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Abstract

Background: Appropriate postoperative pain management contributes to earlier mobilization, shorter
hospitalization, and reduced cost. The under treatment of pain may impede short-term recovery and have a
detrimental long-term effect on health. This study focuses on Patient Controlled Analgesia (PCA), which is a delivery
system for pain medication. This study proposes and demonstrates how to use machine learning and data mining
techniques to predict analgesic requirements and PCA readjustment.

Methods: The sample in this study included 1099 patients. Every patient was described by 280 attributes,
including the class attribute. In addition to commonly studied demographic and physiological factors, this study
emphasizes attributes related to PCA. We used decision tree-based learning algorithms to predict analgesic
consumption and PCA control readjustment based on the first few hours of PCA medications. We also developed
a nearest neighbor-based data cleaning method to alleviate the class-imbalance problem in PCA setting
readjustment prediction.

Results: The prediction accuracies of total analgesic consumption (continuous dose and PCA dose) and PCA
analgesic requirement (PCA dose only) by an ensemble of decision trees were 80.9% and 73.1%, respectively.
Decision tree-based learning outperformed Artificial Neural Network, Support Vector Machine, Random Forest,
Rotation Forest, and Naïve Bayesian classifiers in analgesic consumption prediction. The proposed data cleaning
method improved the performance of every learning method in this study of PCA setting readjustment prediction.
Comparative analysis identified the informative attributes from the data mining models and compared them
with the correlates of analgesic requirement reported in previous works.

Conclusion: This study presents a real-world application of data mining to anesthesiology. Unlike previous research,
this study considers a wider variety of predictive factors, including PCA demands over time. We analyzed PCA
patient data and conducted several experiments to evaluate the potential of applying machine-learning algorithms
to assist anesthesiologists in PCA administration. Results demonstrate the feasibility of the proposed ensemble
approach to postoperative pain management.
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Background
Pain is one of the most commonly reported postopera-
tive symptoms [1]. Pain can negatively affect quality of
life and may do more harm than an illness itself when it
becomes intolerable, making the patient both physically
and mentally uncomfortable. Pain is a highly personal
experience influenced by multiple factors, including sen-
sitivity to pain, age, genetics, physical status, and psycho-
logical factors [2,3]. Progress in medical science has
gradually made people more aware of the importance of
pain management.
Patient-controlled analgesia (PCA) is a pain medica-

tion delivery system that enables effective and flexible
pain treatment by allowing patients to adjust the dosage
of anesthetics. According to previous research [4,5],
PCA has become one of the most effective techniques
for treating postoperative analgesia. As a result, PCA is
now widely used in hospitals for the management of
postoperative pain, especially for major surgeries.
This study focuses on PCA. Previous research has

identified the preoperative correlates of postoperative
pain intensity or analgesic consumption in various pa-
tient groups of different genders, ages, or psychological
states [6,7]. These studies used statistical methods, such
as ANOVA, chi-square tests, or regression analysis, to
evaluate this correlation in an attempt to identify tai-
lored treatments that reduce severe postoperative pain
or improve acute and chronic outcomes. With the same
objective, this study applies learning algorithms to pre-
dict (1) the postoperative analgesic requirement and
(2) the need for PCA setting readjustment (e.g., lockout)
based on patient physical states and the first few hours
of PCA treatment data.

Methods
Subjects in study and goals of prediction
This study was conducted with the approval of the Insti-
tutional Review Board at Changhwa Christian Hospital
(CCH). PCA usage profiles from 2005 to 2010 were
collected for analysis. The Abbott Pain Management
Provider (Abbott Lab, Chicago, IL, USA) was used for
PCA treatment. Instructions were reviewed with patients
before receiving PCA therapy. With the assistance of the
Acute Pain Service, more than 5000 patient records
dated from 2005 were retrospectively collected. After
discarding incomplete PCA log files and patient records
with missing demographic, biomedical, or surgery-related
attributes, we obtained 2,207 patient records. Of these
patients, 1,108 were excluded from the sample because
their PCA medication was administered for less than
72 h. This is because this study focuses on patients
that received at least 72 h of PCA treatment. Thus,
the final sample included 1,099 participants after data
preprocessing. Table 1 presents a summary of their
attributes, which were divided into four categories: (a)
patient demographic attributes, (b) biomedical attributes,
(c) operation-related attributes, and (d) PCA-related
attributes. Attribute values were either nominal or nu-
meric. Given the physical states of patients and their
first 24-h PCA treatment profiles, we predicted (a) the
total anesthetic dose taken in subsequent hours, and
(b) whether any PCA control, (e.g., lockout time or PCA
dosage) should be readjusted. This study has two main
goals. First, based on accurate prediction, we hope to
provide an early warning for anesthesiologists to make
necessary changes in analgesic dosage or PCA control
settings to improve patient satisfaction during postopera-
tive pain management. Second, based on comprehensible
prediction, this study attempts to identify significant
factors that affect analgesic requirement.

