dispersion) and 4 (large overdispersion).
All epidemics were simulated over a period corre-

sponding to approximately the 6 first generations of
cases (24 days). For each combination of R and k, 4000
epidemics with more than 20 cases were simulated. Epi-
demic data were then aggregated daily, by 3 days periods
and by 6 days periods. Estimation of the reproduction
ratio was made, and the bias and mean squared error
were calculated.
The comparison of methods is presented in Table 2. In

all cases, when the data were available as daily counts,
all methods had approximately the same characteristics.
The ML and TD methods were the least biased. Bias
increased with larger aggregation periods, especially for
the ML and TD methods. For these two methods, the
reproduction ratio was increasingly underestimated as
data were aggregated on longer periods. Overall, over-
dispersion did not significantly affect the estimated value
of R. In all cases, the exponential growth method per-
formance was the least affected by either aggregation or
over dispersion.
3.5 4.0 4.5 5.0

n GT (days)

f R0 to mean GT

generation time distribution. Reproduction ratio estimates were
shown as vertical bars.



Table 2 Bias and MSE of initial reproduction number estimation methods

Bias (MSE)

R0 Aggregation
(days)

Method

EG ML TD SB

No overdispersion (k = 1)

1.5
1 0.12 (0.0467) 0.02 (0.0164) 0.04 (0.0336) −0.15 (0.0745)
3 0.07 (0.0386) −0.38 (0.1429) −0.4 (0.16) −0.1 (0.0277)
6 0.07 (0.0431) −0.49 (0.2408) −0.79 (0.6281) −0.09 (0.0371)

2
1 0.11 (0.0589) −0.17 (0.0571) −0.11 (0.0736) −0.4 (0.1814)
3 0 (0.0496) −0.84 (0.7041) −0.87 (0.7573) −0.32 (0.1222)
6 −0.03 (0.0618) −0.99 (0.9789) −1.33 (1.781) −0.31 (0.1306)

3
1 −0.07 (0.1449) −0.67 (0.5547) −0.47 (0.317) −1.1 (1.2532)
3 −0.3 (0.2492) −1.8 (3.2396) −1.86 (3.4432) −0.92 (0.8585)
6 −0.33 (0.2872) −1.99 (3.9521) −2.45 (5.9935) −0.89 (0.8277)

Large overdispersion (k = 4)

1.5
1 0.28 (0.1609) 0.16 (0.0679) 0.33 (0.1913) −0.05 (0.0881)
3 0.11 (0.0715) −0.38 (0.1444) −0.42 (0.1816) −0.06 (0.035)
6 0.08 (0.0694) −0.49 (0.2415) −0.83 (0.6906) −0.04 (0.0574)

2
1 0.13 (0.1109) −0.15 (0.0696) 0.05 (0.1238) −0.4 (0.197)
3 0 (0.086) −0.84 (0.7108) −0.89 (0.8007) −0.32 (0.1328)
6 −0.03 (0.0988) −0.99 (0.9792) −1.36 (1.8686) −0.3 (0.1517)

3

1 −0.07 (0.2157) −0.65 (0.5699) −0.45 (0.3457) −1.11 (1.2745)
3 −0.3 (0.3035) −1.8 (3.2337) −1.86 (3.4698) −0.93 (0.898)
6 −0.36 (0.366) −1.99 (3.9527) −2.43 (5.9218) −0.94 (0.9421)

For each fixed value of R0, 4.000 epidemics were simulated at an individual-based level. A first index case is set at the initial time, and contaminated descendants
are sampled in a negative binomial distribution. For each case, we sample a latency period dlat during which the individual is infected, but not contagious, and
an infectious period dinf, both from Gamma distributions of parameters already described for influenza (gamma distributions with mean+/−sd 1.6+/−0.3 days for
latency and 1+/−1 days for infectious period [19]). Incidence data are computed as class of time of infection, defined as tinf(o) = tinf(p) + dlat(p) + runif(1) * dinf (p),
where p is the parent case and 0 the offspring case.
Epidemics that didn’t start due to too few cases were discarded, and estimations were run by batch. For each batch of simulations, we report the bias between
the value used to generate the epidemics and the average of all estimates, along with the Mean Square Estimator (MSE) of the simulation series.
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Discussion
We have described a package implementing several
methods for estimating the reproduction number from
epidemic curves, along with diagnostic tools and pro-
vided a comparison of the accuracy of these methods.
The reproduction number in an epidemic is of interest