Analgesic consumption prediction
Some researchers have used regression analysis to derive
predictive models of analgesic requirements or post-
operative pain [7-9]. Although they identified several
positive correlates, such as age and gender, their coeffi-
cients of determination were small. For example, the
best predictor in an analysis of total analgesic need was
the State Trait Anxiety Inventory, but its coefficient was
only 0.22 [9]. This result indicates the limitations of
regression analyses and suggests that other predictive
factors are present that have not been analyzed. This
study includes PCA-related factors in addition to demo-
graphic and physiological attributes. Unlike approaches
that fit the numeric values of analgesic requirements,
this study categorizes analgesic consumption into a
number of symbolic values (e.g., “small,” “medium,” and
“large”). Instead of a numeric value, we tried to predict a
symbolic value of analgesic consumption because this
indicator is expressive enough for medical staff or
anesthesiologists to recognize an abnormality in PCA
medications. The discretization of numeric values can
also reduce the computational complexity of prediction.
To discretize analgesic consumption, the numeric value
was divided into several intervals, with each interval cor-
responding to a specific symbolic value. This process
was accomplished by an iterative optimization procedure
that identified the intervals and ensured that dose devia-
tions in all intervals were approximately equal.
Prediction methods can be compared and evaluated

based on accuracy and comprehensibility. The accuracy
of a predictor refers to its ability to correctly predict the
value of the target attribute (e.g., total anesthetic dose)
for previously unseen data. The comprehensibility of a
predictor refers to the level of ease with which people
can interpret the predictions. For any prediction method,
inductive bias causes some trade-offs between these two
criteria [10]. A predictor that can make both accurate



Table 1 Summary of patient attributes

Attribute Name Description

Demographic:

age patient age

gender patient gender

weight patient weight

Biomedical:

pulse heart rate

sbp systolic blood pressue

dbp diastolic blood pressure

DM if patient is diabetic

HT if patient has hypertension

AMI if patient has acute myocardial infarction

ASA_CLASS* 1: healthy

2: mild systemic disease

3: major systemic disease

4: life-threatening disease or condition

5: not expected to survive

6: donor

OP-related:

OP_CLASS surgical type:

1: intrathoracic

2: upper intra-abdominal

3: lower intra-abdominal

4: laminectomy

5: major joints

6: limbs

7: head & neck

8: others

op_time surgical duration

URGENCY E: emergency surgery

R: regular surgery

ANS_WAY SA: spinal anesthesia

GA: general anesthesia

LE: lumbar epidural anesthesia

NB: nerve blockade

PCA-related:

loading_dose analgesia taken before PCA treatment

sucess_p_1hr~ sucess_p_24hr number of successful PCA demands in 1st–24th h

failure_p_1hr~ failure_p_24hr number of PCA demands that fail in 1st–24th h

pcadose_1hr~ pcadose_24hr total PCA dose in 1st–24th h

contidose_1hr~ contidose_24hr total continuous dose in 1st–24th h

readjustcount_1hr~ readjustcount_24hr number of PCA readjustment in 1st–24th h

p_timediff_mean_1hr~ p_timediff_mean_24hr mean of time gap between two consecutive PCA demands

p_timediff_var_1hr~ p_timediff_var_24hr variance of time gap between two consecutive PCA demans

pcamode_set_1hr~ pcamode_set_24hr setting of PCA mode:

(a) PCA and continuous

(b) PCA only
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Table 1 Summary of patient attributes (Continued)

pcadose_set_1hr~ pcadose_set_24hr PCA dose setting in 1st–24th h

lockout_set_1hr~ lockout_set_24hr setting of minimum time gap between two adjacent PCA demands in 1st–24th h

4hrlimit_set_1hr~4hrlimit_set_24hr setting of maximum dosage allowed for every 4 h in 1st–24th h
*ASA class is the commonly used preoperative index of physical status defined by the American Society of Anesthesiologists.
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and comprehensible predictions is most desirable, but
unfortunately, finding a predictor that achieves both ac-
curacy and comprehensibility is difficult and unlikely.
Therefore, before development, it is necessary to exam-
ine the application domain of the predictor to determine
what information users expect the predictor to deliver.
For example, an investor making a quick, one-time in-
vestment may wish to know only if the stock market will
go up or down during the next few weeks. In this case,
an answer as simple as “up” or “down” is sufficient, and
the user’s primary concern is prediction accuracy. Con-
versely, for a long-term investment, an investor may re-
quire not only an accurate prediction, but also an
explanation. With a comprehensible predictor that is
easily communicated to the user, predictions can be eas-
ier to interpret and verify. The goal of this study is to de-
velop a prediction tool that can make predictions about
PCA analgesic requirements with high accuracy and ac-
ceptable comprehensibility for anesthesiologists.
Decision tree learning is among the most widely used

and practical methods of inductive inference [11]. This
method approximates the function for the target attri-
bute by learning a decision tree from previous examples.
Each internal node in a decision tree specifies an attri-
bute test, and each leaf represents the predicted target
value. If we represent each example by a set of descrip-
tive attributes and its target attribute and their attribute
values, then we can define decision tree inductive learn-
ing as follows.
Given:

E={e1,e2,. . .,en}: a set of training examples
X={x1,x2,. . .,xm}: a set of descriptive attributes
c: the target attribute

Each training example ei is represented by a vector
<v1,v2,. . .,vm, ti>, where v1,v2,. . .,vm denotes a legal value
of attribute x1,x2,. . .,xm, and ti is a legal value of the tar-
get attribute c.
Assuming:

F:: X → c: the target attribute function, which maps an
example represented by a vector of descriptive attribute
values to its target attribute value.

Learn:
T:: X → c: a decision tree that approximates the target
attribute function T(X)≈F(X).

Most decision tree-based learning algorithms are
based on a principle algorithm that performs a top-
down, recursive greedy search for the best decision tree.
This process selects one attribute at a time from the
available descriptive attributes as a node in the tree.
A descendant of the node is created for each legal value
of this attribute. This process is repeated for the training
examples associated with each descendant to select the
next node in the tree. Figure 1 presents a pseudocode of
the principle algorithm, which builds a decision tree in a
recursive fashion, and returns its root at last.
Figure 2 shows an example of decision trees learned

by the decision tree learning algorithm. When predicting
the target value for a previously unseen example,
traverse the learned decision tree from the root accord-
ing to the descriptive attribute values of the new
example until reaching a leaf, which predicts the target
attribute value. For example, a new example <v1,v2,v2,v1,
v2,v3> has a predicted target value of t2.
Compared with other inductive learning methods (e.g.,

Artificial Neural Network [12], Support Vector Machine
[13], Naïve Bayesian classifier [14]), decision tree learn-
ing is more interpretable by humans because a decision
tree is a pictorial representation that can be easily trans-
lated into a set of if-then-else rules. For example, the
left-most path from the root to the leaf in Figure 1 can
be translated into “If x2 is v1, x1 is v1, and x3 is v1, then
target is t2.” In addition, because the attributes appearing
at higher levels in a decision tree are considered more
informative [11], a tree can identify significant attributes
for further analysis more easily than a model learned
by other approaches (e.g., the conditional probabilities
of a Naïve Bayesian classifier or the tuned weights of
an ANN). To maintain sufficient comprehensibility in
prediction and analysis, the proposed PCA prediction
tool is based on decision tree learning. This study
demonstrates how to explore the resulting decision
trees by analyzing the patient attributes used in the
resulting trees.
Although decision tree learning has proved useful

in many real-world applications, such as SKICAT [15],
further studies have shown that an ensemble of decision
trees is often more accurate than any single tree [16,17].



Tree-Learning (TR, Target, Attr)
TR: training examples
Target: target attribute
Attr: set of descriptive attributes

{
Create a Root node for the tree.
If TR have the same target attribute value ti, 

Then Return the single-node tree, i.e. Root, with target attribute = ti
If Attr = empty (i.e. there is no descriptive attributes available), 

Then Return  the single-node tree, i.e. Root, with most common value of Target in TR
Otherwise
{

Select attribute A from Attr that best classify TR based on an entropy-based measure
Set A the attribute for Root
For each legal value of A, vi, do
{

Add a branch below Root, corresponding to A = vi
Let TRvi be the subset of TR that have A = vi
If TRvi is empty,

Then add a leaf node below the branch with target value =  most common value of 
Target in TR

Else below the branch, add the subtree learned by 
Tree-Learning(TRvi, Target, Attr-{A})

}
}
Return (Root)

}

Figure 1 Pseudocode of decision tree learning.
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Bagging [18] and boosting [19] are two popular methods
of creating accurate ensembles. Both methods rely on
“re-sampling” techniques to obtain different training
sets for each predictor in the ensemble. However, pre-
vious research indicates that boosting is more prone to
overfitting the training data [20,21]. Consequently, the
presence of noise causes a greater decrease in the per-
formance of boosting. Therefore, this study uses bagging
Figure 2 A sample decision tree.
to create an ensemble of decision trees to better address
the noise in medical data.
Bagging is a method of generating multiple versions of

a predictor and combining them to form an aggregated
predictor. The idea of bagging can be illustrated by an
intuitive example. Suppose that a patient wants a diag-
nosis made based on the symptoms. He (or she) would
rather consult with several physicians than only one.
The most frequent diagnosis is likely to be the correct
diagnosis because a majority vote by a large group of
doctors is likely more reliable. To extend the example,
substituting one version of a predictor for each doctor
produces the bagging predictor. To produce multiple
versions of a predictor in an ensemble, bagging creates a
training data set to train each predictor. Each training
data set is a bootstrap sample created by sampling the
given examples uniformly with replacement. Figure 3
shows a general framework of bagging for the decision
tree predictor.

PCA control readjustment prediction
Little research has been done on the prediction of PCA
control readjustment. In addition to predicting analgesic
consumption, this study attempts to predict whether
any PCA control, including PCA dosage, PCA mode,
lockout, and 4-h limit, should be readjusted to improve
patient satisfaction. This issue is an anomaly-detection



Figure 3 General framework of a bagged decision tree
predictor.
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problem [22] because only a few patients require PCA
readjustment after the initial setting. The large difference
in the number of patients who need PCA readjust-
ment and those who do not creates a class imbalance
problem. Learning from imbalanced data sets, in which
the number of examples of one (minority) class is much
smaller than the other (majority), presents a significant
challenge to the machine-learning community [23]. Con-
ventional machine-learning algorithms are typically
biased toward the majority class, and produce poor pre-
dictive accuracy for the minority class. Researchers have
proposed various approaches for coping with imbalanced
data sets. Guo and Viktor combined boosting and
synthetic data to improve the prediction of the minority
class [24]. Cardie and Howe weighted examples in an
effort to bias the learning toward the minority class [25].
Joshi et al. evaluated boosting algorithms to classify rare
classes [26]. Finally, Khalilia et al. combined repeated
random sub-sampling with the Random Forest method
to overcome the class imbalance problem [27].
In addition to unequal class distribution, instances

sparsely scattered in the data space make the prediction
of a minority class even more difficult. If both classes
are coherent, as in Figure 4(a), the boundary is clear
even if the class distribution is uneven. However, data
point sparsity blurs the boundary between classes, as
Figure 4(b) shows. Random sampling techniques, such
as over-sampling the minority class or under-sampling
the majority class, have little effect on improving the
boundary. Replicates of the minority class make the
decision region of the minority class more specific
(Figure 4(c)), and thus cause further splits in decision
tree learning [28]. More splits lead to more leaf nodes in
a decision tree, and consequently, to a greater tendency
to overfitting. Conversely, under-sampling randomly
picks examples from the majority class until the number
of examples matches the size of the minority class. The
examples of the majority class are selected randomly
and the examples of the minority class are sparely dis-
tributed. Thus, an equal size of both classes does not
help show a clearer boundary (Figure 4(d)). The methods
that adopt over-sampling by creating artificial minority
data or integrating boosting with synthetic data claim
to achieve better classification accuracy on the minority
class. However, experimental results show that their
performance highly depends on the synthetic data
created [24,28].
Unlike previous research, the proposed approach com-