when the disease is actually transmitted between sub-
jects, either directly or indirectly. This is for example the
case for influenza, childhood diseases, vector borne dis-
eases, but not in food-borne epidemics caused by envir-
onmental exposure to a pathogen. The methods
implemented in the package will best be used for acute
diseases with short serial intervals. The analysis of dis-
eases with very long incubation times (e.g. HIV or HBV
infection) requires more specialized methods, especially
to account for censoring [20].
While several methods for estimating reproduction

numbers exist, sometimes with code provided by their
authors, no common framework was available to allow
easy and direct comparison of the results. Developing an
R package provide this framework and allow widespread
distribution. It will complement package developed for
epidemiological surveillance [4] and cost-effectiveness
analyses [5]. Furthermore, R packages are easily extensible,
so that additional methods can be easily included in future
releases.
Regarding the methods described here, we found that

when the data was available on a time scale smaller
than the mean generation time, all methods tended to
be unbiased. Very small aggregation windows may lead
to gaps, i.e. time periods with 0 observations. In this
case, the SB method fails after the first gap (data not
shown). Other methods are not affected, provided the
maximum generation time is longer than the gap.
When the data was aggregated in time periods up to
twice the mean generation time, only the exponential
growth method remained unbiased. Indeed, it has pre-
viously been reported that aggregation in time periods
of 1 mean generation time width was ideal for estima-
tion, and corrections proposed for larger time intervals
[21]. The results obtained from the methods described
here when data are aggregated in time periods larger
than the mean generation time should therefore be
interpreted with caution, all the more than the expo-
nential growth assumption is unlikely to be met on
long time periods.
In a real situation, and especially for an emerging dis-

ease, several practical problems must be taken into
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account in the application of these methods. The attack
rate method requires the least information, but is only
usable when the epidemic is over, and furthermore
requires that no intervention was set up during the
whole course of an outbreak. Therefore its use is gener-
ally limited to particular settings like schools or army
platoons, for example [22]. All other methods require
the epidemic curve and the generation time distribution,
with the ‘initial’ reproduction ratio as an output. If one
assumes that the population was totally susceptible at
first, it may also be interpreted as the basic reproduction
ratio (R0); a correction will be necessary in the case of a
initial partial immunity.
With a truly emerging outbreak, prior knowledge on

the generation time distribution may be unavailable.
Allowing sensitivity analyses according to the mean gen-
eration time, as we described, is therefore important to
help quantify uncertainty in this respect. In other cases,
estimation of the generation time distribution is rela-
tively straightforward from pairs of infectors/infectees if
there is a marked separation between generations; it is
more complicated when generations quickly overlap as
with influenza [23]. An additional issue is that symptom
onset dates may be known only to an interval, requiring
specialized methods for estimation [24]. Joint-estimation
of the generation time distribution and reproduction
number is another possibility [11,14].
A second step is to choose a time period that displays

exponential growth. Too long a time period may depart
from true exponential growth and bias estimation down-
wards, while too short a period may lead to large vari-
ance in the estimates. We implemented a method to
select the optimal period displaying exponential growth
based on the deviance R-squared, a commonly used
method to measure goodness of fit of model to data. As
shown in Figure 2A, the typical profile of the R-squared
deviance presents a maximum that allows selecting the
best period.
An implicit assumption in all methods is that all cases

are recorded and are linked by a chain of transmission.
However, the following issues will arise: missing first
cases; under-reporting; unreported cases; reporting
delays; importation cases.
If the epidemic is not observed from the first case

on, overestimation of the initial reproduction number
is likely since some initial cases are absent from the
epidemic curve, and secondary cases will be imputed
to too few index cases. A correction was implemented
for missing generations at the beginning of the epi-
demic curve for the ML method, similar to that pro-
posed by McBryde in a Bayesian setting [25] using the
assumption of constant reproduction number. No ob-
vious way exists to correct the TD method, as the
reproduction ratio is allowed to change with time. The
EG and SB methods are, by construction, not
dependent on this issue.
No method explicitly accounts for under-reporting

during the course of the epidemic. If the under-
reporting rate is constant in time, no bias is expected.
However, if it is known that under-reporting changed
with time, this could be corrected before estimation pro-
ceeds, as was done in the US [26].
Non-reported cases during an outbreak the epidemic

are neither accounted for. Treating missing cases as la-
tent observations has been proposed, but requires the
grouping of cases in successive generations rather than
on a temporal basis [27].
Importation of cases during the course of the epidemic

generally leads to overestimation of the reproduction
ratio, since these cases are considered as “offspring” of
cases present earlier in the outbreak. In all the methods
presented here, only the TD and ML methods can satis-
factorily correct for importation cases. The other meth-
ods are less easily modified in this respect, and this
should be the object of further research.
A final issue is reporting delays, especially when ana-

lysis is done in real time. Reporting delays cause a down-
ward bias in incidence in the last few days of
observation. This will impact the most the ML and TD
estimates, as these rely more heavily on the fit of the
model to the observed incidence. In practice, one may
wait for data consolidation before applying any method,
but it would also be possible to correct for this bias be-
fore estimating the reproduction number if the reporting
delay is known [14,26].
In the simulation study, we identified that all methods

would generally be biased downwards for a disease like
flu, with bias increasing both with larger aggregation win-
dows and increasing reproduction number. An exception
was the EG method, with upward bias for small R values
(R<2) and downwards bias for larger values. When inci-
dence data was available on a daily basis, i.e. smaller than
the generation time distribution, the characteristics of the
four methods compared. The EG method was the least
sensitive to changes in aggregation window, while the ML
and TD methods were rapidly inconsistent. The SB
method was generally not better than the EG method.
Best practice in case of an emerging epidemic will likely
depend on a combination of reproduction ratio magni-
tude, mean generation time duration and aggregation de-
tail. We have provided the framework that would allow
comparison and critic of these estimates.
Finally, we highlighted that the estimated reproduction

ratio may depend on the method for estimation. This
should be taken into account in comparisons, and also
when calibrating predictive models as small differences
can lead to large variation in attack rates and assessment
of required efficacy in interventions.
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Conclusions
Although many mathematical models have been devel-
oped to estimate several types of reproduction numbers
during epidemic outbreaks, no unique workframe existed.
We here provide a user-friendly R package that supports
five of the most commonly used methods, and extend
some approaches with sensitivity analysis or imputing cen-
sored data. This will allow for fast assessment of the trans-
missibility parameters in new outbreaks, as well as critical
assessment of the reported values. The package is cur-
rently available from the CRAN repository.
Availability and requirements
Project name: R0 Package
Project home page: CRAN repository (http://cran.r-
project.org/web/packages/R0/)
Operating system(s): Platform independent
Programming language: R
Other requirements: R v2.13 or higher
License: GPL (>= 2)
Any restrictions to use by non-academics: None

Appendix
Typical session code
> library(R0) # loads library
> # epidemic curve can be input as a list of dates
> epid = c("2012-01-01", "2012-01-02", "2012-01-02",
"2012-01-03")
> # or as incidence counts
> epid.count = c(1,2,4,8)
> # create generation time : gamma distribution, with
mean 2.6 time units and standard deviation 1 time unit
> GT.flu <− generation.time("gamma", c(2.6,1))
> # loads example dataset
> data(Germany.1918)
> res.R <− estimate.R(Germany.1918, GT=GT.flu,
methods=c("EG","ML","SB","TD"))# applies methods
EG, ML, SB, TD to the dataset
> plot(res.R) # diplays results
> plotfit(res.R) # displays fit to the epidemic curve
# sensitivity analysis according to choice of time
window for exponential growth
> sensitivity.analysis(Germany.1918, GT.flu, begin=1:15,
end=16:30, est.method="EG", sa.type="time")
> # sensitivity analysis according to generation time
> sensitivity.analysis(Germany.1918, GT.type="gamma",
GT.mean=seq(1,5,1), GT.sd.range=1, begin=1, end=27,
est.method="EG", sa.type="GT")