bines data cleaning and repeated random sampling
techniques to balance data sets. Motivated by the
nearest-neighbor approach for outlier detection [29,30],
this approach identifies the candidate examples for
removal in a neighborhood. Instead of using the distance
of a data instance to its kth nearest neighbor as an
anomaly score [31], this approach first identifies the k-
nearest neighbors of each instance of the minority class,
and considers any majority class neighbor as “dirty.”
After examining each instance in the minority class and
its neighbors, the proposed approach removes those
“dirty” instances. The rationale behind this process is
that the nearest majority class neighbors of a minority
class member are likely to mislead learning algorithms.
Without them, learning algorithms can more easily
recognize the minority class boundary. Figure 5 illus-
trates this concept. Figure 5(a) shows an imbalanced
data set before removing “dirty” instances. The rectan-
gles in this figure represent the decision regions of the
minority class, and several majority class examples are
also included. One way to exclude the majority class
examples is to shrink the decision regions, but this
shrinkage can lead to overfitting the minority class, as
Figure 5(b) shows. Instead, the proposed approach first
locates the k-nearest neighbors (e.g., k=3) for each mi-
nority class example, and then presents the neighbors as
linked to each minority class example (Figure 5(c)) and
crosses out the “dirty” majority class neighbors (Figure 5
(d)). Removing the “dirty” examples produces the “clean”
decision regions of the minority class (Figure 5(e)). After
data cleaning, under-sampling or over-sampling and
bagging or boosting techniques can further balance
the class distribution. In practice, the number of nearest
neighbors (i.e., the value of k for k-nearest neighbors) is



Figure 4 Examples of decision regions of data points projected to a 2D space. The X- and Y-axes represent two attributes in the feature
space. The minority class examples are denoted by black circles, and the majority class examples are denoted by white circles. Red rectangles
indicate the axis-parallel decision regions of the minority class learned by the decision tree algorithm. (a) In an imbalanced but coherent data set,
the boundary between classes is clear. Over-sampling the minority class or under-sampling the majority class to balance the data set can help
learning algorithms identify the decision regions. (b) If the data set is imbalanced and the minority class examples are sparsely scattered in the
majority class, the decision regions are likely to include the majority class examples, making classification more difficult. (c) Over-sampling the
minority class with replications makes the decision regions more specific. The replications of the minority class examples are indicated by larger
black circles. As the decision regions become more specific, learning algorithms based on the divide-and-conquer method (e.g., a decision tree
algorithm) are more prone to overfitting because they produce more partitions in the data during learning. (d) In contrast, under-sampling the
majority class randomly selects examples until its size equals that of the minority class. Because the minority class examples are scattered, the
decision regions may still contain the majority class examples, and learning the boundary remains difficult.
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determined by a validation test in which the training
data are further divided into two subsets at random.
One subset is used to train a classifier after the dirty
examples, based on k-nearest neighbors, are removed
from the subset. The other subset is used to validate the
performance of the trained classifier. Varying k enables
the selection of the k that maximizes classifier per-
formance. The proposed data cleaning method is not
designed to replace previous approaches to mitigating
the class-imbalance problem, but rather to serve as a
preprocessor for these approaches. Figure 6 shows the
control flow for data cleaning, random sampling, classi-
fier training, and prediction. This study demonstrates
the usefulness of data cleaning compared to other
approaches tackling class imbalance, including under-
sampling, over-sampling, and data generation.
Results and discussion
Analgesic consumption prediction results
We predicted the 72-h total analgesic consumption
(continuous dose plus PCA dose) for each patient based
on the patient’s first 24 h of PCA usage data, physical
state, and surgery-related attributes. The numeric value
of the total anesthetic dose (continuous and PCA) was
discretized into three symbolic values: “low,” “medium,”
and “high.” The 1099 patients who received PCA treat-
ment for more than 72 h were divided into three classes
according to the symbolic values, with class sizes of 399
(low), 551 (medium), and 149 (high), respectively.
This study evaluates the performance of learning algo-

rithms in analgesic consumption prediction based on
predictive accuracy instead of the performance measure
used in ordinal classification [32]. This is because some



Figure 5 An example of nearest neighbor–based data cleaning. The X- and Y-axes represent two attributes in the feature space. The
minority class examples are denoted by black circles and the majority class examples are denoted by white circles. Red rectangles indicate the
axis-parallel decision regions of the minority class learned by the decision tree algorithm. (a) We show an imbalanced data set with sparse
minority class examples. The decision regions of the minority class contain the majority class examples. (b) One way to exclude the majority class
is to shrink the decision regions by making them more specific. However, more specific regions produce more splits in the decision tree, causing
the overfitting problem. (c) To identify the “dirty” examples that may mislead learning, the proposed method locates k-nearest (where k is 3 in
this example) neighbors for each minority class example. The 3-nearest neighbors of a minority class example are indicated by links. (d) A red
cross marks each “dirty” example. (e) After the “dirty” examples are removed, the decision regions are “clean” (i.e., they contain only the minority
class examples). Using these clean decision regions, learning algorithms can more easily recognize the correct boundary between classes.
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of the learning algorithms applied in the proposed
method (e.g., C4.5 decision tree learner) treat “low,”
“medium,” and “high” as symbolic values. The perform-
ance of learning algorithms was compared based on the
conventional predictive accuracy to ensure consistency
because this order relationship cannot be used in some
of the learning algorithms. The prediction performance
of each class was measured separately in addition to the
overall accuracy of all classes. Accuracy was calculated
according to a confusion matrix, as Table 2 shows for a
3-class prediction problem. In this matrix, the rows
represent the predicted classes, and the columns repre-
sent the real classes. Each element in the matrix is the
number of predictions corresponding to the predicted
class and the real class. For example, a is the number
of Classlow examples correctly classified, and b is
the number of Classmedium examples misclassified as
Classlow. In addition to overall accuracy, this study cal-
culates the sensitivity and precision of each class (e.g.,
Classlow sensitivity was defined as a/(a+d+g)). Table 3
provides a complete description of the performance
measures used in these experiments.
This study includes a stratified k-fold cross-validation

experiment to evaluate classifier performance. The initial
PCA data (i.e., the 1099 patient records) were randomly
divided into k disjoint folds (i.e., subsets) of approxi-
mately equal size. The folds were also stratified to main-
tain the same class distribution as in the initial data.
One fold of data was used to test the prediction per-
formance, and the remaining (k-1) folds were all used
for training. The same training–testing process was
applied to each fold iteratively. Each run produced a pre-
diction performance result based on the fold selected
for testing, and the overall performance consists of the
average over all iterations.
Because the goal of this study is to develop an accurate

and comprehensible classifier for anesthesiologists, it
only applies C4.5 to ensemble learning. This study com-
pares the performance of C4.5 [11] with bagging and
boosting in a stratified 10-fold cross validation, and



Table 3 Definitions of performance measures for
analgesic consumption prediction

Performance Measure Definition

Low Consumption Sensitivity a/(a+d+g)

Medium Consumption Sensitivity e/(b+e+h)

High Consumption Sensitivity i/(c+f+i)

Low Consumption Precision a/(a+b+c)

Medium Consumption Precision e/(d+e+f)

High Consumption Precision i/(g+h+i)

Overall Accuracy (a+e+i)/(a+b+c+d+e+f+g+h+i)

Figure 6 Control flow of data cleaning, sampling, training and
prediction. This control flow shows only one run in a k-fold cross
validation. One fold of the data is used for testing, and the
remaining k-1 folds are used for training. To make prediction
consistent with the real class distribution, maintain the original class
distribution in the test data and only perform data cleaning on the
training data. Repeat the same process on each fold of the data as
the test data, and use the rest as the training data.
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measures the performance in terms of sensitivity and
precision of each class and overall accuracy in all classes.
Each run of the cross-validation experiment generated
200 bootstrap samples from the training data, creating
an ensemble of 200 decision trees. The prediction for a
test example was made by taking a majority vote from
the bagging trees. The AdaBoost ensemble algorithm
[20] was adopted to implement boosting. This study
also compares Artificial Neural Network (ANN) [12],
Support Vector Machine (SVM) [13], Random Forest
[33], Rotation Forest [34], and Naïve Bayesian (NB)
classifiers [14].
All learning algorithms were performed for ten itera-

tions of 10-fold cross validation on the same training
data set and test data set in each run, and the results
were averaged. Table 4 presents the results of a paired
t-test with Bonferroni correction between bagging and
the other methods. These t-test results show that the
Table 2 Confusion matrix for analgesic consumption
prediction

Real
Low

Real
Medium

Real
High

Predicted Low a b c

Predicted Medium d e f

Predicted High g h i
overall accuracy of the bagged C4.5 was significantly
better than most of the other methods (p < 0.001). In
addition to total analgesic consumption prediction (i.e.,
continuous dose plus PCA dose), this study predicts the
total 72-h analgesic consumption exclusively contributed
by patient demands (i.e., PCA dose only). Table 5 pre-
sents a summary of the results. As in total analgesic dose
prediction, the numeric value of PCA analgesic dose was
first discretized into three symbolic values: “low,”
“medium,” and “high.” The 1099 patients who received
PCA treatment for more than 72 h were divided into
three classes according to the symbolic values, and the
class size was 580 (low), 373 (medium), and 146 (high),
respectively. The bagged C4.5 significantly outperformed
most of the other methods in predicting PCA analgesic
consumption (p < 0.001).
PCA control readjustment prediction results
As in analgesic consumption prediction, the PCA con-
trol readjustment prediction was also based on the first
24 h of PCA usage data, the patient’s physical state, and
operation-related attributes. We predicted whether a
patient’s PCA control would require readjustment within
the following 48 hours. The class ratio of the PCA data
was 81% (negative class) to 19% (positive class). The
number of patients who needed PCA readjustment was
much smaller than the number of patients who did not,
creating a class imbalance problem. When classes are
imbalanced, conventional learning algorithms often pro-
duce classifiers that do little more than predict the most
common class. However, the goal of this study is to pre-
dict accurately whether any readjustment of PCA set-
tings will be required in later hours. Unlike the
evaluation of analgesic consumption prediction, which is
based on overall accuracy, the performance of learning
strategies with imbalanced data was measured by their
true positive rate (i.e., sensitivity), false positive rate,
positive predictive value (i.e., precision) and F-score [35].
Overall accuracy is not an appropriate performance
measure for prediction in imbalanced data because any