Additional file

Additional file 1: Supplementary material S1. Imputation method
for missing incidence values in the ML method.
Abbreviations
AR: Attack rate; EG: Exponential growth; ML: Maximum likelihood; TD: Time
dependent; SB: Sequential bayesian.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TO coded the software, wrote the manuscript. RH researched bibliography.
PYB conceived the study, wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
Partial funding from MOSAR network contract LSHP-CT-2007-037941; Institut
National de Veille Sanitaire.

Author details
1INSERM, U707, Paris, France. 2APHP, Saint-Antoine Hospital, Paris, France.
3UPMC Univ Paris 06, UMR-S 707, Paris, France. 4EHESP, Paris, France.

Received: 27 July 2012 Accepted: 4 December 2012
Published: 18 December 2012

References
1. Khan K, Arino J, Hu W, Raposo P, Sears J, Calderon F, Heidebrecht C,

Macdonald M, Liauw J, Chan A, Gardam M: Spread of a Novel Influenza A
(H1N1) Virus via Global Airline Transportation. N Engl J Med 2009,
361:212–214.

2. World Health Organization: Global Surveillance during an Influenza Pandemic.
2009 http://www.who.int/csr/disease/swineflu/global_pandemic_influenza_
surveilance_apr09.pdf.

3. Boëlle P-Y, Ansart S, Cori A, Valleron A-J: Transmission parameters of the
A/H1N1 (2009) influenza virus pandemic: a review. Influenza and Other
Respiratory Viruses 2011, 5:306–316.

4. Wallinga J, Lipsitch M: How generation intervals shape the relationship
between growth rates and reproductive numbers. Proceedings of the
Royal Society B: Biological Sciences 2007, 274:599.

5. Chowell G, Viboud C, Simonsen L, Miller MA, Acuna-Soto R, Díaz J,
Martínez-Martín AF: The 1918–19 Influenza Pandemic in Boyacá.
Colombia. Emerging infectious diseases 2012, 18:48.

6. Boëlle PY, Bernillon P, Desenclos JC: A preliminary estimation of the
reproduction ratio for new influenza A(H1N1) from the outbreak in
Mexico, March-April 2009. Euro Surveill 2009, 14(19). pii=19205.

7. Nishiura H, Wilson N, Baker M: Estimating the reproduction number of the
novel influenza A virus (H1N1) in a Southern Hemisphere setting:
preliminary estimate in New Zealand. N. Z. Med. J. 2009, 122:73–77.

8. Svensson Å: A note on generation times in epidemic models. Math Biosci
2007, 208:300–311.

9. Dietz K: The estimation of the basic reproduction number for infectious
diseases. Statistical Methods in Medical Research 1993, 2:23–41.

10. Hens N, Van Ranst M, Aerts M, Robesyn E, Van Damme P, Beutels P:
Estimating the effective reproduction number for pandemic influenza
from notification data made publicly available in real time: a multi-
country analysis for influenza A/H1N1v 2009. Vaccine 2011, 29:896–904.

11. Forsberg White L, Pagano M: A likelihood-based method for real-time
estimation of the serial interval and reproductive number of
an epidemic. Statist. Med 2008, 27:2999–3016.

12. Bettencourt LMA, Ribeiro RM: Real time bayesian estimation of the
epidemic potential of emerging infectious diseases. PLoS One 2008,
3:e2185.

13. Wallinga J, Teunis P: Different epidemic curves for severe acute
respiratory syndrome reveal similar impacts of control measures.
Am J Epidemiol 2004, 160:509.

14. Cauchemez S, Boëlle P-Y, Donnelly CA, Ferguson NM, Thomas G, Leung GM,
Hedley AJ, Anderson RM, Valleron A-J: Real-time estimates in early
detection of SARS. Emerg Infect Dis 2006, 12:110–113.