Table 4 Results of total analgesic consumption (Continuous + PCA) prediction

Total Analgesic Consum.
Prediction (%)

C4.5
bagging

C4.5
AdaBoost

C4.5 ANN* Random
Forest

Rotation
Forest

SVM‡ NB

Low Consum. Sensitivity 84.3 79.2 77.4 69.8 80.1 83.1 8.0 79.0

Med Consum. Sensitivity 83.5 75.8 72.8 79.6 83.6 82.0 96.1 67.7

High Consum. Sensitivity 62.4 61.2 60.6 21.6 47.4 62.0 0.0 38.0

Low Consum. Precision 84.3 78.8 76.3 80.2 81.4 82.9 59.4 71.8

Med Consum. Precision 79.7 75.3 73.5 66.1 74.8 78.8 50.6 70.2

High Consum. Precision 78.5 66.0 62.8 56.9 80.4 76.3 0.0 46.3

Overall Accuracy 80.9 75.1 72.8 68.5 77.4 79.7 50.7 67.9
*ANN consisting of an input layer of 279 input units, one hidden layer of 140 hidden units, and one output layer of 3 output units.
Learning rate= 0.3; momentum rate= 0.2.
‡SVM using a radial basis function, exp(−gamma*|u-v|2), where gamma=1/(number of attributes)=1/279.
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predictor that persistently favors the majority class can
easily achieve a high overall predictive accuracy. Table 6
lists these performance measures.
Because decision tree-based learning performed the

best in analgesic consumption prediction, this study only
focuses on the analysis of decision tree-based learning in
PCA readjustment prediction. We first tested C4.5 with
bagging or boosting on the original imbalanced data set,
and then applied either under-sampling or over-
sampling to balance the classes. We also tested the
Random Forest method on the original imbalanced data
set, and found similar performance to that of C4.5 with
bagging. Both methods had a low true positive rate, false
positive rate, and F-score. The distinction between the
bagging and Random Forest methods lies in the tree
building process. Unlike bagging, Random Forest consid-
ers a random subset of attributes during tree construc-
tion rather than all the available attributes. The similar
performance of these methods corresponds well with the
similar characteristics of the bagging [18] and Random
Forest methods [33]. To compare the performance of
methods combining boosting and synthetic data gener-
ation, this study also tests DataBoost-IM [24]. Table 7(a)
shows the results. All values were averaged over ten
iterations of stratified 10-fold cross validation. Results
indicate that class imbalance has a significant effect on
Table 5 Results of PCA analgesic consumption (PCA only) pre

PCA Analgesic Consum.
Prediction (%)

C4.5
bagging

C4.5
AdaBoost

C4.5

Low Consum. Sensitivity 84.3 79.0 76.9

Med Consum. Sensitivity 65.8 54.3 51.5

High Consum. Sensitivity 47.5 45.1 45.4

Low Consum. Precision 81.7 77.4 76.1

Med Consum. Precision 60.7 53.6 51.2

High Consum. Precision 75.1 52.3 49.3

Overall Accuracy 73.1 66.1 64.1
*ANN consisting of an input layer of 279 input units, one hidden layer of 140 hidde
Learning rate= 0.3; momentum rate= 0.2.
‡SVM using a radial basis function, exp(−gamma*|u-v|2), where gamma=1/(number
bagging and boosting. Without under-sampling or over-
sampling, the class imbalance in the PCA data misled
both bagging and boosting toward the majority class,
as suggested by their low true positive rates. After
under-sampling, the bagged C4.5 method achieved the
best F-score.
This study also evaluates the proposed nearest neigh-

bor–based data cleaning strategy. After removing “dirty”
negative examples from the training data set, we reduced
the ratio of negatives to positives from 81:19 to 65:35 on
average. Compared with Table 7(a), the results in Table 7
(b) demonstrate that this data cleaning strategy
improved most of the classifiers significantly (p < 0.001)
in both true positive rate and F-score. Although the FPR
also increased, the F-scores of these learning methods
increased significantly (p < 0.001), confirming the advan-
tage of this data cleaning strategy.

Analysis of patient attributes
Because the decision tree algorithm is a divide-and-
conquer method, the attributes closer to the root of
the decision tree (i.e., at a higher level) are more inform-
ative [11]. An analysis of the occurrence frequency of
each attribute and its level in the C4.5 bagging trees
identified the 10 most informative attributes for the
prediction of 72-h total analgesic consumption (i.e., a
diction

ANN* Random
Forest

Rotation
Forest

SVM‡ NB

89.2 95.4 84.1 99.9 81.4

19.1 47.2 60.6 0.0 48.1

8.4 31.8 51.0 0.0 50.8

62.0 73.2 80.5 52.8 75.4

20.7 61.4 59.7 0.0 55.6

22.8 85.7 68.2 0.0 51.2

54.7 70.6 71.7 52.7 65.4

n units, and one output layer of 3 output units.

of attributes)=1/279.