15. Tomas JA: epitools: epidemiology Tools. R package version 0.5-7. 2012,
http://CRAN.R-project.org/package=epitools.

16. Nishiura H: Time variations in the transmissibility of pandemic influenza
in Prussia, Germany, from 1918–19. Theor Biol Med Model 2007, 4:20.

http://cran.r-project.org/web/packages/R0/
http://cran.r-project.org/web/packages/R0/
http://www.biomedcentral.com/content/supplementary/1472-6947-12-147-S1.docx
http://www.who.int/csr/disease/swineflu/global_pandemic_influenza_surveilance_apr09.pdf
http://www.who.int/csr/disease/swineflu/global_pandemic_influenza_surveilance_apr09.pdf
http://CRAN.R-project.org/package=epitools


Obadia et al. BMC Medical Informatics and Decision Making 2012, 12:147 Page 9 of 9
http://www.biomedcentral.com/1472-6947/12/147
17. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron
A-J: Time lines of infection and disease in human influenza: a review of
volunteer challenge studies. Am J Epidemiol 2008, 167:775–785.

18. Nishiura H, Castillo-Chavez C, Safan M, Chowell G: Transmission potential
of the new influenza A (H1N1) virus and its age-specificity in Japan.
Euro Surveill 2009, 14:19227.

19. Cori A, Valleron AJ, Carrat F, Scalia Tomba G, Thomas G, Boëlle PY:
Estimating influenza latency and infectious period durations using viral
excretion data. Epidemics 2012, 4:132–138.

20. Brookmeyer R, Gail MH: Minimum size of the acquired immunodeficiency
syndrome (AIDS) epidemic in the United States. Lancet 1986,
328:1320–1322.

21. Nishiura H, Chowell G, Heesterbeek H, Wallinga J: The ideal reporting
interval for an epidemic to objectively interpret the epidemiological
time course. J. R. Soc. Interface 2010, 7:297–307.

22. Lessler J, Cummings DAT, Fishman S, Vora A, Burke DS: Transmissibility of
swine flu at Fort Dix, 1976. J. R. Soc. Interface 2007, 4:755–762.

23. Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson
NM, Swerdlow D, Sodha SV, Moll ME, Angulo FJ, Palekar R, Archer WR, Finelli
L: Role of social networks in shaping disease transmission during a
community outbreak of 2009 H1N1 pandemic influenza. PNAS 2011,
108:2825–2830.

24. Lessler J, Reich NG, Cummings DAT: Outbreak of 2009 pandemic influenza
A (H1N1) at a New York City school. N Engl J Med 2009, 361:2628–2636.

25. McBryde ES, Bergeri I, van Gemert C, Rotty J, Headley EJ, Simpson K, Lester
RA, Hellard M, Fielding JE: Early transmission characteristics of influenza A
(H1N1)v in Australia: Victorian state. Euro Surveill 16 May - 3 June 2009,
14(42). pii=19363.

26. White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M, Pagano M:
Estimation of the reproductive number and the serial interval in early
phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza and
Other Respiratory Viruses 2009, 3:267–276.

27. Glass K, Becker N, Clements M: Predicting case numbers during infectious
disease outbreaks when some cases are undiagnosed. Statistics in
Medicine 2007, 26:171–183.

doi:10.1186/1472-6947-12-147
Cite this article as: Obadia et al.: The R0 package: a toolbox to estimate
reproduction numbers for epidemic outbreaks. BMC Medical Informatics
and Decision Making 2012 12:147.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Defining a generation time distribution
	Estimation of initial reproduction numbers
	Attack rate (AR)
	Exponential growth (EG)
	Maximum likelihood estimation (ML)
	Sequential bayesian method (SB)
	Estimation of time dependent reproduction numbers (TD)

	Results
	Estimating reproduction numbers
	Sensitivity analysis
	Comparison of methods

	Discussion
	Conclusions
	Availability and requirements
	Appendix
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