Table 6 Definitions of performance measures for PCA
control readjustment prediction

Performance Measure Definition

TPRa (True Positive Rate) TP/(TP+FN)

FPR (False Positive Rate) FP/(FP+TN)

Precisionb TP/(TP+FP)

F-score 2*TPR*Precision/(TPR+Precision)
aTrue Positive Rate is also known as Sensitivity or Recall.
bPrecision is also known as Positive Predictive Value.
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continuous dose and PCA dose) and the prediction
of PCA analgesic consumption only. Most of the inform-
ative attributes were related to unit-hour analgesic con-
sumption (e.g., PCA analgesic consumption in the 9th

hour (pcadose_9hr)) (Table 8).
ANOVA analysis (for numeric value attributes) and

the chi-square test (for nominal value attributes) were
performed to evaluate the correlation between these
attributes and symbolic analgesic consumptions (i.e.,
low, medium, and high). Results show that these attri-
butes were significantly correlated with analgesic con-
sumption. A series of tests was conducted to obtain a
baseline p-value by randomizing the attributes to fur-
ther verify the set of informative attributes. Three
continuous-dose and five PCA-dose attributes were
identified as informative in the 24 unit-hour dose attri-
butes. Thus, we randomly selected three continuous-
dose attributes and five PCA-dose attributes in the
Monte Carlo tests. The negative logarithms of the aver-
age baseline p-value were 113.1 (averaged over three
random continuous doses) and 10.9 (averaged over five
random PCA doses). Compared with the negative loga-
rithms of the average p-values of the informative
continuous-dose and PCA-dose attributes (i.e., 152.4
and 11.4), these results suggest that these informative
attributes were not identified by chance. An examination
of the total analgesic consumption of all patients showed
that 78.1% of the patients received more volume of anal-
gesia from continuous dose than from PCA dose. This
result concurred with the finding that continuous-dose
attributes are more significant than PCA-dose attributes
(i.e., 152.4 vs. 11.4).
We repeated the same analysis and verification proce-

dures for the prediction results of 72-h PCA analgesic
consumption. Table 9 presents a summary of the in-
formative attributes and their ANOVA analysis results.
The negative logarithm of the average baseline p-value
for the PCA dose was 38.4 vs. 44.9, the negative loga-
rithm of the p-value averaged over the more important
PCA doses (i.e., pcadose_6hr, 9hr, 11hr, 14hr, and 19hr).
The negative logarithm of the average baseline p-value
for the PCA demand time gap means was 10.5 vs. 14.3,
the negative logarithm of the average p-value of the
more informative PCA demand time gap means (i.e.,
p_timediff_mean_9hr, 14hr, 17hr, and 22hr). These
results indicate the significance of the more important
and informative attributes identified for the 72-h PCA
analgesic consumption prediction.
Previous research [6,7] has identified a significant cor-

relation between age and the opioid dosage required
during the postoperative period. Other studies have
reported that gender is an important factor in PCA mor-
phine consumption [8]. To test whether age and gender
are important factors for symbolic PCA dose prediction
(i.e., “low,” “medium,” and “high,”), this study includes
ANOVA analysis and chi-square testing. Results show
that age and gender are more significant than other
demographic or biomedical attributes, such as ASA class
or pulse, in the prediction of PCA analgesic consump-
tion (Table 10). In addition to age and gender, weight
was another important attribute. This finding conflicts
with previous research showing no correlation between
analgesic consumption and patient weight [8,36]. How-
ever, epidural-related PCA research has associated body
mass index with analgesic requirements [37], suggesting
that weight may be a relevant factor.
Table 11 shows the top 10 informative attributes for

PCA readjustment prediction. Unlike analgesic con-
sumption prediction, this study identifies a wider variety
of informative attributes for PCA control adjustment
prediction, but ANOVA analysis and the chi-square test
showed that some of the informative attributes were
not significant (p > 0.05). However, the goal of this study
is to develop classifiers capable of making accurate
and comprehensible predictions rather than simply iden-
tifying significant predictive factors, as in most previous
research [7-9]. This disagreement in attribute analysis
addresses the difference between statistical methods and
machine-learning approaches. Systolic blood pressure
and pulse were also significant in PCA control readjust-
ment prediction, whereas weight was not. These results
conflict with those in PCA analgesic consumption pre-
diction (Table 10), suggesting that these two prediction
tasks have different characteristics.
PCA is one of the most effective techniques for post-

operative analgesia, and is now widely used in hospitals
for the management of postoperative pain. To improve
patient satisfaction, this study attempts to predict the
need for PCA readjustment based on the first few hours
of PCA treatment. Based on the PCA patient data pro-
vided by CCH, the number of patients that required
PCA readjustment was much smaller than those who
did not. Learning from imbalanced classes has long
been a challenging problem in the machine learning and
data mining community. This study of decision tree-
based learning evaluates several common approaches
to the class-imbalance problem. Under-sampling and



Table 7 Results of PCA control adjustment prediction (before and after data cleaning)

(a) PCA control readjustment prediction (before data cleaning)

PCA Control
Prediction (%)

C4.5
bagging

C4.5 bagging
over-sampling

C4.5 bagging
under-sampling

C4.5
AdaBoost

C4.5 AdaBoost
over-sampling

C4.5 AdaBoost
under-sampling

C4.5 Random
Forest

Rotation
Forest

DataBoost-IM

TPR 4.3 16.1 41.5 19.6 32.8 47.3 25.5 2.6 12.0 19.7

FPR 1.3 9.6 25.6 11.8 23.5 37.1 17.5 0.4 5.0 14.6

Pos Predict Val 39.3 28.2 27.5 27.9 24.6 23.1 25.4 38.2 36.3 23.7

F-score 7.5 20.2 32.9 22.5 27.9 30.9 25.2 4.7 17.6 21.4

(b) PCA control readjustment prediction (after data cleaning)

TPR 40.7 51.1 54.4 42.5 55.4 54.0 43.5 31.8 41.8 49.6

FPR 22.8 34.0 36.0 30.5 42.1 44.1 33.7 17.3 27.1 36.2

Pos Predict Val 29.5 26.1 26.2 24.5 23.6 22.3 23.2 30.2 26.6 24.3

F-score 33.9 33.8 35.3 30.9 33.0 31.5 30.2 30.5 32.3 32.1
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Table 8 Informative attributes for total analgesic
consumption (Continuous + PCA) Prediction

Attribute -log(p-val)*

contidose_24hr 156.2

contidose_23hr 153.5

contidose_22hr 147.6

pcadose_21hr 9.3

pcadose_19hr 6.3

pcadose_9hr 11.1

pcadose_3hr 15.7

pcadose_2hr 14.4

p_timediff_var_17hr 3.9

pcamode_set_24hr ∞ (p-value ≈ 0)
*negative logarithm of p-value obtained from ANOVA analysis (for pcadose,
contidose, and p_timediff_var) or chi-square test (for pcamode_set).

Table 10 Analysis of demographic/biomedical attributes
for PCA analgesic consumption prediction

Attribute p-value

age 0.03

gender 0.05

weight 0.0003

sbp 0.37

dbp 0.96

pulse 0.98

ASA CLASS 0.58

OP_CLASS 0.24

op_time 0.10

URGENCY 0.19

ANS_WAY 0.15

DM 0.36

HT 0.45

AMI 0.55

Hu et al. BMC Medical Informatics and Decision Making 2012, 12:131 Page 13 of 15
http://www.biomedcentral.com/1472-6947/12/131
over-sampling can both improve the prediction perform-
ance of decision tree-based ensemble learning. However,
under-sampling outperforms over-sampling in terms of
F-score, supporting the hypothesis that data point spars-
ity blurs the boundary between classes. The PCA data in
this study shows that the number of patients that
required PCA readjustment was small, and these
patients were sparsely distributed in the data space. In
this case, over-sampling sparse patients to balance the
class size may not sharpen the decision boundary effect-
ively. Over-sampling may also shatter the decision
region into many smaller ones (Figure 4(c)), decreasing
prediction accuracy owing to overfitting. When the
minority class is small and sparse, under-sampling the
majority class to balance the classes may be a better
approach because it avoids overfitting, even though the
decision region is not guaranteed to be of the same class.
Like over-sampling, generating artificial data points
to balance classes has a similar weakness. Table 7(a)
shows that a single C4.5 decision tree outperformed
Table 9 Informative attributes for PCA analgesic
consumption (PCA only) prediction

Attribute -log(p-val)*

pcadose_19hr 41.6

pcadose_14hr 47.0

pcadose_11hr 49.0

pcadose_9hr 40.1

pcadose_6hr 46.6

p_timediff_mean_22hr 10.4

p_timediff_mean_17hr 11.3

p_timediff_mean_14hr 16.9

p_timediff_mean_9hr 18.5

p_timediff_var_19hr 5.7
*negative logarithm of p-value obtained from ANOVA analysis.
DataBoost-IM with data generation in F-score. This sug-
gests that the data generation process may be misled by
the sparse distribution of data points. To mitigate the
effects of data sparsity, “dirty” data was removed from
the majority class. As expected, the decision regions
became more distinct after data cleaning, as demon-
strated by the improved F-scores of all the learning
methods in this study.
Although PCA can provide medical staff with a con-

venient way to control pain, it requires constant atten-
tion: manually collecting each patient’s PCA data,
printing out analgesia usage data, and entering readings
into appropriate databases. Based on recent advances in
information technology and wireless networking, the
objective of information network technology has shifted
from increasing hardware performance alone to
Table 11 Informative attributes for PCA control
readjustment prediction

Attribute -log(p-val)*

contidose_24hr 12.0

p_timediff_var_3hr 1.3

p_timediff_var_8hr 0.5

sbp 2.8

pulse 2.1

p_timediff_mean_17hr 0.5

pcamode_set_24hr 3.2

pcamode_set_14hr 2.1

op_time 1.2

weight 1.0
*negative logarithm of p-value obtained from ANOVA analysis or
chi-square test.
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providing better services and wider applicability. Medical
care is one of many potential applications of informa-
tion network technology. We have combined the Zigbee
sensor network and the IEEE 802.11 network to collect
and transmit PCA-related data to databases for pain
management [38]. Field tests at Changhwa Christian
Hospital (CCH) show that the automation of data col-
lection, maintenance, and analysis can significantly
reduce the amount of labor work in PCA treatment and
increase efficiency.
We are currently developing a 3G-gateway module to

further extend the automation of data collection and
management. In addition, we plan to connect more
medical devices to the sensor network to collect other
patient vital signals, such as SpO2. Using more patient
attributes, the proposed approach should be able to
better characterize PCA demand behaviors and make
more accurate predictions of PCA analgesic consump-
tion and control adjustment.
Conclusions
Many factors affect individual variability in postoperative
pain. Although several statistical studies have evaluated
postoperative pain and analgesic consumption, a system-
atic review of previous research shows that the coeffi-
cient of determination of existing predictive models was
small (e.g., R2 = 0.17–0.59 for postoperative pain, and
0.27–0.46 for postoperative analgesic consumption) [39].
These findings indicate that approximately half of the vari-
ability is unexplained, and that factors other than demo-
graphic or physiological attributes may contribute to the
complexity of postoperative outcomes. This study presents
the real-world application of data mining to anesthesiology
and considers a wider variety of predictive factors, includ-
ing PCA demands over time. This study analyzes PCA
patient data and conducts several experiments to evaluate
the potential of applying machine-learning algorithms to
assist anesthesiologists in PCA administration. Results
confirm the feasibility of the proposed ensemble approach
to postoperative pain management.
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